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Abstract: Additive manufacturing has transformed the production process by enabling the construc-
tion of components in a layer-by-layer approach. This study integrates Artificial Neural Networks
to explore the nuanced relationship between process parameters and mechanical performance in
Fused Filament Fabrication. Using a fractional Taguchi design, seven key process parameters are
systematically varied to provide a robust dataset for model training. The resulting model confirms its
accuracy in predicting tensile strength. In particular, the mean squared error is 0.002, and the mean
absolute error is 0.024. These results significantly advance the understanding of 3D manufactured
parts, shedding light on the intricate dynamics between process nuances and mechanical outcomes.
Furthermore, they underscore the transformative role of machine learning in precision-driven quality
prediction and optimization in additive manufacturing.

Keywords: fused filament fabrication; tensile strength; artificial intelligence; Bayesian regularized
artificial neural networks; quality control

1. Introduction

Additive manufacturing (AM) is revolutionizing production technologies by enabling
the creation of components layer by layer without the limitations of traditional manufactur-
ing methods. This technology also allows for the use of a variety of materials, making it
highly attractive to industries such as the automotive, aircraft, and medical industries [1,2].
Material extrusion (ME) is a type of 3D printing process that involves selectively depositing
material through a heated nozzle [3] and is one of seven categories of additive printing
processes defined by the ASTM/ISO 52900 standard [3]. Extrusion-based technology can
process a wide range of materials [4], making it suitable also for constructing complex
parts [5,6]. Fused Deposition Modeling (FDM), also known as Fused Filament Fabrication
(FFF), is a 3D printing process that uses a thermoplastic filament to create components layer
by layer. The path of the nozzle is defined by the file codes generated during the design
stage. The most used thermoplastic material for FDM is polylactic acid (PLA), made from
plant-based sources.

To ensure that FFF-made components meet their functional requirements, critical
process factors must be examined to determine their impact on mechanical qualities. Several
studies have looked at the influence of the key process parameters. A Taguchi orthogonal
array was used to define the level of each factor, and the experimental data were analyzed
using analysis of variance (ANOVA) to quantify the main effects of the parameters on
the responses [6–8]. In a study using Taguchi’s L9, the effects of the printing speed, layer
height, and extrusion temperature were analyzed, and the results showed that higher
extrusion temperatures improved interlayer adhesion in the printed object. On the other
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hand, the use of printing speeds that are too high leads to a progressive reduction in the
tensile strength because the deposition of the layers is not uniform. The optimal process
parameters for this work are a layer height of 0.15 mm, a printing speed of 48 mm/s, and an
extrusion temperature of 220 ◦C [9]. By using lower melting temperatures, at which printing
speeds do not affect the geometry of the part, the necessary integrity of the structure is
maintained. For the maximum tensile strength, higher extruding temperatures provide
better material bonding. Lower printing speeds combined with the printing temperature
leads to higher strain and stiffness [10]. Moreover, higher cooling speeds were found to
improve the geometric accuracy but decrease the mechanical strength [11]. A detailed
analysis of the specimen’s internal structure was conducted to study the effects of infill
type, percentage of part fill, number of perimeters, and shell thickness. The performance is
influenced by the chosen infill pattern and the number of contours, with optimal values
being a layer height of 0.1 mm, six perimeters, and a gyroid infill geometry [12]. In contrast,
ranked first in influence is the infill percentage, followed by the contour thickness and then
the layer height. In Enemuoh et al.’s study, the most influential parameter for optimum
printing was found to be the infill percentage, followed by the contour thickness and
layer height. Specifically, an infill density of 100%, a shell thickness of 1.2 mm, a layer
thickness of 0.2 mm, a cubic infill pattern, and a print speed of 40 mm/s were identified as
optimal printing parameters [13]. The results on layer thickness are mixed. Caminero et al.
observed that on-edge and flat orientations result in the highest mechanical properties with
intra-layer failure. The study found that the tensile strength was highest at a lower layer
thickness, which also had a higher ductility. However, the ductility decreased as the layer
thickness increased [14]. Another study showed that increasing the layer height from 0.1
to 0.2 mm resulted in improving the tensile strength. Furthermore, the triangle pattern
provides the optimal mechanical strength while minimizing material consumption [15,16].

