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Abstract: Physics-Informed Neural Network (PINN) is a data-driven solver for partial and ordinary
differential equations (ODEs/PDEs). It provides a unified framework to address both forward and
inverse problems. However, the complexity of the objective function often leads to training failures.
This issue is particularly prominent when solving high-frequency and multi-scale problems. We
proposed using transfer learning to boost the robustness and convergence of training PINN, starting
training from low-frequency problems and gradually approaching high-frequency problems through
fine-tuning. Through two case studies, we discovered that transfer learning can effectively train
PINNs to approximate solutions from low-frequency problems to high-frequency problems without
increasing network parameters. Furthermore, it requires fewer data points and less training time. We
compare the PINN results using direct differences and L2 relative error showing the advantage of
using transfer learning techniques. We describe our training strategy in detail, including optimizer
selection, and suggest guidelines for using transfer learning to train neural networks to solve more
complex problems.

Keywords: PINN; transfer learning; damped harmonic oscillator; wave equation

1. Introduction

Physics-Informed Neural Networks (PINNs) are a relatively new data-driven solver of
partial differential equations (PDEs) [1–3]. The neural networks’ capability to approximate
complex functions is their basis for solving partial differential equations. While the idea
of using neural networks to estimate PDE solutions dates back to the 1990s, it initially
garnered limited attention for various reasons. With the rapid advancements in deep neural
network technology, the exponential growth in computing power, and the thriving open
deep learning community, PINNs have recently garnered substantial interest and acclaim.

PINNs possess several notable advantages that make them a competitive method
compared to mature, traditional numerical approaches for PDEs. PINN, as a meshless
method, directly embeds mathematical equations into the network structure. The dual
reliance on observational data and mathematical models equips PINNs to handle noisy ob-
servational data. Moreover, a PINN offers a consistent framework for forward and inverse
problems through optimization algorithms [3]. By simply extending the neural network
with additional output channels, PINNs can be employed to solve inverse problems. In
inverse design, PINNs can impose PDEs as rigorous constraints, enhancing their utility.
While neural networks grapple with the curse of dimensionality as problems become more
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complex, PINNs strive to resolve PDEs and their inversion challenges in domains character-
ized by intricate geometries and high dimensions, where numerical simulations are notably
challenging. PINNs have produced compelling results on various problems in computa-
tional science and engineering, such as computational fluid dynamics [4], acoustics [5],
solid mechanics [6], elastodynamics [7–9], and geo-physics [10–12].

However, training PINNs to achieve fast convergence and accuracy is a persistent
challenge. This challenge is intricately linked to the highly complex and non-convexity of
the loss function, which makes a PINN hard to train [13,14]. Furthermore, training PINNs
also suffers from spectral bias. The neural networks prioritize learning low-frequency
patterns over high-frequency details [15,16]. When the problem contains high-frequency
features, the PINN models often fail to converge to the desired solution due to this phe-
nomenon [17–19]. PINNs’ inherent ability to encapsulate domain knowledge and exploit
neural network architectures has made them particularly attractive for simulating complex
physical systems. However, as the applications of PINNs extend to problems characterized
by high-frequency oscillations and intricate multi-scale phenomena, they face significant
hurdles. These challenges often manifest in numerical instability, slow convergence, and
increased computational demands, making it imperative to develop strategies that enhance
the robustness and efficiency of PINNs in such scenarios.

The primary objective of this research is to elucidate the prevailing challenges encoun-
tered in PINNs when applied to high-frequency and multi-scale problems. To mitigate
these challenges, we investigate the utility of transfer learning. By incorporating transfer
learning into the PINN framework, we aim to harness the benefits of pre-trained mod-
els and transferable knowledge, potentially enhancing the convergence and accuracy of
PINNs for high-frequency and multi-scale applications. Moreover, the choice of optimizer
plays a crucial role in training neural networks, including PINNs. Different optimiza-
tion algorithms possess distinct characteristics and may perform differently regarding
convergence speed and solution quality. In this study, we empirically evaluate a range
of optimizers to determine their effectiveness in training the foundational model of the
PINN. Through a comparative analysis, we seek to identify the optimizer that best suits
the specific requirements and challenges of PINNs in the context of high-frequency and
multi-scale problems. We take wave propagation for our case study as it is an essential
phenomenon in engineering due to its ability to transfer energy and information through a
medium without the bulk motion of the medium itself. Waves are a fundamental concept
in many engineering disciplines. In particular, PINNs have been explored and applied to
full waveform inversion (FWI) due to their ability to solve inverse problems with noisy
inputs [20–23]. The wave equation provides a mathematical framework for understanding
and predicting how waves propagate through various physical systems. While numerous
numerical methods have been developed for solving wave equations, the emergence of
PINNs has garnered significant interest as a data-driven approach [24–27].

