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Abstract: In recent years, developments in deep learning technology have driven significant advance‑
ments in research aimed at facilitating communication with individuals who have hearing impair‑
ments. The focus has been on enhancing automatic recognition and translation systems for sign
language. This study proposes a novel approach using a vision transformer (ViT) for recognizing
Japanese Sign Language. Our method employs a pose estimation library, MediaPipe, to extract the
positional coordinates of each finger joint within video frames and generate one‑dimensional angu‑
lar feature data from these coordinates. Then, the code arranges these feature data in a temporal
sequence to form a two‑dimensional input vector for the ViT model. To determine the optimal con‑
figuration, this study evaluated recognition accuracy by manipulating the number of encoder layers
within the ViT model and compared against traditional convolutional neural network (CNN) mod‑
els to evaluate its effectiveness. The experimental results showed 99.7% accuracy for the method
using the ViT model and 99.3% for the results using the CNN. We demonstrated the efficacy of our
approach through real‑time recognition experiments using Japanese sign language videos.

Keywords: Japanese sign language; MediaPipe; vision transformer

1. Introduction
In a recent 2023 study by theWorld Health Organization (WHO), it was reported that

approximately 466 million people are living with disabling hearing loss caused by various
factors [1]. Experts estimate that by 2050, hearing loss will affect 700 million people world‑
wide, which is equivalent to one in ten individuals. A parallel report by JapanTrak [2]
suggested that by 2022, 10 percent of Japan’s population, 10 million people, will experi‑
ence hearing loss. A survey conducted by the Committee for the Promotion of Hearing
Loss Assistance Programs [2] revealed that about 70% of individuals with hearing loss
have experienced job changes because of challenges in relationship building and request‑
ing accommodations.

Advances in deep learning technology have been instrumental in propelling research
aimed at enhancing communication with individuals who are deaf or having difficulty
hearing. Over the past decade, this technology has seen significant advancements, with
research in deep learning‑based sign language recognition garnering substantial atten‑
tion. Compared to traditional video recognition, sign language recognition poses unique
challenges. The RGB‑based recognition requires an extensive number of samples because
of the minimal correlation between sign language movements and background, coupled
with limited inter‑frame variation. The perceivability of sign language movements is in‑
fluenced by various factors, such as the signer’s speed, body shape, rhythm, and per‑
formance location, underscoring the necessity for models exclusively focusing on sign
language movements.
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Recently, skeleton‑based sign language recognition methods have received increas‑
ing attention owing to their adaptability in dynamic scenarios and against complex back‑
grounds. Researchers have recently shifted their focus to developing several skeleton‑
based approaches [3,4] that incorporate diverse types of feature data into coordinate val‑
ues derived frompose estimation and categorize themusing convolutional neural network
(CNN) models.

We introduce a straightforward and accessible method for recognizing all 46 Japanese
finger spellings. Our goal is to reduce computational complexity and perform recogni‑
tion in real time by making input data two‑dimensional through feature extraction. This
method employs a visual transformer (ViT) [5] model, which has become a topic of inter‑
est in computer vision. The first step of our method involves using a posture estimation
library, MediaPipe [6], to capture the coordinates of each finger joint from a video frame.
These coordinates are then used to calculate one‑dimensional angular feature data. We
organize the angular feature data to create a two‑dimensional input vector as the next step.
This vector is essential for the recognition process, which is conducted using the ViTmodel.
An important part of this process is adjusting the number of encoder layers in the ViT. This
change allows us to assesswhich configuration yields the highest recognition accuracy and
identify the optimal number of encoder layers. To show the effectiveness of our proposed
method, wewill compare its performance with that of existing CNNmodels. This compar‑
ison aims to showcase the potential improvements and benefits of using the ViT model for
sign language recognition, especially in Japanese sign language.

2. Related Works
Researchers have devised various methods in sign language recognition, including

physical methods such as the use of wearable devices [7]. In video‑based sign language
recognition, the two primary approaches are manual feature extraction and deep learning‑
based approaches. Manual feature extraction involves picking out and analyzing impor‑
tant features from video footage. Techniques like scale‑invariant feature transform
(SIFT) [8], histogram of oriented gradients (HOG), and optical flow are used to identify
these key features. Once identified, machine learning algorithms like support vector ma‑
chines (SVM), decision trees, or basic neural networks classify these features.