Machine learning (ML) is a subfield of artificial intelligence (AI) that uses algorithms
to analyze data, recognize patterns, and make decisions without explicit instructions. It is
based on objective analysis and logical structure. Within the field of ML, artificial neural
networks (ANNs) are modeled to simulate the working flow of the human brain and consist
of interconnected nodes that mimic neurons. ANNs excel at learning intricate patterns and
correlations in data, making them ideal for applications such as image identification, natural
language processing, and predictive analytics. The development of deep neural networks
has further improved the capability in processing various and complex datasets [17]. ANNs
have played a crucial role in image recognition tasks, including object detection, facial
recognition, and image classification. This has resulted in significant progress in areas such
as self-driving cars, medical imaging, and security systems [18]. Deep learning (DL) differs
from traditional ANNs in its ability to automatically learn complex data representations
through the use of deep neural networks with many hidden layers. Compared with tradi-
tional ML, DL can learn complicated representations of datasets automatically, without the
need to manually extract relevant features. It enables more efficient and accurate learning
from raw data, automatically uncovering complex patterns and relationships that may
not be apparent upon initial analysis. Additionally, it can handle large amounts of data
and adapt dynamically to changes, making it particularly suitable for applications with
high data complexity and dimensionality [19]. On the other hand, Deep Belief Networks
(DBNs) are hierarchically structured ANNs that learn complex representations of input data
using probabilistic methods. They have been used successfully in areas such as computer
vision, natural language recognition, bioinformatics, and financial data analysis. Recent
developments include hybrid architectures that combine DBNs with other deep learning
techniques, such as Convolutional Neural Networks (CNNs) for image processing and
Recurrent Neural Networks (RNNs) for sequential data processing. This combination
improves model performance and increases flexibility when learning data representations.
DBNs are increasingly being used on cloud platforms, allowing for more efficient data
management and faster neural network training [19]. One of its applications is in smart
cities to improve security and efficiency. It enables anomaly detection, data encryption,
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intrusion detection, behavior analysis, and secure communication with significantly im-
proved overall security by providing effective tools for data protection and cyber threat
prevention [20]. Moreover, to enhance the planning and administration of urban tunnel
building projects, DBNs are utilized to predict the performance of cantilever roadheaders
in challenging terrain. This enables the precise and timely control of factors that affect
roadheader performance. The use of DBNs allows one to address issues related to the
complexity of geological data and the nonlinear correlations between excavation factors,
resulting in more accurate projections that are adaptive to changing ground conditions [21].
High-resolution image processing is crucial in various industries, including medical anal-
ysis, satellite image processing, and computer graphics. Rehman et al. [22] proposed a
cascade approach, where a CNN extracts DNN-based features from input image patches.
These features are then fed into the DBN model for high-resolution image quality pre-
diction. This study aims to improve the objective assessment of super-resolution image
quality by providing an advanced, accurate approach without reference images. Bayesian
neural networks (BNNs) are a type of neural network that treat model weights as ran-
dom variables with probability distributions, rather than fixed parameters. This approach
captures the uncertainty associated with the model weights and input data, resulting in
more informative and robust predictions. Bayesian approaches enable the estimation of
the posterior distribution of model parameters from observed data. This estimation can be
used for model selection, prediction, and uncertainty quantification. Additionally, Bayesian
approaches can improve the generalization performance of ANNs by reducing overfit-
ting and providing a principled method for selecting the appropriate model complexity.
Bayesian methods have the advantage of incorporating prior knowledge into the model,
which is useful when training data are limited. They are also robust to outliers and less
sensitive to overfitting than non-Bayesian methods due to constraints on model complex-
ity [23,24]. The transition from the traditional Bayesian approach to Bayesian regularization
(BR) is a significant advancement in the field of neural networks and machine learning.
This approach improves network performance, making it more robust and better able to
generalize to new data, without the full complexity of traditional Bayesian methods [25,26].
Bayesian analysis is a suitable approach for addressing uncertainties in civil engineering
problems such as materials, excitation, modeling, and emission for damage prediction [24].
Moreover, the approach has been utilized to address various challenges in the medical
field, including predicting disease progression, identifying diagnostic biomarkers, and
customizing treatments to individual patient characteristics [27].