We believe that transfer learning is a key technique to address the training difficulties
for high-frequency and multi-scale problems. Transfer learning focuses on transferring
knowledge between domains, aiming to enhance model performance in the target domain
by leveraging the knowledge gained from the source [28]. Several research works show
that the effectiveness of transfer learning comes not only from learning “Good” cross-
domain feature representation [29,30], but also lies in its ability to learn high-level statistics
from source domain data [31]. Fine-tuning is perhaps the most widely used transfer
learning technique in deep learning. This technique involves initializing the current model
with weights learned from pre-training, then training part or all of these weights on the
current task’s data to save training time and accommodate smaller datasets, for example,
applications in medical image analysis [32]. Recent work demonstrates that adversarial
training in the source data can improve the ability of models to transfer to new domains [33].
For PINN, transfer learning involves training a network to solve the desired PDEs from an
initial model [34]. It enables training PINNs with a reduced amount of data and training
costs [35–37]. Moreover, it addresses the challenge of insufficient high-fidelity data in
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numerous scientific computing cases [38]. Through transfer learning, PINNs demonstrate
their capability to effectively solve intricate PDEs, positioning themselves as a valuable tool
in addressing complex engineering challenges, such as fracture mechanics [39] and flows
in porous media [40].

In summary, this manuscript addresses these issues faced by PINNs when confronted
with high-frequency and multi-scale problems. By investigating transfer learning and
scrutinizing the performance of various optimizers, we aim to provide valuable insights
into improving the efficacy and versatility of PINNs for challenging physical simulations.
The rest of the paper is organized as follows: The second section briefly introduces PINNs,
emphasizing the crucial components pertinent to our study. In the third section, we
show two studies where transfer learning is employed to train PINNs for solving partial
differential equations (PDEs) from low to high frequencies. Additionally, we explore best
practices for selecting the base model. The final section summarizes our findings and offers
conclusions while suggesting potential future research directions.

2. Method
2.1. Physics-Informed Neural Networks

PINNs or Physics-Informed Neural Networks are a specific kind of neural network
trained to approximate the solution to any given law of physics defined by a partial differ-
ential equation (PDE) or a system of PDEs [3]. The most significant benefit of a PINN over
other methods is that it is a mesh-free method. The classical PINN follows the collocation-
based approach, implying that the neural network aims to approximate the strong form
of the governing equation at a set of collocation points. As the collocation points can be
distributed randomly within the domain, and no mesh is required, this approach belongs
to the category of mesh-free methods [41]. The core of PINN implementation is to calculate
partial derivatives, and this task can be completed through automatic differentiation algo-
rithms in mainstream deep learning frameworks like Pytorch or Tensorflow [42]. Several
open-source libraries such as DeepXDE [43], SimNet [44], and SciANN [45] have been
developed, making PINNs easier to apply in practice.

The architecture of a PINN can vary depending on the specific problem. While many
PINNs still use the feedforward fully connected neural network (FCN) as part of their
architecture, the FCN is the basic architecture used in deep learning algorithms [46]. A
fully connected neural network with L layers is a function fθ : Rd → Rk described by
Equation (1):

fθ(x) = W [L−1]σ ◦ (. . . σ ◦ (W [0]x + b[0]) + . . .) + b[L−1], (1)

where σ is an entry-wise activation function, W [l] and b[l] are, respectively, the weight
matrices and the bias corresponding to each layer l, and θ is the set of weights and biases
(Equation (2)):

θ = (W [0], . . . , W [L−1], b[0], . . . , b[L−1]). (2)

The activation function is a crucial component of a neural network, and several
favoured choices are available, including the sigmoid function, hyperbolic tangent function
(tanh), and rectified linear unit (ReLU). It is worth mentioning that we have implemented
the hyperbolic tangent function as part of the neural network for PINN.

