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Featured Application: The objective of this study is to explore the potential advantages of combin-
ing statistical modeling with Long Short-Term Memory (LSTM) and Bayesian Optimization (BO)
algorithms for time-series forecasting in the context of Photovoltaic Power Forecasting (PVPF)
implementation with limited input information. Our analysis revealed that integrating these
methods resulted in more accurate forecasting outcomes than using each method separately.

Abstract: The means of energy generation are rapidly progressing as production shifts from a central-
ized model to a fully decentralized one that relies on renewable energy sources. Energy generation is
intermittent and difficult to control owing to the high variability in the weather parameters. Con-
sequently, accurate forecasting has gained increased significance in ensuring a balance between
energy supply and demand with maximum efficiency and sustainability. Despite numerous studies
on this issue, large sample datasets and measurements of meteorological variables at plant sites
are generally required to obtain a higher prediction accuracy. In practical applications, we often
encounter the problem of insufficient sample data, which makes it challenging to accurately forecast
energy production with limited data. The Holt–Winters exponential smoothing method is a statistical
tool that is frequently employed to forecast periodic series, owing to its low demand for training
data and high forecasting accuracy. However, this model has limitations, particularly when handling
time-series analysis for long-horizon predictions. To overcome this shortcoming, this study proposes
an integrated approach that combines the Holt–Winters exponential smoothing method with long
short-term memory and Bayesian optimization to handle long-range dependencies. For illustrative
purposes, this new method is applied to forecast rooftop photovoltaic production in a real-world case
study, where it is assumed that measurements of meteorological variables (such as solar irradiance
and temperature) at the plant site are not available. Through our analysis, we found that by utilizing
these methods in combination, we can develop more accurate and reliable forecasting models that
can inform decision-making and resource management in this field.

Keywords: forecasting; time series; Holt–Winters; long short-term memory; Bayesian optimization;
photovoltaic power

1. Introduction

The expansion of the renewable energy sector is rapidly occurring in response to
the pressing need to address climate change and depletion of carbon-intensive energy
sources [1]. Additionally, finite reserves of fossil fuels such as coal, oil, and natural gas con-
tribute to the greenhouse effect when converted into electricity, exacerbating a significant
environmental concern [2]. Among the various renewable energy sources, photovoltaic (PV)
solar energy plays a critical role in providing clean energy as it does not emit carbon and
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reduces dependence on fossil fuels in the development of the economy and society. The uti-
lization of PV technology for power generation has witnessed a significant expansion,
thereby assuming a pivotal position in the international energy industry.

The large-scale PV market is characterized by narrow profit margins and aggressive
competition. The challenges faced in this sector are significant and the need for innovative
solutions is pressing. A decrease in performance can significantly affect a project’s overall
profitability. Therefore, achieving maximum performance is essential for ensuring long-
term profitability [3]. Considerable focus has been directed towards online predictive
maintenance [4] and advanced energy forecasting methods for PV installations [5].

Accurate forecasting has gained importance in ensuring a balance between energy
supply and demand, owing to the intermittent and difficult-to-control nature of renewable
energy generation caused by high variability in weather parameters. Accurate prediction
of PV power outputs is essential for more reliable and precise management of grid sys-
tems, benefiting planners, decision-makers, power plant operators, and grid operators [6].
The problem of PV power forecasting (PVPF) has been studied extensively. A wide va-
riety of forecasting solutions have been proposed that typically exploit weather stations
and/or satellites to provide rich metadata that methods can rely on. The data assimilation
technique analyzes patterns of satellite information and actual climate conditions.

Numerical weather prediction (NWP) and satellite data are often unavailable and
weather stations are scarce, making the weather station nearest to a PV plant potentially
unreliable [7]. In addition, geostationary satellite data are expensive and not always readily
accessible [8]. In these scenarios, the only available data are the power measurements
generated by smart meters for each plant [9]. Therefore, a different approach is required
for implementing the PVPF method. This approach involves analyzing the historical data
of active power production to make more precise predictions with less computational
complexity, fewer input parameters, and longer time dependencies.

Time-series models include statistical approaches, such as the Holt–Winters (HW)
exponential smoothing method, which is an effective approach for forecasting seasonal
time series, particularly for scenarios with limited historical data. The HW method is well
known for its high forecasting accuracy and low demand for training data, making it a
useful choice for newly installed PV plants. However, the HW method has limitations for
long-range prediction. The Long Short-Term Memory (LSTM) model is a highly useful
tool for conducting time-series analyses with long-range dependencies and is particularly
useful for time-series forecasting tasks, such as predicting PV power output. LSTM models
have built-in memory that allows them to retain information over long periods, making
them well suited for tasks such as PVPF, where the underlying patterns and trends can
change over time [10].

Recent advancements in the field of data-driven modeling of dynamic systems, where
the goal is to deduce system dynamics from data, have shown that more sophisticated
models can be applied to the analysis of chaotic time series [11]. Despite these progres-
sive improvements, this study focused on the LSTM model because of its noteworthy
performance in PVPF identification and prediction.