Nowadays, digital technologies and solutions for calibration, prediction, learning, and
self-optimization have been implemented in manufacturing to eliminate inefficiencies [28].
The combination of AM and ML techniques offers the ability to identify relationships in
large manufacturing datasets, providing the possibility of obtaining components with
improved performance [29]. Charalampous et al. [30] investigated tensile strength opti-
mization by adopting an ML regression algorithm. The layer thickness, printing speed,
and printing temperature were the process parameters considered. The results showed
that a medium printing speed, temperature, and low layer thickness improved the tensile
strength. The layer height, infill percentage, printing temperature, and printing speed were
used as input to train an ML model for simultaneously predicting the minimum weight,
minimum printing time, and maximum tensile strength. Although no unique optimal
solution exists, the Pareto front provides an appropriate combination of input parameters
to obtain the best trade-off between the outputs to meet the user’s requirements [31]. The
same printing processes were investigated by Jatti et al. using an ML nonlinear regression
algorithm only for tensile strength prediction. The results were able to predict the tensile
strength with a percentage error of less than 2.977 [32]. Models for predicting the ultimate
tensile strength were developed using an ANN. The regression curve had a correlation
coefficient of 0.999782. The input combinations between the print speed, infill density,
build orientation, temperature, and layer thickness were evaluated based on the Taguchi
orthogonal array. Having considered for each input three control levels, 33 experiments
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were performed for the training and evaluation of a neural network. The error percentage
value for the neural network is 1.10. The validation parameter indicates an error of 1.57
when comparing the actual and predicted outcomes using the ML method [33]. In the
majority of the current study’s results, the best combination of process parameters was
discovered through independent experimental trials, with the experimental outcome that
produced a better solution being classified as the optimum solution [34]. However, the
optimal process parameter combination may differ from the experimental combinations,
and it must fall within the permitted range of process parameters [35]. Additionally, FFF
involves a large number of process parameters that must be carefully controlled to ensure
the proper formation of components. Therefore, it is essential to control the parameters
that have an impact on mechanical performance [36].

This work aims to explore the complex relationship between process parameters and
mechanical performance in FFF through the integration of ANNs. This study employs a
fractional Taguchi design to systematically vary seven key process parameters and generate
a comprehensive dataset for model training. The primary objective is to develop an
accurate ANN model capable of predicting tensile strength in FFF-produced parts. The
gained knowledge should contribute to the optimization and quality assurance of 3D-
printed parts. This investigation is structured as follows: Section 2 discusses the materials,
the benchmarks utilized in the experiments, and the manufacturing method along with
the measuring procedure of the manufactured parts. Section 3 reports the mechanical tests
carried out and the performance metrics for the evaluation of the ANN model. Section 4
shows the validation through additional data points to assess the prognosis. Section 6
concludes by summarizing the findings and discussing prospective future studies on
the issue.

2. Materials and Methods
2.1. Printing Procedure

The FFF printer used for the experimental part is the Ultimaker S3, from Ultimaker
(Utrecht, The Netherlands), equipped with a nozzle diameter of 0.4 mm. It has a building
volume of 230 by 190 by 200 mm3 and a resolution of 6.9 µm in the XY direction and
2.5 µm in the Z direction [37]. The 2.85 mm diameter PLA filament from BASF Ultrafuse
(Heidelberg, Germany) was used for the creation of the components [38].