The hyperbolic tangent activation function is defined as Equation (3):

tanh(x) =
ex − e−x

ex + e−x . (3)

The smoothness and overall S-shape of this function are similar to that of the sigmoid
function. However, unlike the sigmoid function, the range of the outputs is centered at 0
and falls between (−1, 1). This makes the tanh activation function more appropriate for
deep neural networks as it avoids creating a bias towards positive outputs [41]. ReLU
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is more commonly used as an activation function in neural networks. However, it is
unsuitable for PINNs due to its second derivative being zero.

PINNs harness the PDEs to guide and constrain the training process of neural net-
works. PINNs incorporate the PDEs’ residuals, initial conditions, and boundary conditions
into their loss function. The neural networks are tasked with fitting the observed data
while simultaneously minimizing the PDE residuals. The neural network is thus trained
to approximate the solution of the PDE by minimizing this loss function. This approach
reduces the need for additional observational data, making it a powerful and efficient
technique to solve PDEs.

However, the loss function is highly dimensional and non-convex with competing
loss terms. It is essential to weigh these loss terms; otherwise, the optimizer might train
only one term and create a bias. Later in the 1D wave section, we discuss the temporal loss
weighting technique that we used to assign the highest weight to temporal loss terms in
the beginning.

We consider a scalar function u(x, t) on the domain Λ× [0, ∞); with the boundary ∂Λ,
where Λ ⊂ Rd. u(x, t) satisfies the following PDE (Equation (4)):

F(x, t; u, ∂xu, ∂tu, . . . , λ) = 0, ∀(x, t) ∈ U

I(x, t0, h; u, ∂tu, . . . , λ) = 0, ∀(x, t) ∈ I
B(x, t, g; u, ∂xu, . . . , λ) = 0, ∀(x, t) ∈ ∂U

(4)

where F contains a sequence of differential operators (i.e., [∂t, ∂x, . . .]), which represents the
residual of the PDEs; λ is the PDEs’ parameter vector; I is the residual form of the initial
condition containing a function h(x, t); and B is the residual form of the boundary condition
containing a function g(x, t). U = {(x, t) | x ∈ Λ, t ∈ [0, T]}, ∂U = {(x, t) | x ∈ ∂Λ,
t ∈ [0, T]}, and I = {(x, t) | x ∈ ∂Λ, t = 0}.

Figure 1 illustrates the structure of a PINN model. The space coordinates x and time t
are usually taken as the inputs, and the outputs û(x, t) are used to approximate the true
solution u(x, t) of the PDEs. The differential operators are calculated by automatic differen-
tiation (AD), and then the PDEs’ residuals, initial conditions, and boundary conditions are
embedded into the loss function of neural networks (Equation (5)):

L(θ) = WFLF(θ) + WILI(θ) + WBLB(θ) (5)

Figure 1. PINN model.

With θ representing the weights of neural network; WF, WI , and WB are the weights
for various loss terms; and LF, LI , and LB are the loss functions of PDE (Equation (6)),
initial condition (Equation (7)), and boundary condition (Equation (8)), respectively:
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LF =
1

NF

NF

∑
i=1
∥F(x(i), t(i); û)∥2 (6)

LI =
1

NI

NI

∑
i=1
∥I(x(i), t(i), h(i); û)∥2 (7)

LB =
1

NB

NB

∑
i=1
∥B(x(i), t(i), g(i); û)∥2 (8)

where NF, NI , and NB are the sets of collocation points in U, I , and ∂U; and NF, NI , and
NB denote the number of sampling points. In this manuscript, the total loss function is
represented as LPINN(θ).

After the formulation of these loss terms, the PINN can be trained using any optimizer,
such as Adam, Stochastic Gradient descent, or a Netwon-based method like L-BFGS. In
this work, we mainly use Adam [47] and LBFGS [48], which are described in detail in the
following sections.

2.2. Optimizers

Here, we outline the common optimization algorithms used to train neural networks
and to minimize the loss function.

2.2.1. Adam Optimizer

The Adam optimization algorithm is an extension to stochastic gradient descent [47].
Its core idea is to compute individual adaptive learning rates for different parameters from
the estimations of the first and second moments of the gradients. The detailed computing
steps are given as Algorithm 1.