In this paper, we propose a novel Hybrid Model (HM) that unifies the HW exponential
smoothing technique with LSTM to address the limitations of the HW method in predicting
long-range trends. Our study aimed to contribute to this field by incorporating different
predictors. By merging the HW method with LSTM, we anticipate the achievement of highly
accurate power data predictions that can be utilized to optimize the performance of PV
plants. The proposed HM method for implementing a PVPF system is expected to provide
a robust solution that surpasses the performance of the individual methods. To address
the challenging task of optimizing LSTM hyperparameters, which significantly affects the
accuracy and prediction of the network [12], we employed a Bayesian Optimization (BO)
algorithm. The BO technique is a global optimization heuristic that has gained considerable
popularity for hyperparameter tuning.
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Using the BO algorithm, we can efficiently explore the hyperparameter space and
identify the ideal set of hyperparameters that corresponds to the best model performance.

This study makes the following contributions to the field of PVPF methods. First,
we propose an LSTM architecture that incorporates the BO algorithm for hyperparameter
tuning to improve the model performance. Second, we introduce an HM method for
time-series prediction that combines LSTM cells and HW time-series modeling to enhance
the accuracy of the predictor. Third, we present experiments to forecast rooftop PV power
production in a real-world case study, where meteorological variable measurements, such
as solar irradiance and temperature, are not available at the plant site.

The remainder of this paper is organized as follows. Section 2 provides a comprehen-
sive overview of PVPF methods, along with a review of the pertinent literature. Section 3
delves into the proposed framework, which employs exponential smoothing methods
for time-series forecasting integrated with the LSTM and BO algorithms. In Section 4,
the PV datasets utilized are presented and the outcomes of implementing the proposed
approach are highlighted. Section 5 examines and discusses the findings and provides a
supplemental analysis. Finally, Section 6 concludes this paper.

2. Overview of PVPF Methods

When evaluating the performance of PV power systems, it is crucial to consider
unpredictability and variability, which are affected by meteorological conditions. These
variables include solar irradiation, temperature, humidity, and wind speed. The precise
forecasting of the power produced by a solar PV system over a specific timeframe is a
critical engineering challenge.

To accurately describe the PV forecasting problem, recent studies [3] can be classified
by considering (i) the forecasting horizon, (ii) the forecast result, and (iii) the type of
algorithm, as schematically displayed in Figure 1.

First, different time horizons were considered for forecasting. The literature [13]
classifies PV forecasts into four categories based on the forecast horizon, which is the period
to forecast future PV power generation: ultra-short-term (minute scale), short-term (hour
scale), medium-term (day scale), and long-term (month scale). Each category has various
implications for scheduling PV plants. While long-term and medium-term forecasts are
valuable for planning, short-term forecasts are indispensable for developing daily power
consumption strategies and ensuring the dependable operation of PV power stations.

Some studies have used meteorological data to calculate solar irradiance and predict
the future PV power output based on PV power generation models, which are indirect
prediction methods. A recent study [14] comprehensively reviewed the value of solar
forecasting in the implementation of PVPF methods. Solar forecasting can be classified into
two categories, deterministic and probabilistic, based on their uncertainty representations.
Deterministic solar forecasting provides a single irradiance/PV power value for each
forecast timestep. By contrast, probabilistic solar forecasting can also include information
on the probability of occurrence and forecast distribution [15].

Finally, considering the type of algorithm, the most commonly used methods for
implementing the PVPF method are as follows.

• Physical models are deterministic closed-form solutions for PVPF. These models
depend on data related to solar irradiance; therefore, historical power-generation data
are not required. However, accurate predictions require the use of detailed parameters
for the PV plants. In most cases, future solar irradiance is obtained from NWP [16].
Additional data, such as meteorological information including temperature, humidity,
wind direction, PV plant capacity, and installation angle, may be used to optimize
the results [17]. However, solar irradiance is the most crucial meteorological data and
NWP is necessary for its effectiveness. Therefore, nearby weather stations are essential
to PV performance models [18].

• Statistical methods, which involve extensive numerical pattern analysis based on statis-
tical forecasting, require the acquisition of a historical dataset. Recently, the literature



Appl. Sci. 2024, 14, 3217 4 of 20

has demonstrated that statistical methods outperform physical ones [19]. Conven-
tional linear statistical techniques are relatively simple and have a limited number of
parameters, but are less capable of fitting complex curves [20]. Statistical techniques
rely on historical time series and real-time data to identify patterns, and the forecast
accuracy depends on the quality and dimensions of the available data. These methods
are less costly than physical methods and are generally better for short-term forecast-
ing. These models are useful tools for predicting linear data, but they are limited
to nonlinear data. Consequently, they are often combined with artificial intelligence
algorithms to improve accuracy [21].

• The use of artificial intelligence techniques, which incorporate advanced methods
for acquiring knowledge and expertise, has led to precise outcomes and enhanced
generalization capabilities. These approaches provide greater flexibility through dy-
namic learning procedures, thereby enabling real-time computation. These methods,
including machine learning (ML) and deep learning (DL), offer more complex struc-
tures and numerous parameters than the conventional models. DL models can learn
from parsed data representations using a general learning process without requiring
the user to perform specific feature extraction processes, which distinguishes them
from conventional ML models. Efficient DL variants, such as LSTM [22], Bidirectional
LSTM (BiLSTM) [23], and Gated Recurrent Units (GRU) [24], have been proven to
extract and analyze nonlinear and non-stationary characteristics of time-series data
and have been employed to predict renewable energy production.