For the work, a tensile specimen Type IV was designed according to the ASTM-D 638-22
standard [39] to investigate the mechanical performance of PLA parts with a thickness of
3.4 mm. A square and a hole pocket were added, as shown in Figure 1.
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Seven printing parameters were defined to study the effect of varying printing process
parameters on the tensile strength through Taguchi’s parametric design of experiments
(DOE). A fractional Taguchi L16 was adopted where two parameters were assigned three
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levels of control, and the other four parameters had 4 levels of control, as shown in
Table 1 [40]. The sixteen combinations are shown in Table 2. The definitions of the printing
parameter levels, such as print speed, extrusion temperature, and bed temperature, were
set according to the producer material’s datasheet supplied by the printer manufacturer.
Some further parameter values were set according to the literature [11–14]. The remaining
process parameters were left as default for the entire experimental plan, based on their
least influence on the mechanical performance. Knowing that the parts exhibit anisotropic
behavior, the specimens were printed flat on the XY plane, because they have the greatest
strength [41]. Since the portion in contact with the building platform is prone to warping,
especially the wider corner, the brim type of adhesion was used to prevent any parts’
deformation from compromising the mechanical test results. Compared to the raft, which
creates a larger support structure beneath the model, the brim has minimal interference
with the test specimen, ensuring its mechanical properties during tensile testing. For each
combination, 5 specimens were printed, for a total of 80 specimens.

Table 1. Three-dimensional printing parameters and levels from a fractional factorial DOE.

Factor Low Level (0) (1) (2) High Level (3)

A—Type of infill Grid Triangles Cubic Zig Zag
B—Infill in % 20 45 70 100

C—Print speed in mm/s 40 50 60 80
D—Layer in mm 0.1 0.2

E—Fan speed in % 50 65 80 100
F—Bed temperature in ◦C 50 60

G—Extrusion temperature in ◦C 210 220

Table 2. L16 DOE.

Run A B C D E F G

1 0 0 0 0 0 0 0
2 0 1 1 0 1 1 1
3 0 2 2 1 2 0 1
4 0 3 3 1 3 1 0
5 1 0 1 1 0 1 0
6 1 1 0 1 1 0 1
7 1 2 3 0 2 1 1
8 1 3 2 0 3 0 0
9 2 0 2 0 3 1 1

10 2 1 3 0 2 0 0
11 2 2 0 1 1 1 0
12 2 3 1 1 0 0 1
13 3 0 3 1 1 0 1
14 3 1 2 1 0 1 0
15 3 2 1 0 3 0 0
16 3 3 0 0 2 1 1

2.2. Mechanical Test

The tensile tests were performed using a dynamometric MTS Criterion 43 machine
(see Figure 2a). A gap of 70 mm was adopted according to the standard ASTM D638 [39].
The ASTM D883 [42] was consulted to choose the testing speed of 5 mm/min. Five
specimens for each combination were tested. The test continued until the specimen broke.
The rupture occurred within the gauge, as is shown in Figure 2b. The square and circle
pockets created are not the subject of study for this paper, but it should be specified that
they were placed at the clamping points, ensuring integrity throughout the test.
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2.3. Artificial Neural Network Architecture

The Artificial Neural Network model was implemented using MATLAB software
R2022b [43].

The ANN was trained and validated on a comprehensive dataset comprising 16 combi-
nations with five repetitions each. The considered input parameters are outlined in Table 1.
Figure 3 represents the ANN architecture. BR was used as a learning algorithm. Regulariza-
tion is a widely employed technique to prevent models from becoming overly complex and
overfitting the training data. Bayesian regularization, specifically implemented through the
BR algorithm, proves particularly beneficial when dealing with limited or noisy data. BR
allows for the expression of uncertainty in model parameters by incorporating a Bayesian
framework, leading to the development of more robust and generalizable models [44].

In the context of neural networks, Bayesian regularization helps prevent overfitting by
introducing a probabilistic distribution over the weights. This approach is beneficial when
the dataset is small or noisy, as it allows the model to consider multiple possible weight
configurations, thus expressing uncertainty in its predictions. As previously stated by the
literature, it is not sensitive to overtraining and it is considered indifferent to the network’s
architecture [26].

The optimal number of hidden neurons is typically between the size of the input layer
and the size of the output layer. In this study, each layer has 7 hidden neurons. For the
hidden layer, the Tansig activation function was used. It introduces nonlinearity into the
model, which is crucial for capturing complex relationships within the data. Additionally,
their bounded output range between −1 and 1 facilitates normalized outputs, which
are often desirable in neural network models. The Purelin or linear function was used
for the output layer, making it suitable for regression tasks where the goal is to predict
continuous values.