Algorithm 1 Adam Optimization

Input: parameters, learning_rate, β1, β2, ϵ
m← zeros_like(parameters) ▷ Initialize 1st moment vector
v← zeros_like(parameters) ▷ Initialize 2nd moment vector
t← 0 ▷ Initialize timestep
while not converged do

t← t + 1
gradient← compute_gradient(parameters) ▷ Compute gradient of the objective

function
m← β1 ·m + (1− β1) · gradient ▷ Update biased first moment estimate
v← β2 · v + (1− β2) · (gradient2) ▷ Update biased second raw moment estimate
mhat ← m/(1− βt

1) ▷ Bias-corrected first moment estimate
vhat ← v/(1− βt

2) ▷ Bias-corrected second moment estimate
parameters← parameters− learning_rate ·mhat/(

√
vhat + ϵ) ▷ Update parameters

end while

2.2.2. LBFGS Optimizer

Broyden–Fletcher–Goldfarb–Shanno is a quasi-Newton-based optimization algorithm
commonly used for training neural networks. The loss landscape of a PINN is highly
complex due to competing loss terms, making BFGS an effective choice for training PINNs.

BFGS [49] is a gradient method that iteratively computes the Hessian matrix of the
loss function, and this process requires O(n2) gradient evaluations, where n represents the
number of parameters. The BFGS curvature matrix can be updated without the need for
matrix inversion, and this reduces the computational cost significantly. However, since the
Hessian matrix is the foundation of the BFGS algorithm, memory usage increases as the
square of the number of parameters. This results in rapid memory usage growth, making it



Appl. Sci. 2024, 14, 3204 6 of 19

impractical to use this approach for neural networks with a large number of parameters.
The implementation of BFGS algorithm is referred to Algorithm 2.

The BFGS algorithm may use large amounts of memory, but L-BFGS [50] solves this
issue by storing a few vectors that represent an estimate of the full Hessian matrix. Com-
pared to BFGS, L-BFGS is more computationally efficient, uses less memory, and can handle
problems with larger numbers of parameters. Due to its lower memory requirements, the
L-BFGS algorithm has become the favourite among second-order optimization techniques.

Algorithm 2 BFGS Method

1: Input: Initial guesses x0 and B0, tolerance tol
2: Set k = 0
3: repeat
4: Obtain descent direction dk = −B−1

k ∇ f (xk)
5: Set αk = 1
6: Calculate the step sk = αkdk
7: Update the design xk+1 = xk + sk
8: if |xk+1 − xk| < tol or |∇ f (xk+1)| < tol then
9: break

10: end if
11: Obtain the variation in the gradient yk = ∇ f (xk+1)−∇ f (xk)
12: Update the Hessian approximation Bk+1 = Bk
13: Increase the iterator k = k + 1
14: until convergence

2.3. Evaluation Metric

The approximate solution provided by the PINN needs to be evaluated and compared
with the analytical solution/finite modelling result using some metric. The error between
the ground truth and the approximation can be challenging to quantify. We use relative L2
norm error (see Equation (9)).

It is used in linear algebra and defines the relative L2 norm error. We take a discrete
sample of data points from the solution space and the approximation space and store them
as vectors x and b, respectively. We then find the Euclidean distance of the difference
between the solution and the approximation vectors relative to the Euclidean distance of
the solution.

eL =

√
∑Ne

i=1(xi − bi)2√
∑Ne

i=1 x2
i

=
||x− b||2
||x||2

(9)

3. Results and Discussion

To illustrate the effectiveness of PINNs in addressing high-frequency and multi-scale
problems, we examined their performance on the damped harmonic oscillator problem and
the 1D wave equation, both of which present unique challenges. The damped harmonic os-
cillator was a straightforward example of how PINNs function and where their limitations
lie. Notably, while the simple harmonic oscillator followed an ordinary differential equa-
tion (ODE), the 1D wave equation represents a second-order partial differential equation.
Through these examples, we aimed to showcase the versatility of PINNs in modelling both
ODEs and PDEs.

3.1. Simple Harmonic Oscillator (SHM)

The damped harmonic oscillator is a classic problem in mechanics that describes
the motion of a mechanical oscillator (e.g., a spring pendulum) under the influence of a
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restoring force and friction. The governing equation for the damped harmonic oscillator is
given by Equation (10):

F(x) = m
d2u
dt2 + µ

du
dt

+ ku (10)

where

m: mass of the oscillator;
µ: coefficient of friction;
k: spring constant.

In this paper, we focus on the under-damped state, i.e., where the oscillation is slowly

damped by friction occurs when δ < ω0, where δ = µ
2m and ω0 =

√
k
m .

The following initial conditions are applied:

u(t = 0) = 1,
du
dt

(t = 0) = 0

The exact solution of the above setup is given by Equation (11):

u(t) = e−δt(2A cos(ϕ + ωt)), (11)

where ω =
√

ω2
0 − δ2.