The deep learning‑based approach uses advanced deep learning models, CNNs, and
recurrent neural networks (RNNs) to identify and learn features from video data automat‑
ically. The models feed on the raw video and autonomously carry out feature extraction
and classification. There are two subtypes in this method, continuous sign language recog‑
nition (CSLR) and isolated sign language recognition (ISLR). CSLR aims to recognize the
flowing sign language from videos. It tackles the challenge of identifying and interpreting
sign language in a continuous stream, where signs flow into each other. In CSLR, the study
by Lianyu Hu et al. [9] focused on the correlation between frames.

In contrast, ISLR focuses on recognizing individual signs or short phrases that are
shown separately. The most common approach in ISLR involves CNN‑based models like
I3D [10] and R3D [11], which classify sign language using RGB video as input. This is sim‑
pler than CSLR, as it does not involve interpreting transitions between signs. Researchers
widely use CNN models, sometimes combined with RNNs, in ISLR. Chun Keat
Tan et al. [12] also recently proposed an ISLR approach using the ViT classifying hand
gesture images as input data. Their results showed accuracies of 99.98% on the American
Sign Language (ASL) dataset, 99.36% on the ASL with the Digits dataset, and 99.85% on
the National University of Singapore (NUS) hand gesture dataset.

Marcelo et al.’s study [13] explored four transformer‑based approaches and four pre‑
training data regimes, investigating all combinations on the WLASL2000 dataset. The
model known as MaskFeat achieved 79.02% accuracy in gloss‑based WLASL2000, outper‑
forming pose‑based and supervised videomodels. OpenPose [14] andMediaPipe have led
to the development of skeleton‑based ISLR. A study by S. Jiang [3] proposed the skeleton‑
aware multimodal framework (SAM‑SLR‑v2), achieving 98% accuracy test the AUTSL
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dataset. Improving hand pose estimation can significantly enhance the accuracy of sign
language recognition.

Recent developments havewitnessed emerging hybridmethodologies, amalgamating
elements from both manual feature extraction and deep learning paradigms, endeavoring
to harness the synergistic strengths of both approaches. Technological advancements in
vision transformers (ViTs), OpenPose, and MediaPipe are progressively augmenting the
efficacy of these approaches, particularly within the deep learning spectrum. Based on
these findings, this study proposes a sign language recognition method using ViT and
MediaPipe. While there is research on ASL and other foreign sign languages, studies on
Japanese sign language are less advanced in comparison. In their study, Syosaku et al. [15]
used OpenPose and MediaPipe to estimate posture and hand shape, and they constructed
a vector to characterize sign language expressions. The researchers computed the simi‑
larity of sign language expressions for each part of the frame sequence and evaluated it
by using characteristic actions as key images for retrieval. As a result, nine pairs were
determined to be motion synonyms, seven of which had little semantic relevance and ap‑
peared infrequently, indicating that theywere newmotion synonyms. In their study,Miku
et al. [16] used the leap motion controller which is a device to acquire hand skeleton data
to estimate finger characters representing the Japanese sign language syllabary. The shape
and motion of the fingers were detected, and the characters were estimated from the Eu‑
clidean distance. Their experiment revealed that the recognition rate for fixed finger letters
was 78%, but it decreased to 75% when finger letters with motion were included. The re‑
searchers attribute the accuracy loss to the leap motion controller’s inability to recognize
overlapping fingers correctly. This study involves direct collaboration with sign language
speakers to film 46 phonemes and uses these data for training in sign language recognition.

3. Datasets and Angular Features
In this section, we describe creating a Japanese finger‑spelling dataset and themethod

for extracting angular features from this dataset to generate input vectors. This research
ultimately aims at real‑time operation. For this reason, the requirements for a posture esti‑
mation system are fast processing speed and high accuracy for a single person. In response
to this, we used MediaPipe because it combines “fast end‑to‑end processing” and “high
accuracy for a single person”, and compared to other methods (OpenPose), we believe
MediaPipe is the best system for this study.

3.1. Shooting Data of Japanese Sign Language
We created the Japanese sign language videos used in this study by inviting sign lan‑

guage speakers to record the finger‑spelling actions. We present the details of the film‑
ing below.
• A total of 46 Japanese syllables and specified words were recorded.
• Five letters with the same consonant were filmed in sequence.
• The sign language speaker was photographed from the waist up in the frame.
• The recording was taken with the subject facing forward, and the left–right tilt was

kept within 15 degrees.
• A green screen background was used for the filming.
• The images were taken without masks while the speaker was speaking.
• Filming was conducted in Full HD (1920× 1080) quality at 60 frames per second, and

the data were compiled in mp4 format.
• Each of the 46 different letters was photographed 6 times.