• Hybrid methods, which combine the previously discussed methods, are also widely
considered in the recent literature [25]. HMs aim to produce better outcomes than
simple methods but can be more complex and time-consuming to train. Typically, they
are effective for short- and long-term forecasting [26]. The data requirements for HMs
depend on the models used in the hybrid approach. For instance, if two sub-models
require different types of data, HM will require four types of data. HMs can use
physical or statistical models as a foundation and then incorporate DL techniques to
capture nonlinearities or rectify model biases.

Figure 1. PVPF classification by: (i) the forecasting horizon, (ii) the forecast result, (iii) the type of
algorithm. (Our elaboration).
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Related Works

In [27], an HM method based on a Convolutional Neural Network (CNN) and LSTM
was proposed for the prediction of electric charges, and its performance was compared
with that of other models.

The work in [28] introduced a prediction error-based power forecasting method for PV
for utility-scale application systems using model-based gray box neural networks, which
require less training time than black box neural network-based models. In [29] the authors
presented an LSTM system that learns from newly arrived data using a two-phase adaptive
learning strategy and a sliding-window algorithm to detect concept drifts in PV systems.

In [30] authors proposed an LSTM attention-embedding model based on BO to predict
the day-ahead PV power generation. The model consists of an LSTM block, an embedding
block, and an output block. In [31], a model based on a two-stage attention mechanism
over LSTM was proposed to forecast day-ahead PV power, with BO applied to obtain the
optimal combination of hyperparameters.

A collection of DL techniques, such as LSTM, BiLSTM, GRU, CNN, and HM, was
presented in [32]. In this study, the authors conducted a comparative analysis of PVPF
methods by utilizing a BO algorithm, which demonstrated the improved performance of
the LSTM model compared with other models.

A research paper by [33] introduced a PVPF method integrated with the HW sta-
tistical forecasting method using historical PV profile data and a forecasting parameter
(alpha). The primary advantages of the proposed method are its simplicity and satisfactory
performance for short-term forecasting. Another study [34] proposed a hybrid method
based on HW and ML to predict residential electricity consumption at a 15-min resolution,
where the HW model was employed to model the stationary component of consumption.
With regard to predictive maintenance, the authors of [35] presented an annual assessment
of the performance degradation of three PV module technologies using four statistical
methods including the HW method.

In [36], the authors proposed a method that combines the multiplicative HW model
and a fruit-fly optimization algorithm to determine the optimal smoothing parameters for
the exponential smoothing method. The Mean Absolute Percentage Error (MAPE) was
used as the evaluation metric, and the results showed that the proposed model significantly
improves accuracy, even when limited training data are available.

In [37], a PVPF method based on six time-series algorithms including HW and LSTM
was developed for nonstationary data. According to the authors, the main reason for using
time-series models is that they apply to PVPF approaches that consider the period, trend,
and seasonality.

3. The Proposed Framework

This section outlines the baseline methods considered in our study: the HW triple-
exponential smoothing method, which is particularly designed for time-series data; the
LSTM method, which is capable of learning long-term dependencies in the data and making
accurate predictions based on that information; and the BO method, which is a probabilistic
optimization algorithm utilized to discover the optimal set of LSTM hyperparameters.

3.1. Triple Exponential Smoothing

Exponential smoothing methods offer precise forecasts by relying on historical data
and by assigning greater importance to recent observations. Specifically, time-series data
can be modeled using three components: trend or long-term variation, seasonal compo-
nents, and irregular or unpredictable components. These components can be combined
using either additive or multiplicative procedures.

In the additive model, the series demonstrated consistent cyclic variations, regardless
of their level. However, the multiplicative model assumes that the amplitude of seasonal
fluctuations changes as the series trend varies. It is important to note that a multiplicative
HW model can be transformed into an additive HW model by applying a Box–Cox trans-
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formation. This statistical technique is used to modify a dataset so that the transformed
data have a more suitable distribution for analysis.

The additive method predicts the values of time series yt using the following procedure:

ŷt = Lt−1 + Tt−1 + St−s. (1)

At each iteration of index t, the algorithm updates Lt, Tt, and St using three equations,
each depending on a smoothing parameter with values in the interval [0, 1], that is, α, β,
and γ, respectively.

The parameter α in the level equation is responsible for smoothing. A lower value
of α places greater emphasis on the historical data, whereas a higher value assigns more
weight to recent observations. Parameter β is used to determine the trend estimation and
is adjusted based on its proximity to 0 and 1. A value close to zero emphasizes the trend,
whereas a value close to one assigns more weight to the observations. The parameter γ
is responsible for controlling the smoothness of the seasonal component and affects the
model’s sensitivity to fluctuations in the series. As the value of γ increases, predictions
become more sensitive.

Algorithm 1 describes the additive HW (AHW) method used in the study. The algo-
rithm requires three inputs: seasonal parameter s, forecast time width h, and historical
time series of n values, denoted as {yt}n

t=1. The output of the algorithm is ŷn+h|n, that is,
the forecast at the final instant t = n + h. Therefore, the algorithm produces forecasts based
on historical data, estimated trends, and seasonal patterns.