The interior residual is given by Equation (12):

rint,θ(t) := m
d2ûθ

dt2 + µ
dûθ

dt
+ kûθ (12)

This is the exact solution of the oscillator with w0 as 20 Hz.
With an increasing frequency (ω0), the damped harmonic oscillator function becomes

more complicated for PINNs to approach. Figure 2 illustrates the exact solution of the
oscillator for four frequencies ω0 = 20, 40, 50, 60.

Figure 2. Exact solution for different values of ω.

In the experiment, our PINN model is used to approximate the solutions of the oscilla-
tor for the above four frequencies. The selected source terms yield uncomplicated solutions
that demonstrate how the F-principle affects the convergence of PINNs to the numerical
solution. According to the F-principle, the low-frequency or large-scale characteristics of the
solution are initially manifested in the PINNs, while it may take multiple training epochs
to retrieve high-frequency or small-scale features [34]. We expect that the vanilla PINN will
converge faster and achieve better accuracy in learning the damped harmonic oscillator
for lower-frequency components, e.g., ω0 = 20 than for higher-frequency components
(ω0 = 40, 50, 60). The experiment results that are presented in the following part are aligned
with the expectations.

The PINN model we used in experiments for this case comprises a fully connected
network (FCN) with five fully connected layers, each consisting of 64 neurons, totalling
4321 parameters. We trained the PINN model using two optimizers, Adam and L-BFGS,
which are mentioned in most PINN papers. To populate the computational domain, we
utilized a total of 100 equidistant points. It is worth noting that the selection of the number
of points within the domain is a decision that is dependent on the user.
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The results of training PINN models for ω0 = 20 and ω0 = 30 are given in Figures 3 and 4.
For ω0 = 20, the PINN was able to fit well where the loss reaches the order of 10−3 with
both Adam and L-BFGS optimizers (Figure 3a,c). With the LBFGS optimizer, it converged
at around 2200 epochs(Figure 3b), while with the Adam optimizer, it converged at around
7000 epochs (Figure 3d).

For ω0 = 30, the PINN was also able to reach the order of 10−3 loss with both Adam
and L-BFGS optimizers (Figures 3c and 4a). With the L-BFGS optimizer, it converged at
around 7000 epochs (Figure 4b). The Adam optimizer needs around 22,000 epochs to
converge (Figure 4d).

(a) PINN solution vs. exact solution using L-BFGS (b) Loss curve with L-BFGS optimizer over epochs

(c) PINN solution vs. exact solution using Adam (d) Loss curve with Adam optimizer over epochs

Figure 3. Comparisons of Adam optimizer vs. L-BFGS optimizer at 20 Hz.

In comparing the convergence behaviour of the Adam optimizer and the L-BFGS
optimizer at a frequency of 40 Hz, it becomes apparent that both algorithms exhibit different
characteristics and performances, particularly in their speed of convergence and stability
during optimization. The Adam optimizer eventually converges; however, this is achieved
after a significant number of iterations. This observation raises concerns as we transition
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to higher frequencies, suggesting challenges in PINN convergence. This could be partly
attributed to the well-documented issue of spectral bias inherent in neural networks.

When considering which optimizer to use, it is crucial to select one with caution as
they can have a significant impact on the efficiency of the training process. We found out
that using Adam with L-BFGS gave the best results.

The performance of the PINN is observed to be consistent in two different frequency
scenarios (20 Hz and 30 Hz) when using Adam and L-BFGS. This indicates that the quality
of predictions remains stable regardless of the chosen optimization algorithm. It is impor-
tant to note that both optimizers ultimately achieve convergence and deliver favourable
predictive outcomes; however, they exhibit notable differences in behaviour.

(a) PINN solution vs. exact solution using L-BFGS (b) Loss curve with L-BFGS optimizer over epochs

(c) PINN solution vs. exact solution using Adam (d) Adam Loss

Figure 4. Comparison of the Adam optimizer with the L-BFGS optimizer at 30 Hz: (a) comparing
the PINN solution and the exact solution using L-BFGS; (b) visualization of loss curve with L-BFGS
optimizer across epochs; (c) analyzing the PINN solution and exact solution using Adam; (d) loss
using Adam optimizer.
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The Adam optimizer, although effective, requires a higher number of iterations to
reach convergence and shows some degree of instability compared to the L-BFGS optimizer.
At times, Adam outperforms L-BFGS, possibly due to L-BFGS temporarily getting stuck in
a local minimum leading to quick convergence. In the context of the mentioned frequency
scenarios, a learning rate of 0.1 was set for the L-BFGS optimizer. Since L-BFGS is a
quasi-Newton method, it depends on the initial guess.