In this study, we categorized the filmed videos as spelling videos (Figure 1), which
comprise a series of finger‑spelling videos for the syllables ‘あ|a|’ to ‘ん|ŋ|’, and word
videos, which depict several words in finger spelling. We invited onemale and one female
for filming. The filming team recorded three takes of each person for the spelling videos
and one take for the word videos. We filmed the spelling videos in three different sessions.
First time, participants used no special posture to enable natural fingerspellingmovements,
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second time, filming was conducted with sleeves rolled up to prevent overlapping of body
and finger spelling, and third time, filmingmaintained the same position, without the need
for rolled‑up sleeves. We conducted the shooting for the word videos in the same posture
used in the third session of the spelling videos. Table 1 shows the final composition of
the videos. The table shows that the average value for the first five‑character video of the
woman is smaller than the other data. The reason for this is that the woman was told
to “go as fast as usual” during the first shooting. After the second shooting, the value
became larger because the female subject made a sign language movement a little slower
for the shooting. The average value remained stable because themale subject had extensive
experience in sign language and consistently signed at a constant speed.
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Figure 1. Example of a partially extracted image from the spelling videos: (a) images of a female
signer expressing the Japanese characters from ‘あ|a|’ to ‘お|o|’ (first‑time data); (b) image of a
male signer expressing the Japanese characters from ‘あ|a|’ to ‘お|o|’ (third‑time data).

Table 1. Information on shooting data.

Video Type Position Rolled‑Up
Sleeves

Video Duration Average

Five Letters Three Letters

Spelling
videos

First‑time data
Male Seating without 8 s 5 s

Female Seating without 8.6 s 5 s

Second‑time data
Male Standing with 8.6 s 5.5 s

Female Standing with 9.1 s 5 s

Third‑time data
Male Standing without 8.6 s 5 s

Female Standing without 8.7 s 5 s

Four letters

Word videos Word data
Male Standing without 6 s

Female Standing without 6 s

The videos takenweremanually split. The stage inwhich the hand shape of the finger
character became clear was set as the beginning, and the stage just before the hand shape
was broken was set as the end. For ‘mo(も)’, which is a finger character that changes the
finger shape in the middle of the action, we used the finger shape from the beginning of
the action to the end of the action.

3.2. Calculation of Angular Features
In this subsection, we explain the method of calculating the tilt of fingers and hands

from video data into cosine angles and extracting them as feature vectors. Angle features
were extracted from the Japanese finger‑spelling video dataset through the
following process:
1. MediaPipe was utilized to extract joint position coordinate data from each video data.
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2. By utilizing the extracted coordinate data, we obtained 20 angles for each finger joint,
as illustrated in Figure 2a, and 20 features that indicate the overall tilt of the hand, as
displayed in Figure 2b, employing cosine values. The datasets in our experiments
were classified into three types based on the various combinations of these angu‑
lar features.

3. Since feature data is acquired frameby frame, the size of the input data variedwith the
length of the video. To address this, we applied an interpolation method, commonly
used in object detection techniques, to standardize the size of the uneven input data
extracted from the videos. These results generated a two‑dimensional matrix with a
uniform number of frames.

4. From this standardized two‑dimensional matrix, we extracted multiple random
frames, which reduced the frame count and created a smaller two‑dimensional ma‑
trix. This process, when repeated, allowed us to augment the data, resulting in
324 data points per finger‑spelling character.
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Figure 2. Angular features extracted from finger joint and wrist coordinates: (a) the 20 dimensions
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Two types of angular features were used in this study. The first type focuses on three
points centered on the joint of interest and determines the angle of each finger joint, as
shown in Figure 2a. The second type evaluates the overall tilt of the hand, as shown in
Figure 2b. As shown in Figure 2b, the angle was determined using a reference vector and
the tilt from it. In both cases, we calculated the vector from the coordinates of each joint
to the adjacent joint and computed its cosine value to measure the opening of each joint.
In Figure 3 and Equation (1), we can see the calculation method and the positional rela‑
tionship of the coordinates. To obtain the angle shown in red in Figure 3, the coordinates
of the three points obtained by MediaPipe are (x1, y1) (x2, y2) (x3, y3), as shown in the
figure. (xn, yn) indicate the x‑coordinate and y‑coordinate of each joint obtained by Medi‑
apipe, respectively. These values are substituted into Equation (1) to calculate the cosine
value. The overall tilt of the hand depicted in Figure 2b was calculated using a reference
vector parallel to the x‑axis andmoving outward from thewrist and a vector from thewrist
to each finger joint. These calculations resulted in 20 features with each finger joint and
20 features with the overall tilt of the hand.