Algorithm 1 Additive Holt–Winters (AHW)
Require: s, h and {yt}n

t=1
Ensure: ŷn+h|n

1: Set the initial values of Lt<s = 0, Ls =
1
s ∑s

t=1 yt

2: Set the initial values of Tt<s = 0, Ts =
1
s2 ∑s

t=1 (yt+s − yt)

3: Set the initial values of S−s+2 = (y1 − Ls), . . . , S0 = (ys−1 − Ls), S1 = −Ls
4: for t = s + 1; t ≤ n − 1; t = t + 1 do
5: Lt = α(yt − St−s) + (1 − α)(Lt−1 + Tt−1)
6: Tt = β(Lt − Lt−1) + (1 − β)Tt−1
7: St = γ(yt − Lt) + (1 − γ)St−s
8: ŷt = Lt−1 + Tt−1 + St−s
9: end for

10: Select error = MASE as a function of (α, β, γ)
11: Obtain (α, β, γ) that minimize error by implementing the GA
12: Calculate Ln, Tn, Sn−s+1, . . . , Sn−1, Sn
13: Calculate ŷn+h|n = Ln + hTn + Sn−s+1+h mod s
14: return ŷn+h|n

In our implementation, we employed mean absolute scale error (MASE) as an ac-
curacy measure for the AHW algorithm. This measure is preferred because it is not
scale-dependent, does not result in undefined or infinite values, and provides accurate
results. The MASE is calculated as MASE = MAE

Q , where MAE = 1
n Σn

t=1|yt − ŷt|, is the
mean absolute error (MAE), yt and ŷt are the actual and forecast values in period t, respec-
tively, and Q = 1

n−p Σn
t=1|yt − yt−p| is the scaling factor, where p is the sampling frequency

per day.
Our goal was to identify the ideal smoothing parameters that minimize the error

function MASE. To achieve this goal, we used R2023b MATLAB’s built-in optimization tool
based on a Genetic Algorithm (GA function ga). This GA implementation is inspired by
the principles of biological evolution and genetics in nature, and has strong global search
capabilities that make it effective for finding better solutions in large search spaces.
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3.2. Long Short-Term Memory

Recurrent neural networks (RNNs) are commonly utilized in deep-learning frame-
works owing to their capacity to process sequential data. These networks are composed
of interconnected neurons, where the output of one neuron not only influences the next
layer, but also feeds back to the previous layer. This arrangement facilitates the retention
of the underlying information until it is fed back into the subsequent prediction, making
it simpler to implement and train the network. However, RNNs have limited ability to
handle long-term dependencies in sequential data, which can result in challenges such as
vanishing and exploding gradients. Vanishing gradients occur when gradients during back-
propagation significantly diminish, making adequate weight updates challenging, whereas
exploding gradients result from large gradients accumulating during backpropagation,
leading to unstable models owing to substantial weight updates. Consequently, RNNs
have a limited capacity to manage long-term dependencies.

LSTM networks enhance predictions for medium- and long-term data by incorporating
additional state and gate control units on top of RNNs. This is facilitated by internal
mechanisms that regulate the flow of relevant information in both short and long terms.
The fundamental structure of an LSTM cell includes a cell state that preserves long-term
memory, and a hidden state that retains short-term memory, as illustrated in Figure 2.

Figure 2. LSTM cell structure. (Our elaboration).

In Figure 2, three gates are incorporated to regulate the flow of information through
the memory cell. The input gate controls the amount of information read into the cell,
while the forget gate determines the amount of past information that must be forgotten and
retained. The output gate was responsible for reading the output from the cell. This design
allows the cell to decide when to retain information and ignore inputs, which is crucial for
remembering useful information and forgetting less-useful information.

Mathematically, these gates are computed as follows.

It = σ(Wi · yt + UI · ht−1 + bi),

Ft = σ(W f · yt + U f · ht−1 + b f ),

Ot = σ(Wo · yt + Uo · ht−1 + bo).

(2)

In the previous equations, It, Ft and Ot represent the input, forget, and output gates at
the current time step t, respectively. The variable yt represents the input at time t and ht−1
is the hidden state at the previous time step. W and U represent the weight matrices and b
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is the bias vector. σ is the sigmoid activation function that sets the values of these gates in
the range [0, 1].

The memory cell and hidden state are updated as follows.

c̃t = tanh(Wc1 · ht−1 + Wc2 · yt + bc),

ct = Ft ⊙ ct−1 + It ⊙ (c̃t),

ht = Ot ⊙ tanh(ct).

(3)

The candidate memory cell, denoted by c̃t, can capture both the previous information
stored in ht−1 and current input value yt. The calculation of the content of the memory cell,
represented by ct, is determined by the past memory cell state ct−1 and current memory cell
candidate, which functions as the current input. The process of determining the amount of
past information to be discarded and the amount of current input to be retained is facilitated
by element-wise matrix multiplication represented by ⊙ and an activation function.

In this process, Ft and It are used to control the amount of information discarded or
retained in the element-wise matrix multiplication. For instance, when the values of Ft
are close to zero, the results of the element-wise matrix multiplication between Ft and ct−1
render past information negligible or, in other words, obsolete. The computation of the
hidden state ht depends on the memory cell ct and the extent to which the memory cell
output is passed as an output is regulated by the output gate Ot.

3.3. Hyperparameter Optimization

DL models are influenced by various factors such as the choice of an appropriate
loss function, optimization procedure, and hyperparameters. Hyperparameters are pa-
rameters that models cannot learn during the training process but may affect the models’
performance. For RNNs, the number of hidden layers, units in each hidden layer, and the
learning rate are important hyperparameters.