Given the limited data points, the “Leave-One-Out” (LOO) approach, a cross-validation
(CV) technique commonly utilized in machine learning and statistical modeling, was
adopted [45]. In the LOO method, during each iteration of validation, the model is trained
on all repetitions except one, which is reserved for verification. This systematic Leave-One-
Out process provides a robust assessment of the model’s performance and generalization
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ability, which is especially valuable in cases of limited data. It allows for the evaluation
of the network’s stability in predicting combinations of input and estimating the natural
variation within a set of parameters. This process resulted in the creation and training
of 80 neural networks, where 79 combinations were used for the training and 1 for the
stability evaluation. In addition, 3 unseen combinations were finally used for the prediction
test, to acquire the goodness of the model in predicting.
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2.4. Data Preprocessing and Evaluation Metrics

To train the ANN, input and output values were normalized. The purpose was to make
data comparable or to scale them in a way that simplifies analysis or training processes.

Data normalization is the process of organizing data entries to ensure uniformity
across all fields and records, making information easier to find, group, and analyze.
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The data were normalized in the range 0–1 according to the following formula:

xn =
valuen − mini
maxi − mini

(1)

concerning the maximum and minimum value of the i-th column.
The R-squared (R2) metric is used to evaluate the proportion of variance in the de-

pendent variable that can be predicted from independent variables [46]. As an additional
method of evaluation, the mean absolute error (MAE) measures predictive model accu-
racy by calculating the average absolute difference between predicted and actual values.
Similarly, the mean squared error (MSE) provides insight into predictive performance by
measuring the average of squared differences between predicted and actual values.

R2 = 1 − SSres

SStot
(2)

MAE =
∑n

i=1|yi − xi|
n

(3)

MSE =
1
n

n

∑
i=1

(yi − xi)
2 (4)

where SSres is the residual sum of squares, SStot represents the total sum of squares, n is the
number of observations, x is the observed value, and y is the predicted value.

A dedicated step involves assessing the prognosis quality using an independent
coefficient to evaluate the approximation’s quality thoroughly. This value assesses the
agreement between actual test data and the predictions made by the meta-model. The
coefficient of prognosis (COP) is applied for this purpose and offers an advantage over
other error measures. It is worth noting that the COP automatic scale allows for a more
nuanced interpretation of the results [47].

COP =

(
∑n

i=1 (xi − |x|)·(yi − |y|)
σx·σy·(n − 1)

)2

(5)

where x and y are the average values and σx and σy are the standard deviations of
the samples.

3. Preliminary ANN Settings

In the field of neural model optimization, regularization techniques are crucial for
improving performance and preventing overfitting. Regularization adds penalizing terms
to the objective function to control the model’s complexity during training [48,49]. This
approach has several benefits, including reducing variance and improving the model’s
generalization to unseen data. Preliminary tests were conducted to investigate the differ-
ences between using the BR learning algorithm and the unregularized default training
mode. As shown in Figure 4a, the model trained with BR showed greater stability and
less discrepancy between performance with the training data and test data than the model
trained without it, shown in Figure 4b.

The results indicate that the regularized model with the Bayesian approach maintains
low error on both training and test data compared to the unregularized model.
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4. Results

Table 3 shows the average Ultimate Tensile Test (UTSµ) values of the five repetitions,
the maximum and minimum values, and the standard deviation σ for each combination.
The measures exhibit very low variation, with a maximum standard deviation of 1.523.

The R2 for the evaluation was not calculated since it is between two values. How-
ever, since the evaluation has the purpose of establishing the stability of the ANN when
predicting already seen values, with an MAE and MSE of 0.024 and 0.002, it is possible to
confirm the statement that there is a good generalization and prediction of the model (see
Table 4). Furthermore, the reason behind an R2 value of the training that is not exactly 100%
is that the model is trained for each network on four variations of the same combination
and predicts the fifth. The calculation of the COP was only possible for the training data,
and the value of 97.40% demonstrates how the predicted values are close to the actual ones.
The COP on the evaluation was not possible since the prediction is based only on one row.
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Table 3. Experimental data.