cosθ =
(x2 − x1)(x3 − x2) + (y2 − y1)(y3 − y2)√

(x2 − x1)2 + (y2 − y1)2
√
(x3 − x2)2 + (y3 − y2)2

(1)
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3.3. Unification of Input Data Size
When the calculated angle features are extracted from consecutive frames, they form a

two‑dimensional array. As the length of the video affects the length of this two‑dimensional
array, interpolation methods are used in this study to standardize the input data size. The
ROIAlign (region of interest align) method [17], which is used in object recognition, is ap‑
plied to interpolate the targeted area (region of interest) of the hand more accurately. By
employing this approach, videos of different durations can be transformed into sequences
with fixed frames, and it is also possible to standardize the size of the input 2Dmatrix data.

In our experiments, videos of approximately 1 to 2 swere extended to 100 frames using
the ROIAlign method. From these 100 frames, a fixed number of frames was randomly
extracted while maintaining intervals within 10 frames. As a result, we obtained 54 time‑
sequential data points for each class. The video data, comprising six videos with three
recordings each from both male and female participants, resulted in 54 time‑sequential
data points per video, amounting to 324 feature vectors. With 46 characters, this led to a
total of 14,904 feature vectors.

The feature vectors obtain values ranging from −1 to 1 for calculations using the co‑
sine formula. However, as the ViT is originally a model suited for image‑based learn‑
ing, these values were converted to a pixel‑value range of 0 to 255 using the following
Equation (2):

xnew = (xold + 1)× 125 (2)

Based on the calculations of angular features, three datasets were created. These
three datasets differ in the features they use, as shown in Table 2. Dataset 1 focused solely
on the joint angles (Feature 1), comprising 20 dimensions. Dataset 2 concentrated on the
overall tilt of the hand (Feature 2), also encompassing 20 dimensions. Finally, Dataset 3
combined Features 1 and 2, resulting in a total of 40 dimensions.

Table 2. Three datasets by angular feature combination.

Dataset Used Angular Feature Dimension

Dataset 1 The angles of each finger joint (Feature 1) 20
Dataset 2 The overall tilts of the hand (Feature 2) 20
Dataset 3 Feature 1 and Feature 2 combined 40

4. Structure of the ViT and CNNModels
The CNN used in this study retains and learns location information. The ViT learns

by adding location information. Based on this, we thought it would be possible to perform
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3D recognition using a 2D recognition model by converting each frame of the original 3D
data into a 1D feature vector and then converting this into 2D data on the time axis. The
ViT model was investigated by changing the number of Encoder layers, and data with
various dimensions were input to the model with the highest accuracy. In contrast, the
CNNmodel’s internal structure changes by changing the size of the input data, so ablation
studies were conducted with three types of data input.

The ViT model, based on the transformer’s core architecture [5], uses an encoder fea‑
turing amultihead self‑attentionmechanism and fully connected neural networks. The ad‑
dition ofmore encoder layers in the ViT amplifies themodel’s depth, enabling it to perform
more intricate feature extraction and facilitating the learning of hierarchical and abstract
representations, although this may lead to a higher chance of overfitting. In this study,
we investigated the recognition performance for 46 classes of Japanese finger spelling by
varying the number of encoder layers in the ViT model.

The ViT model’s input comprises the angle features extracted from each frame, fixed
in number, and transformed into two‑dimensional matrix vectors. Unlike conventional
ViT models that involved dividing an image into patches, in our study, as depicted in
Figure 4a, we treat each frame as a single vector. Then, a linear projection of the angular
features is performed upon data input, and position information is assigned to each vector
using embedding by Keras. Once the data are input, they are processedwith a transformer
encoder for training. The transformer encoder comprises four layers: a multihead atten‑
tion layer, anMLP layer, and a layer normalization layer in front of each layer. The encoder
iterates the process 4 to 9 times, and finally, its output is passed to the MLP head for clas‑
sification into 46 classes. This approach facilitates the input of sequential frames into the
transformer’s encoder with added positional encoding.
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Our method employs a multilayer perceptron (MLP) with two fully connected layers,
two dropout layers, and the Gaussian error linear unit (GELU) function, combined with
residual connections. The encoder structure, comprising a normalization layer, a multi‑
head attention layer, and an MLP layer, is repeated for the specified number of encoders,
ending with an additional fully connected layer for classification into 46 classes.