The process of identifying the hyperparameter configuration that leads to optimal
generalization performance is known as hyperparameter optimization. We utilized the
Bayesian optimization (BO) algorithm for this optimization procedure, which is discussed
in detail in the next section. In our experiments, the following hyperparameters were
optimized: (i) units in the hidden layer, (ii) number of hidden layers, (iii) use of BiLSTM
layers, (iv) initial learning rate, and (v) L2 Regularization.

The Adam optimizer was utilized during the training process for the model, and the
units in the hidden layer, the number of hidden layers, and the initial learning rate were
fine-tuned through an optimization procedure. Moreover, our study included the following
two additional hyperparameters to be optimized:

• A flag that modifies the layers in the LSTM model from unidirectional to bidirectional.
In the bidirectional case, an LSTM layer assesses the input sequence from both forward
and backward directions, and the final output vector is derived from a combination of
the final forward and backward outputs.

• The ψ decay factor of the L2 regularization approach. This approach allows the
learning process to simultaneously minimize the prediction loss and penalty term
introduced into the loss function of the training model. The updated loss function
with weight decay is expressed as

L = Error + ψ
p

∑
i=1

w2
i , (4)

where Error refers to the root mean square error from the network outputs and wi
represents the trainable parameters of the LSTM, with p being the total number of
such parameters. The ψ decay factor is set to a specific value, indicating that the model
will strive to minimize the loss while ensuring that the sum of the squares of the LSTM
layer’s weights does not exceed ψ times the output of the layer. The regularization
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term is included in the loss function in each iteration of the training process, and the
model is optimized to minimize the total loss, including the regularization term.

L2 regularization is a widely used technique in the field of machine learning to avoid
overfitting, particularly in LSTM models. Overfitting occurs when a model becomes
excessively complex and learns the noise present in the training data, leading to a poor
performance on unseen data. L2 regularization is a straightforward and efficient method
for preventing overfitting in LSTM models, and can significantly enhance the performance
of the model on new data.

BO is an efficient algorithm for exploring extensive hyperparameter-search spaces.
The optimization technique is based on a probabilistic surrogate model to represent the
actual objective function, which is then used in conjunction with an acquisition function to
guide the search process.

The first step in the BO process is to identify the objective function to be optimized,
which can be the loss function or another function deemed appropriate for model selection.
The surrogate model, which is less expensive than the actual function, is used as an approx-
imation when evaluating the objective function. BO is a sequential process, because the
determination of the next promising points to search depends on the information from the
previously searched points. The acquisition function, another critical component of BO,
directs the search for potential areas with low objective function values, thereby facilitating
a balance between exploitation and exploration.

Constructing a probabilistic surrogate model involves selecting a sample of points
through a random search or another method, fitting a probability model to these points,
and iteratively updating the model using acquisition and objective functions. This process
continued until the termination condition was satisfied. Gaussian processes are a common
choice for surrogate models and are characterized by a set of random variables that, when
combined, result in a joint Gaussian distribution. In this study, the built-in BO tool (function
bayesopt) in MATLAB is used.

4. Materials and Methods

We compared three PVPF methods, namely AHW, LSTM, and HM. The HM method
uses AHW to forecast data, followed by computation of a time series of residuals between
past forecast AHW data and actual past data (i.e., the forecast error is calculated as the
difference between yt and ŷt). The LSTM component of the HM method is then trained
to predict the residual time series. Finally, the predicted value of the HM method was
obtained by combining the outputs of AHW and LSTM on the residuals.

To optimize the smoothing parameters of the AHW, we utilized the GA approach.
By contrast, we employed the BO algorithm as an auto-configuring approach to determine
the optimal LSTM network structure among predefined intervals of hyperparameters,
thereby reducing the need for data analyst intervention for each of the three forecasting
methods evaluated in our study.

Figure 3 illustrates a schematic overview of the three models examined in our compar-
ative study as well as a flowchart detailing the steps involved in implementing one model
over another.

The approaches receive the historical time series of the PV power output as input,
with the forecast computed for h steps ahead of the current time of the index t. Figure 3,
red, blue, and green colors are used to represent forecasts generated by the AHW, LSTM,
and HM models, respectively.

The HM model is detailed in the box on the right-hand side of Figure 3. Specifically,
the AHW approach was employed to predict the PV power output. Using the historical
PV data, the forecasted values produced by the AHW approach were used to generate
a time series of residuals. This time series is then utilized to train the LSTM approach,
which provides a forecast of the residuals between the AHW and actual PV power output.
Finally, the actual forecast computed for h steps ahead in the HM approach was obtained
by summing the forecasts of the AHW and residual using the LSTM approach.
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Figure 3. Representation of the PVPF methods. Red, blue, and green colors are used to represent the
forecasts generated by the AHW, LSTM, and HM models, respectively. (Our elaboration).

4.1. Forecast Accuracy Measures

In this section, we introduce the metrics used to evaluate the forecast accuracy of
the models under study, enabling a comparison of their performance. We denote the
observation at time t by yt and the forecast of that observation by ŷt. The forecast error is
calculated as the difference between yt and ŷt. Let m denote the total forecasted period.

The root mean square error (RMSE) is the most commonly used scale-dependent
measure. We used the normalized RMSE (nRMSE), which measures the variability in
errors and is often expressed as a percentage, where lower values indicate a lower residual
variance. Although there are no consistent means of normalization in the literature, we
considered the mean of the measurement ȳ to normalize the RMSE. nRMSE measures the
difference between the predicted values and the actual values, and is a useful metric for
evaluating the accuracy of the model.