At a frequency of 40 Hz, Adam optimizer was able to solve the problem but it required
significantly more number of iterations, with almost 80,000 iterations needed to reach
convergence. On the other hand, LBFGS failed to converge and seemed to fit the lower-
frequency components of the problem. It is important to note that the loss in this case
remained at the order of 10−1, highlighting the problems of solving high-frequency cases
within the PINN framework.

3.1.1. Transfer Learning

This section introduces a transfer learning technique to boost the robustness and
convergence of training PINNs. Transfer learning presents a promising solution to mitigate
these issues by leveraging the pre-trained model or the baseline PINN, thereby furnishing
an advantageous initial guess to expedite convergence. To assess the efficacy of this tech-
nique, we conducted a series of experiments involving different optimization algorithms
and compared their performances, respectively. The baseline low-frequency model is
required to initiate the transfer learning of PINNs from low frequency to high frequency.
The models mentioned in the previous part are selected for transfer learning to facilitate
the scaling of the model to higher frequencies. The baseline model is established, revealing
that as the frequency is elevated, the capability of the PINN, given the present configura-
tion, to scale effectively diminishes. It is important to note that LBFGS, a Newton-based
optimization method, exhibits sensitivity to the initial guess, rendering it susceptible to
convergence challenges, including the risk of getting trapped in local minima or failing to
converge even after a substantial number of iterations. Some empirical evidence shows
that Adam optimizer when used with a combination of the L-BFGS optimizer, ensures that
the latter escapes from the local minima [34]. We selected the baseline models at 30 Hz
generated by both the Adam and LBFGS optimizers. These models were subsequently
employed as the starting point for training a PINN model targeting a frequency of 40 Hz.
This approach enables us to evaluate which of the two optimizers produces a more effective
baseline model for this task.

3.1.2. Discussion of Results

In this section, we test out both Adam and L-BFGS optimizers to see which of the two
performs better as a source model to scale to higher frequencies. Then, the source models
are trained with L-BFGS to transfer learning to the desired higher-frequency models.

The results of the 40 Hz case without transfer learning are given in Figure 5 as a
baseline. Both Adam and L-BFGS optimization algorithms are tested, leading to two
versions of baseline models. In the following results, we use L-BFGS to train the network.
Figure 6 shows each of the baseline model’s solutions compared to the exact solution and
its training curve. We make use of transfer learning and compare it with Adam and L-BFGS
baseline models. In Figure 6b, it is evident that the source model for 30 Hz with Adam
performed much better than that of L-BFGS. As mentioned above, this might be due to the
nature of L-BFGS.

When we compare the results of the 40 Hz case without transfer learning (Figure 5d)
with those using transfer learning (Figure 6b), we observe that Adam achieved a loss order
of 10−3 in about 75,000 iterations, while the one using transfer learning achieved the same
order in less than 2000 epochs. This not only reduced the computation time significantly
but also provided a more accurate solution.

Now, moving on to the next set of results, we use the 40 Hz model as the source to train
the model on ω = 50. Similarly, we used the ω = 50 model as the source to train the model
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on ω = 60. The results are given in Figure 7. In both cases, the L-BFGS optimizer was used
to train the model. The order of loss for ω = 60 Hz is higher than that of ω = 50 Hz because
of the complexity of the solution; however, the PINN’s solutions fit well with the exact
solution. By comparing the relative L2 error as described in Table 1, we can conclude that
although LBFGS performs more stably than Adam in training the initial model, it does not
provide a “good” initial model for transferring to higher-frequency problems. It is difficult
for Adam to handle high-frequency problems, but it provides better initial models on
low-frequency problems. Using transfer learning to transfer the model trained with Adam
from low-frequency problems to high-frequency problems obtain more accurate solutions.

(a) PINN solution vs. exact solution using L-BFGS (b) Loss curve with L-BFGS optimizer over epochs

(c) PINN solution vs. exact solution using Adam (d) Loss curve with Adam optimizer over epochs

Figure 5. Comparisons of Adam optimizer vs. L-BFGS optimizer at 40 Hz.
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(a) PINN vs. Exact Solution (b) Adam vs. L-BFGS Initializers.
Figure 6. Comparisons of 40 Hz for Adam and LBFGS.