Run UTSµ in MPa UTSMAX in MPa UTSMIN in MPa σ

1 45.799 48.587 44.257 1.523
2 41.822 43.289 40.105 1.073
3 52.736 54.380 52.207 0.825
4 53.113 53.783 51.772 0.718
5 50.217 51.360 47.556 1.363
6 52.019 52.539 51.614 0.359
7 48.809 4 9.369 48.463 0.338
8 50.593 51.432 49.815 0.598
9 42.995 43.452 42.543 0.308
10 45.523 46.199 45.182 0.351
11 55.892 56.233 55.400 0.348
12 55.054 55.628 54.446 0.484
13 51.960 52.608 50.868 0.601
14 54.177 54.407 54.058 0.121
15 47.789 48.656 46.767 0.615
16 58.647 58.996 58.465 0.190

Table 4. ANN performance.

Training Evaluation

µ σ µ σ

R2 in % 97.39 0.14 - -
MAE 0.027 0.001 0.024 0.017
MSE 0.002 0.0001 0.002 0.005

COP in % 97.40 0.14 - -

Connection Weights to Quantify Variable Importance

Weights are fundamental parameters in ANNs, determining the effectiveness and
behavior of the network. They represent the importance of connections between neurons
in transmitting and transforming information. These weights determine how input is
combined and weighted through the network’s layers to produce the desired output.
During training, weights are adjusted to minimize errors between the predicted and desired
output, ensuring accurate predictions. The connection between neural networks and their
ability to process complex data enhances their effectiveness and efficiency [44,50,51].

The connection weights approach offers a straightforward evaluation of the inputs’
relative importance in model prediction. It concentrates solely on the neural network’s
node connections’ weights, providing a clear and immediate view of each input’s contri-
bution [51]. It assigns weights to input variables based on their relative importance in
the network’s output. The algorithm decomposes the weights of connections between
input and hidden layers, allowing for a better interpretation of results and understanding
of the relationships between input and output variables. Table 5 presents the weights of
connections between neurons in the input, hidden, and output layers of the model.

Table 6 evaluates the importance of different parameters in a neural network, revealing
that the percentage of infill has the highest percentage contribution, at 20.2%, indicating its
significant impact on the network’s output. On the other hand, the extrusion temperature
has the lowest percentage contribution, at 8.1%, indicating its least impact on the network’s
output [13–16].
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Table 5. Input–hidden–output connection weights.

Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6 Neuron 7

A −0.395 −0.751 −0.341 −0.231 0.362 −0.151 −0.328
B −0.414 −0.332 −0.347 −0.224 −0.330 −0.318 −0.383
C −0.362 −0.166 −0.071 −0.187 −0.117 −0.131 −0.184
D −0.465 −0.310 −0.330 −0.682 −0.524 −0.574 −0.570
E −0.022 −0.036 0.377 0.624 0.279 0.521 0.521
F −0.017 −0.024 −0.025 0.072 −0.379 0.064 −0.305
G −0.014 −0.022 −0.023 0.013 −0.287 −0.016 −0.129

UTS 0.557 0.969 −0.357 −0.185 0.739 −0.108 −0.257

Table 6. Connection weight approach.

Input Relative Importance in % Rank

A 16.9 3
B 20.2 1
C 13.3 4
D 20.1 2
E 11.4 5
F 10.0 6
G 8.1 7

Sum 100.0

5. ANN Validation

Three additional input combinations that differed from the initial DOE but still ad-
hered to the input ranges, presented in Table 7, were generated after completing training
and evaluation. Each combination was printed with five repetitions and subjected to
tensile testing.

Table 7. Additional combination for ANN test.