RMSE =

√
∑m

t=1(yt − ŷt)2

m
,

nRMSE =
RMSE

ȳ
,

(5)

To comprehensively assess the relationship between total and pairwise errors, we also
measured pairwise total errors. This was achieved by computing the correlation between
the ranks of these errors. To provide a more robust indicator of extreme values, we consider
the rank of the errors rather than the errors themselves. To calculate Spearman’s rank
correlation coefficient, we employed the following method:

RankCorr = 1 − 6
m(m2 − 1)

m

∑
t=1

d2
t , (6)

where d2
t is the distance between the ranks of time series yt and ŷt. Similar to the other

correlation coefficients, the values of the Spearman’s rank correlation varied between −1
and 1. A strong positive correlation, that is, a distance rank score close to 1, suggests
high performance in forecasting. The Spearman’s rank correlation is a measure of the
strength of the relationship between two variables, based on their rankings rather than
their actual values. It is particularly useful in situations where the data may be skewed or
contain outliers.
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The R2 coefficient of determination measures how well the model predicts an outcome,
or the proportion of variation in the observed dataset predicted by the forecasting method.
The lowest possible value of R2 was zero, whereas the highest possible value was one. The
R2 measures the proportion of variance in the actual values that is explained by the model,
and can be used to evaluate the model’s predictive performance. It is defined as follows.

R2 = 1 − ∑m
t=1(yt − ŷt)2

∑m
t=1(yt − ȳ)2 . (7)

4.2. Case Study

The case study used PV power-generation data obtained from a publicly accessible
database maintained by the National Institute of Standards and Technology [38]. This
database provides historical PV power generation data for two PV power plants that are
located in close proximity. This dataset has been widely utilized in recent studies [39–41]
and is divided into two subsets: D1 contains data for a larger farm with a rated power of
243 kW, and D2 contains data for a smaller farm with a rated power of 75 kW.

In our study, we utilized dataset D2, with reference to the output power of inverter
no. 2, measured in watts (W) during the second year of observations, as a numerical case
study. We focused on the hourly generated power to reduce the data density. Days with
missing values were filled with zero production values to maintain the integrity of the
time-series. The original data provided timestamps and 24 h power production data for
each day. Neither meteorological features nor NWP data were considered.

The primary objective of this case study is to investigate the daily PV power genera-
tion, which exhibits diverse output shapes each day, as depicted in Figure 4. This figure
shows a random row of five consecutive days from the dataset, and illustrates that the
output patterns vary across different days. Daily PV power generation exhibits cyclic
behavior during daytime hours and may have different peak values depending on weather
conditions. Sunny days ensure maximum PV power generation capacity. In contrast, rainy
or cloudy days may produce less or negligible power from the PV plants.

Figure 4. PV power outputs in in watts (W vertical y-axis) in a row of five days corresponding to
120 hourly observations ranging from hour no. 1047 to hour no. 1167 (horizontal x-axis).

Table 1 presents the hyperparameters to be optimized in the proposed LSTM model,
including the number of units in the embedding and LSTM layers. A BO algorithm was
employed to optimize the five parameters of the proposed LSTM model, as described in
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Section 3.3. The optimal set of values for these parameters along with the convergence time
of the optimization algorithm are listed in Table 2.

Table 2 presents the values for α, β, and γ of the AHW method, which were obtained
by applying the GA optimization to the error function MASE, as described in Section 3.1.
The seasonal component of the AHW method was set equal to the value of s = 24, which
corresponded to the cyclic fluctuations of PV power generation related to the cyclic behavior
of alternating night and day times within the 24-h sampled for each day. As shown in
Table 2, the GA optimization of the AHW method achieved the lowest configuration time,
whereas the LSTM and HM methods presented higher configuration times, owing to the
application of the BO algorithm.

Table 1. Hyperparameter, corresponding label for the LSTM method, and definition sets.

Name Parameters Intervals

H Number of hidden layers {1,2,3,4}
N Number of hidden neurons {50, · · · ,200}
Bi Use BiLSTM layers {false, true}
LR Initial Learning Rate [10−2, 1]
L2 L2 Regularization [10−10, 10−2]

Table 2. Optimal hyperparameters values of three PVPF methods (AHW, LSTM, and HM). The GA
was implemented in case of AHW and BO algorithm in the case of LSTM and HM.

PVPF Method Optimized Parameters Configuration Time [s]

AHW α = 0.92, β = 1,
γ = 1.19 · 10−06, s = 24 47.331

LSTM H = 4, N = 61, Bi = true,
LR = 0.010, L2 = 5.23 · 10−08 1242.229

HM H = 2, N = 63, Bi = true,
LR = 0.010, L2 = 1.25 · 10−10 1455.378

5. Experimental Results and Discussion

The three PVPF methods were implemented using MATLAB on a computer equipped
with an Intel CoreTM i7-6 core processor and 16GB RAM. The results are shown in Figure 5,
which presents time-series plots for the testing datasets of the three models, focusing on
the period from 3 January 2016, from 00:00 to 8 January 2016, at 00:00, covering 120 hourly
observations, ranging from observation no. 1047 to 1167.