(a) Source PINN: 40 Hz (b) Loss

(c) Source PINN: 50 Hz (d) Loss
Figure 7. Transfer learning results for ω = 50 Hz and ω = 60 Hz. In both the cases, L-BFGS
optimizer was used to train the model. The order of loss for ω = 60 Hz is higher than that that of
ω = 50 Hz because of the complexity of the solution; however, the PINN’s solutions fit well with the
exact solution.
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Table 1. Relative L2 error (%).

L2 Relative Error (%) of Adam, LBFGS, and Transfer Learning

Adam LBFGS Transfer Learning (Adam)

20 0.95 0.92 -
30 1.24 0.88 -
40 0.80 0.95 0.037
50 3.15 0.95 0.881
60 71.54 0.95 0.218

3.2. One-Dimensional Wave Equation

The wave equation (Equation (13)):

∂2u
∂t2 = c2∇2u, (13)

models the oscillations of a one-dimensional string (u = u(x, t)), the oscillations of a two-
dimensional thin membrane (u = u(x, y, t)), or the pressure oscillations of an acoustic wave
in air (u = u(x, y, z, t)). The constant c denotes the velocity of wave propagation for the
oscillations and is also known as the wave velocity in certain literature studies.

Although typically discussed in just one spatial dimension (x) due to time (t) being
the only independent variable, it is important to mention that the variable we are studying
(u) can represent movement in another direction, like up and down (y). For example, this
occurs when a string is not only moving horizontally (x) but also vertically (y), as seen on a
flat surface.

The unknown function u depends on space x and time t, and can be represented as
an equation

u = u(x, t).

We also need initial conditions and boundary conditions to solve the function. In the
experiments, we use the conditions given in Equation (14):

utt = c2uxx

u(x, 0) = sin(x)
ut(x, 0) = sin(x)
ub(0, t) = ub(π, t) = 0

for 0 ≤ t ≤ 2π, 0 ≤ x ≤ π (14)

We solve the case where c = 1. Specifically, we address the equation with homoge-
neous Dirichlet conditions, c = 1, and compare the results with the analytical solution.

As we increase c from 1 to 2, we observe that the solution takes much longer to
converge. To address this, we employ transfer learning. We first train the model for c = 1
and then use this knowledge to approximate the solution for c = 2.

To do so, we approximate the underlying solution with a feedforward dense neural
network with tunable parameters θ:

ûθ(x, t) ≈ u(x, t).

This approach allows us to efficiently model and compare solutions under different
conditions, providing a deeper understanding of the system’s behaviour.

The loss function is referred to as Equation (5). The interior residual is given by
Equation (15):

rint,θ(x, t) := ûθ,tt(x, t)− c2(ûθ,xx(x, t)), ∀ t ∈ [0, T], x ∈ [0, π]. (15)
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The spatial boundary residual or boundary conditions are given by Equation (16):

rsb,θ(0, t) := ûθ(0, t)− ub(0, t),

rsb,θ(π, t) := ûθ(π, t)− ub(π, t),

∀t ∈ (0, T].

(16)

The temporal boundary residual is given by Equation (17):

rtb,θ(x) := ûθ(x, 0)− u(x, 0), ∀x ∈ [0, π],

rtb,θ(x) := ûθ,t(x, 0)− ut(x, 0), ∀x ∈ [0, π].
(17)

With the training input points corresponding to low-discrepancy Sobol sequences, the
loss terms are given in Equations (18)–(20):

LF(θ) =
1

Nint

Nint

∑
i=1

r2
int,θ(xi, ti) (18)

LB(θ) =
1

Nsb

Nsb

∑
i=1

r2
sb,θ(ti, 0) +

1
Nsb

Nsb

∑
i=1

r2
sb,θ(ti, π), (19)

LI(θ) =
1

Ntb

Ntb

∑
i=1

r2
tb,θ(xi) (20)

where Nint is the number of collocation points or the PDE points; Nsb represents each spatial
boundary or boundary condition points; and Ntb is either the temporal boundary points or
the initial condition points.

Finally, we train our neural network to minimize the above loss terms and find the
parameter θ (Equation (21)):

θ∗ = argminθ

(
LF(θ) + LB(θ) + λI LI(θ)

)
(21)

The weight (λI) for the temporal loss term is given by the Equation (22):

λI = Ct

(
1− t

Tmax

)
+ 1 (22)

where

- λI is the weight for the temporal loss term;
- Ct is a constant;
- t is the current time;
- Tmax is the maximum time.