The learning rate was initially set at 0.001 and was halved every five epochs. For
this implementation of the ViT, we adapted the model to our unique dataset, which com‑
prises either 20 or 40 feature data× 20 frames, by omitting the original ViT’s patch‑splitting
component. This modification ensured the effective use of the dataset’s unique character‑
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istics in our experiment. We employed the ViT model to assess the impact of varying the
number of encoders on accuracy. The performance of Japanese sign language recognition
was verified by varying the encoder layer by one layer, from 4 to 9 layers. Additionally,
four multi‑head self‑attention mechanisms were included in one encoder.

Meanwhile, as shown in Figure 4b, we developed a CNNmodel based on the VGG16
framework and evaluated its performance for the ViT. This CNNwas designed with eight
layers, half of the original VGG16, to handle input frames with angular features. These
frames were processed through a series of convolutional layers and then through a maxi‑
mum pooling layer and a fully connected layer to classify the output.

The CNN model comprises multiple “3 × 3 convolutional” layers, each with a speci‑
fied number of filters, such as 32, 64, 128, 256, and 512. These layers extract features from
the input by applying filters that identify spatial patterns. Afterward, a “2 × 2 MaxPool‑
ing” layer is then used to reduce the spatial size of the output, which reduces computation
and helps prevent overfitting. The activation function also uses Relu functions. Although
not shown in the figure, the model uses regularization techniques, such as dropout and
weight decay. With each layer, the depth of the model and the number of filters increase,
which is a typical approach for detecting more complex features.

5. Experimental Results
In the experiment, accuracy verification was conducted using the angular features

calculated with MediaPipe.

5.1. Verification of VIT Performance for Different Numbers of Encoder Layers
The dataset encompassed video recordings from six distinct finger‑spelling videos,

with an equal division of three videos, each contributed by male and female participants.
Each video was analyzed to extract 54 sequential data points, resulting in a total of 324 fea‑
ture vectors, arranged in a two‑dimensional matrix for each Japanese character. Across the
dataset, 46 unique characters were represented, culminating in an aggregate of 14,904 fea‑
ture vectors.

Of these, 75% were used as training data and 25% as validation data. The training
was conducted over 45 epochs, with the loss and accuracy values recorded for each epoch.
The dataset used in this process was Dataset 2. The ViT’s performance results as a function
of the number of layers in the encoder are shown in Figure 5. As shown in Figure 5, the
highest accuracy was achieved with four layers, and a decline in accuracy was observed
with each additional layer beyond five. The model was trained for 45 epochs, achieving
high accuracy by epoch 15. No significant improvement was observed beyond epoch 15,
suggesting overfitting. However, there was an increase in accuracy up to about the 20th
epoch. In terms of processing time, the ViT model took 100 s per epoch with four layers,
and 317 s per epoch with ten layers.
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5.2. Experiments Comparing the Accuracy of CNN and ViT
We conducted an experiment comparing the accuracy of a model with four encoders

in the ViT and a CNN based on VGG16 across three datasets: Dataset 1, Dataset 2, and
Dataset 3. We present the results in Figure 6. In the comparison between the ViT and CNN,
data from Dataset 1 resulted in high accuracy at epoch 25, data from Dataset 2 and Dataset
3 resulted in high accuracy at epoch 15, and no significant improvement was observed
even after training up to epoch 45. For the CNNmodel, the highest accuracy was obtained
with Dataset 3, recording an accuracy of 99.6%. The datasets following this were Dataset 1
with 96.7% accuracy and Dataset 2 with 99.3% accuracy. Additionally, the training times
for each method were as follows: For the ViT model, it was 37 s per epoch for Dataset 1,
37 s for Dataset 2, and 101 s for Dataset 3. For the CNN model, it took 4 s per epoch for
Dataset 1, 4 s for Dataset 2, and 5 s for Dataset 3. Table 3 summarizes the recognition results
compared to CNN when the ViT’s encoder was four layers.
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Table 3. The recognition results compared to ViT and CNN.