The values of, nRMSE, RankCorr, and R2 for the AHW, LSTM, and HM methods are
summarized in Table 3 for different training/test data ratios. Notably, both the LSTM and
HM models outperformed the AHW model in terms of predicting the PV power output
data regardless of the ratio of training to testing data. One of the main reasons why LSTM
outperforms the AHW approach is that it can capture long-term dependencies in the data
more effectively.

The HM method, obtained by combining AHW and LSTM in forecasting PV power
generation, can outperform approach compared to each approach alone. This is because
the AHW and LSTM are forecasting methods that can complement each other. The AHW
is useful for modeling time-series data with a strong seasonal component. It can capture
underlying patterns and trends in the data and provide accurate forecasts. However, it
may not be effective for capturing short-term fluctuations in data. By contrast, LSTM is
effective for learning and modeling complex relationships between variables and making
accurate predictions based on the patterns they have learned. However, LSTM may not be
as effective as AHW in capturing seasonal patterns in data.

According to recent research, it is possible to compare our methods with those pre-
sented in previous studies. Specifically, [39] analyzed six techniques for predicting PV
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production using the same case study employed in our study. The authors in [39] con-
cluded that CNN is one of the most suitable models for predicting PV production, as it
achieved an R2 value of 0.98 in the same case study. From Table 3, it can be observed that
our proposed HM technique achieves an R2 value greater than 0.99 on the training dataset,
and approximately equal to 0.98 or greater than 0.98 on the testing dataset. Consequently, it
can be inferred that the proposed HM technique produces results that are either equivalent
or superior to those of other approaches, including the outperforming approach reported
in the literature [39]. Notably, our results pertain to the most challenging scenario, which
involves generating forecasts during both the daytime and nighttime, as addressed in [39].

Table 3. Comparison of the performance of three PVPF methods (AHW, LSTM, and HM) across
various train/test splits of the original dataset. Evaluation based on nRMSE, RankCorr, and R2.

Split Type of Metrics AHW LSTM HM

90% Train
nRMSE 0.523 0.124 0.102

RankCorr 0.830 0.956 0.943
R2 0.796 0.988 0.992

10% Test
nRMSE 0.351 0.175 0.175

RankCorr 0.890 0.941 0.931
R2 0.927 0.981 0.982

85% Train
nRMSE 0.520 0.122 0.098

RankCorr 0.828 0.957 0.945
R2 0.790 0.988 0.992

15% Test
nRMSE 0.353 0.183 0.189

RankCorr 0.888 0.942 0.925
R2 0.930 0.981 0.980

80% Train
nRMSE 0.524 0.118 0.095

RankCorr 0.824 0.957 0.948
R2 0.785 0.989 0.993

20% Test
nRMSE 0.345 0.190 0.185

RankCorr 0.889 0.948 0.931
R2 0.927 0.977 0.979

70% Train
nRMSE 0.523 0.110 0.088

RankCorr 0.818 0.959 0.946
R2 0.776 0.990 0.993

30% Test
nRMSE 0.404 0.197 0.176

RankCorr 0.881 0.942 0.933
R2 0.899 0.975 0.980

65% Train
nRMSE 0.518 0.109 0.088

RankCorr 0.819 0.958 0.946
R2 0.775 0.990 0.993

35% Test
nRMSE 0.447 0.186 0.163

RankCorr 0.870 0.946 0.936
R2 0.876 0.978 0.983

60% Train
nRMSE 0.517 0.110 0.090

RankCorr 0.819 0.957 0.944
R2 0.777 0.989 0.993

40% Test
nRMSE 0.482 0.167 0.144

RankCorr 0.861 0.949 0.940
R2 0.854 0.982 0.987

By combining the AHW and LSTM methods, we could capture both seasonal patterns
and short-term fluctuations in the data. The AHW model can provide a baseline forecast
for the data, whereas LSTM can refine the forecast by capturing the complex relationships
between the variables. Examples of actual PV power forecasting in watts for the three
models in a row of five days are depicted in Figure 5.
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Figure 5c highlights that HM effectively leverages the strengths of both the AHW and
LSTM models, enabling it to forecast PV power spikes, as the LSTM model alone does
in Figure 5b but with smoother results owing to the contributions of the AHW model in
Figure 5a, which leads to superior forecasting accuracy.

The LSTM method tends to overestimate the actual data because of its rapid response
to fluctuations, often forecasting spikes in power even in the absence of actual peaks
(as illustrated in Figure 5b). However, the AHW model exhibits higher inertia, which
helps prevent overestimation and results in smoother peaks (as depicted in Figure 5a).
As expected, the HM model strikes a balance between the two models by combining their
respective advantages (as shown in Figure 5c).

The plots in Figure 6 illustrates the correlation between the actual and predicted PV
power for all methods using an 80% training dataset and a 20% testing dataset for the
entire validation period. Figure 6 The results suggested a significant linear relationship
between these variables. Although the AHW, LSTM, and HM methods yielded similar
results, the HM method demonstrated an improved performance because the predicted
values were closer to the actual values.

The AHW and HM methods exhibit higher latencies than the LSTM model. This was
confirmed by the large sample of non-null observations predicted with a zero value (i.e.,
points on the y-axis) in Figure 6a,c. In contrast, the LSTM model demonstrates higher
reactivity, which often results in overestimation of the target values, as seen in the out-of-
bound predictions in the range of 20–25 kW and 10–20 kW in Figure 6b.