Combination A B C D E F G

C1 3 0 2 1 0 0 0
C2 3 0 2 1 3 0 0
C3 3 0 2 0 3 0 0

The selection of three additional combinations was motivated by the need to test the
ANN’s ability to generalize to process conditions not yet observed during training. This
approach helps ensure that the model can make accurate predictions over a wide range of
printing scenarios, increasing its practical utility and reliability. The assessment evaluated
the ability of the ANN to predict and generalize scenarios, even when there are minor
differences in printing circumstances. The three considered cases take into account the
values of the layer height and fan speed that are different from those used for the training.
The height of each layer has an impact on both the strength and surface quality of the
printed component. Additionally, the speed of the fan can affect the cooling of the material
during the printing process, which can ultimately impact the mechanical properties of the
material, including its strength and ductility [11,15,16].

Table 8 displays the neural network’s ability to predict new data. The R2 value is
above 70%, indicating good capabilities, considering the limited number of data points
used for the training part of the network.
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Table 8. Test performance.

Test

µ σ

R2 in % 92.48 4.90
MAE 0.070 0.017
MSE 0.006 0.002

COP in % 99.20 2.00

The other performance metrics demonstrate a low prediction error, with an MAE and
MSE of 0.070 and 0006, respectively. The low standard deviation values indicate a low
variability and high repeatability. Finally, the results show that an excellent prognosis quality
can be achieved by using the optimal meta-model, and the estimated prognosis from the COP
of 99.20% indicates that the actual data closely match those of the verification dataset. Thus,
the percentage difference between the data predicted by the ANN and the data obtained
during the experimental campaign was calculated using the following formula:

Variation =
UTSpred − UTSreal

UTSreal
·100% (6)

Table 9 shows that the variations are minimal, ranging from −1.17% to 2.56%, indicat-
ing a low margin of error.

Table 9. Experimental and predicted data from the test. Percentage variation of each predicted output
from the experimental value.

Combination UTS in MPa UTSpred in MPa VariationUTS in %

C1 54.945 54.325 −1.13
C2 52.671 52.054 −1.17
C3 42.554 43.643 2.56

6. Conclusions

In the field of additive manufacturing, FFF stands out as a transformative technology
that enables the layer-by-layer construction of components without the constraints of
traditional manufacturing methods. Its versatility in material usage, particularly with
thermoplastics such as PLA, has attracted attention in the automotive, aerospace, and
medical industries. However, the ever-increasing demand for the improved performance
of 3D-printed components has spurred the integration of advanced techniques, and this
study explores the pivotal role of ML in achieving this goal.

The primary objective of this work was to exploit the capabilities of ANN to predict
the mechanical performance of FFF-manufactured parts. As part of a comprehensive
investigation, experiments were designed using Taguchi’s parametric approach, with seven
key process parameters carefully varied to study their influence on tensile strength. A
fractional Taguchi L16 DOE was implemented, and the manufactured parts were tested to
assess the mechanical performance of each combination.

The ANN showed the ability to predict tensile strength with an R2 greater than 90%. In
addition, the LOO cross-validation approach provided a robust evaluation of the stability
and generalization capabilities of the model with the MSE and MAE of 0.002 and 0.024.

The ANN model, trained and evaluated on the dataset, demonstrated its effectiveness
in predicting unknown values. The low margin of error observed on the subsequent
independent test dataset further underscored the reliability of the developed model.

The neural network with the highest R2 value, equal to approximately 97%, was used
to check the percentage variation between the predicted and actual values. The best model
has been selected according to the score on the training and validation. The variations on
the UTS remain stable within a range of −1.17% to 2.56%.
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In conclusion, this study not only advances our understanding of the intricate dynam-
ics within FFF-manufactured parts but also underscores the transformative potential of ML
in optimizing and predicting mechanical performance. As industries increasingly embrace
additive manufacturing, the insights gained from this work serve as a beacon to guide
the path toward more efficient, reliable, and precisely engineered 3D-printed components.
As demonstrated, the fusion of FFF and ML technologies drives toward a future where
additive manufacturing is at the forefront of innovation and quality assurance.

Future works will include a wider range of combinations and a greater expansion of
input ranges to promote a more comprehensive and complete dataset. In this way, it will
be possible to increase the representativeness of the database.
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