Dataset ViT with 4 Encoder Layers CNN with 8 Convolutional Layers

Dataset 1 96.4% 96.7%
Dataset 2 99.7% 99.3%
Dataset 3 99.4% 99.6%

5.3. Validation of Additional Learning and Real‑Time Recognition
The next step involved conducting further experimentation with real‑time Japanese

sign language recognition using bothViT andCNNmodels. During the test, the researcher
faced forward to the camera and executed sign language movements. The performed
movements were eight types of ‘あ|a|’ to ‘お|o|’, and ‘り|ri|’, ‘も|mo|’, and ‘ん|ŋ|’. As a
result, the CNNmodel recognized the finger letters ‘あ|a|’ to ‘お|o|’ with very high accu‑
racy. The high recognition rate of these characters is because of their stationary expression
with no accompanying finger movements. However, the three types of ‘り|ri|’, ‘も|mo|’,
and ‘ん|ŋ|’ were not recognized accurately due to the inclusion of finger movements. In
particular, there was a strong tendency to recognize them as different characters at the be‑
ginning of the movement and at the end of the finger movement. The ViT model did not
show significant differences compared to the CNN model in real‑time recognition.

Next, we explain the accuracy of recognizing words composed of a sequence of finger
letters. The video we tested uses the word video in Table 1, the words are “いいやま|i‑i‑ya‑
ma|” and “のりもの|no‑ri‑mo‑no|”. Both words consist of four letters. The CNN model
correctly recognized ‘い|i|’, ‘や|ya|’, and ‘ま|ma|’, with few false positives when transi‑
tioning to the next character. On the other hand, therewasmisrecognition in the characters
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‘の|no|’, ‘り|ri|’, and ‘も|mo|’ which included actions. The characters ‘の|no|’, ‘り|ri|’,
and ‘も|mo|’ were frequently misrecognized as ‘え|e|’ or ‘た|ta|’, ‘し|si|’ or ‘る|ru|’,
and ‘な|na|’ or ‘ほ|ho|’, respectively. As shown in Figure 7, the percentages of characters
recognized as matching word characters for the number of frames in the video were 60.4%
for “いいやま|i‑i‑ya‑ma|” and 38.6% for “のりもの|no‑ri‑mo‑no|” in the CNNmodel, and
24.4% for “いいやま|i‑i‑ya‑ma|” and 27.5% for “のりもの|no‑ri‑mo‑no|” in the ViTmodel,
showing no difference in accuracy between the video without motion and the video with
motion. Thus, ViT resulted in a small difference in accuracy betweenwords with andwith‑
out actions, while CNN resulted in a larger difference in accuracy betweenwordswith and
without actions.
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6. Conclusions
In this paper, we applied a ViT to a relatively small dataset of 20× 40 dimensions. As

discussed in Section 5, The ViT model achieves its best accuracy with four encoder layers
experiences a decrease in accuracy as the number of layers increases beyond four. Partic‑
ularly, accuracy significantly declined when the number of encoder layers exceeded ten,
suggesting that a smaller dataset, like the one used in this experiment, limits the number of
features. Accuracy did not significantly change from three to four encoder layers, only see‑
ing subtle improvement. Future research should increase the dataset. Therefore, when cre‑
ating additional datasets, it is necessary to increase the amount of participants who speak
sign language and capture videos of finger spelling movements from various angles.

For finger spellingwithout actions, both theViT andCNNmodelswere able to achieve
high accuracy with a small amount of training. However, for finger spelling with actions,
the accuracy was poor. This is thought to be because the finger shape in finger spelling
with actions is very similar to that of finger spelling without actions due to the narrow‑
ing of the number of features and the number of frames. For example, the finger shape of
‘no(の)’ is very similar to that of ‘hi(ひ)’ at the beginning of the action and ‘so(そ)’ at the
end of the action, and the ViT model misidentified these two finger shapes.

Therefore, in future research, the number of extracted frames and angular features
should be increased, and postures and facial expressions should also be included as fea‑
tures to improve the accuracy in real time. Based on the results of this study, the ViT with
20‑dimensional data (Dataset 2) showed the highest accuracy. In real‑time recognition, the
accuracy was lower than that of the CNN model, but the accuracy of each character was
significantly different, suggesting that accuracy can be greatly improved by studying the
learning method. Therefore, we believe that accuracy can be improved by increasing the
number of frames, the number of angular features for each joint of the upper body us‑
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ing MediaPipe’s Holistic, and the number of features for the entire mouth and eye area of
the face.

Finally, we discuss some issues for future research. In this experiment, the datasetwas
small because there were only two people who used sign language on a regular basis that
were available. Therefore, we would like to expand the dataset by increasing the number
of participants in future experiments.
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