The discrepancies between the predicted and actual values in the ranges–15–25 kW and
5–20 kW are shown in Figure 6b. Additionally, Figure 6c reveals that the AHW and HMs
models exhibit fewer deviations from the fit line, which in turn leads to less overestimation.
Conversely, the LSTM model exhibited more pronounced overestimations, as shown in
Figure 6c. Regression Plots in Figure 6 illustrates that the AHW and HMs models displayed
higher error rates, whereas the LSTM model tended to overshoot the target values.

The AHW method is a simple and efficient approach that has been shown to functions
effectively as a PVPF method. However, it has been observed that this method may
sometimes underestimate data. In contrast, the LSTM approach is a more complex method
that can capture intricate patterns in the PV power data. However, this method is prone to
overestimating data.

To address the limitations of both the methods, a hybrid approach was employed. This
can help produce more accurate forecasts by mitigating the limitations of each approach.
The AHW method provides a baseline forecast, whereas the LSTM model enhances and
refines the forecast by considering the intricate data patterns. Our study demonstrates
that this refinement can be achieved by training the LSTM model on the residuals between
AHW predictions and observed data. By integrating different approaches and using a
hybrid model, better results can be achieved, and forecast accuracy can be enhanced.
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(a)

(b)

(c)

Figure 5. Examples of PV power forecasting in watts (W vertical y-axis) in a row of five days, with
120 hourly observations ranging from hour no. 1047 to hour no. 1167 (horizontal x-axis). Real
observed values labeled as “Targets” (blue line). Predicted data labeled as “Outputs” (orange line).
Three techniques: (a) AHW, (b) LSTM, and (c) HM.
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(a)

(b)

(c)

Figure 6. Scatter graph of the actual and predicted PV power in watts (W) along with the regression
lines. Target values on the vertical y-axis. Prediction values on the horizontal x-axis. The test data
consisted of 73 days and 1752 hourly predictions. Three techniques: (a) AHW, (b) LSTM, and (c) HM.
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6. Conclusions

The main objective is to employ forecasting techniques that can effectively address the
uncertainty of the PV power fluctuations. These methods can predict the power output of a
PV system over a specific period with a certain level of accuracy, which can help manage
the associated uncertainties. In our research, we utilized a combination of forecasting
techniques, including machine-learning algorithms and statistical models, to enhance the
precision of the predictions.

In particular, we investigated the potential advantages of combining AHW with LSTM
and BO algorithms within an HM framework for time-series forecasting. AHW is a seasonal
decomposition method that can be employed to model and forecast time-series data. LSTM
is an RNN that is particularly suitable for processing long-term dependencies in sequential
data. BO is an optimization algorithm that utilizes probabilistic models to explore the
search space efficiently and identify the optimal solution.

The experimental results showed that by combining these three techniques, it may be
possible to enhance the accuracy and efficiency of time-series data forecasting. LSTM can
be used to capture long-term dependencies in the data, whereas the AHW algorithm can
be used to model and forecast seasonal patterns.

The proposed model does not require substantial computational resources or specialized
expertise for implementation and fine-tuning. In the reference case study, the configuration
times were not greater than 24 min of computation on a 6-core processor with 16GB of RAM
(i.e., a typical laptop) to be implemented and fine-tuned. Furthermore, no expertise is required
from the analyst because the GA and BO algorithms are used to automatically fine-tune the
parameters of AHW and LSTM to achieve superior results. Therefore, this approach is suitable
for small operations or regions with a limited computational infrastructure.

Through our analysis, we found that integrating statistical modeling with the LSTM
and BO algorithms led to more accurate forecasting results compared with using each
method alone. These findings imply that the integration of statistical modeling with LSTM
and BO algorithms can improve the accuracy and reliability of time-series forecasting of PV
energy production. By combining these methods, we can develop more precise and reliable
forecasting models that can inform decision making and resource management in this field.

Our research has implications for forecasting PV power data when only historical
data of PV power generation are available and NWP data are inaccessible. The proposed
methodology can be applied to various geographic locations, climates, and types of renew-
able energy sources, without limitations. To enhance the current approach, future research
could investigate its effectiveness for other renewable energy sources such as wind or
hydropower by broadening the scope of this study. Additionally, other time-series models,
such as the exponential smoothing state-space model or the seasonal decomposition of the
time-series model, can be explored when integrated with the LSTM and BO algorithms. Fi-
nally, investigating the impact of data quality, such as missing data, noisy data, or data with
outliers, on the effectiveness of the proposed methodology can provide valuable insights.

Finally, it is important to note that the techniques explored in this study rely heavily
on the availability of large historical datasets to capture patterns effectively, learn repre-
sentations, and make accurate discoveries. Therefore, ensuring access to such datasets is
essential for successful application of these techniques.

In regions where there is a lack of historical data or when estimating outputs for
new installations, it is recommended to utilize physical models that offer deterministic
closed-form solutions for the PVPF. However, these models rely on data related to solar
irradiance and require detailed parameters for PV plants and expert analyses. To optimize
the results, additional data, such as meteorological information including temperature,
humidity, wind direction, PV plant capacity, and installation angle, may be considered.
When historical datasets are accessible, the cost-effective and computationally efficient
techniques explored in this study can be applied, which require minimal expertise for
implementation and fine-tuning. In contrast to physical models, these methods do not
require substantial resources or specialized knowledge.
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