In the first experiments, we added an approximation of the wave for c = 1. We know
the exact solution for that case, which is (Equation (23)):

u(x, t) = sin(x) · (sin(t) + cos(t)) (23)

For this experiment, we used a fully connected neural network comprising five layers
and 64 units. Sobol sequences were used to generate collocation points, spatial boundary
points and temporal boundary points. Figure 8 shows an example of the corresponding
points sampled from the studied domain. Specifically, we generated 512 collocation points,
32 temporal points, and 64 points on each boundary. The network was optimized using an
L-BFGS optimizer.
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Figure 8. Sampled points over the spatial and temporal domains. At x = 0 and x = L, boundary points
are added, which will define the value that u(x, t) will take.

Results for 1D Wave Equation

For c = 1, the L2 relative error norm between the exact solution and PINN solution
is 0.05%.

Figure 9 compactly shows the baseline model and the training results of using transfer
learning to train PINN to solve higher frequency problems. The result in Figure 9a is the
baseline or the source model that we trained, for c = 1. Now, in the upcoming results, we
use this model as a source; as we increase the value of c to 1.5, 2.0, and 4.0. The model
that used transfer learning performed better than the models without transfer learning. In
Figure 9g, the loss reached an order of 10−5 in 600 epochs with transfer learning, whereas it
took 1000 epochs without transfer learning. Figure 9h,i show the consistent results that the
loss reached an order of 10−5 in fewer epochs with transfer learning.

It can be observed in Figure 9i that the model without transfer learning took more
than 10,000 epochs to converge, whereas the model which used transfer learning took only
7500 epochs to converge. The order of loss is not as low as the other results because of the
complexity of the solution.

(a) PINN Solution (b) Exact Solution (c) Loss

Figure 9. Cont.
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(d) c = 1.5 (e) c = 2 (f) c = 4

(g) c = 1.5 (h) c = 2 (i) c = 4

Figure 9. Results for c = 1 (L-BFGS): (a) approximated solution by PINN, (b) exact solution, (c) loss
curve. Results for various values of c with transfer learning: (d) c = 1.5, (e) c = 2, (f) c = 4. Loss
curves for: (g) c = 1.5, (h) c = 2, (i) c = 4.

4. Conclusions

This work aims to shed light on the common challenges encountered by PINNs when
applied to high-frequency and multi-scale problems. We explored the potential of transfer
learning as a viable solution to these problems. In the experiments, we observed that the
PINN depicts ability in approximating the harmonic oscillator at a frequency of 20 Hz.
However, as the frequency increases, a noticeable increase in computational cost follows,
accompanied by increased convergence times.

The application of the vanilla PINN, utilizing an identical neural network architecture
as the 20 Hz case, proves unfeasible in achieving convergence at 40 Hz, 50 Hz, and 60 Hz
with the same amount of collocation points. While the model performs well on low-
frequency problems, it starts struggling when given higher frequencies. Through transfer
learning, we were able to learn the 50 Hz and 60 Hz solutions, without adding more layers,
or changing the number of collocation points. The results were promising as well, with a
loss reaching an order of 10−2.

Similarly, in the context of the one-dimensional wave equation, with the use of transfer
learning, we learnt the PINN solution for different wave velocities, starting from two up to
four. The transfer learning method turned out to be effective. As for a higher wave velocity,
the model achieved convergence significantly quicker.

Transfer learning has proven to be an effective method for enhancing the efficiency
and convergence characteristics of PINNs, preventing the necessity for modifications to
the network architecture, which causes more parameters. A meaningful research direction
is establishing a pre-trained model library for complex engineering problems so that
transfer learning technology can be used to train models for specific problems rapidly
and accurately.

However, applying transfer learning techniques is not without its pitfalls. Negative
transfer describes the phenomenon where inappropriately transferring knowledge from the
source domain can inversely hurt the target performance [51]. Although we did not observe
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any negative effects resulting from the application of transfer learning in the experiments
involved in this article, this does not mean that the technique can be applied to the training
of PINNs without careful consideration. The important point here is to understand the
limitations of transfer learning, that is, under what circumstances transfer learning might
fail, and how such failures can be avoided. We believe this contributes not only to the theory
of PINN training but also has practical significance in solving more complex real-world
engineering problems. This also points to the direction of our future work.
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