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Abstract: The three-dimensional (3D) reconstruction of Electromagnetic Tomography (EMT) is an
important task for many applications, such as the non-destructive testing of inner defects in rail
systems. Additionally, image reconstruction algorithms utilizing deep learning methods have been
verified to be useful in recent years. Therefore, the interpretability of deep learning is a question
that is relevant to its application in other areas. This paper proposes an innovative rotational
convolution pattern, Conv-P, for convolutional neural network (CNN) image reconstruction in a 3D
EMT system. This pattern is based on the projection relationships inherent in tomographic imaging,
where each convolution is performed on adjacent projections along the excitation rotation direction.
The advantage of this pattern is that it can generate the convolution process by utilizing the 3D
structural information from real sensors. To verify the effectiveness of this convolution pattern, we
constructed a 3D dual-layer 16-coil EMT model and tested its image reconstruction performance.
The results demonstrate that, compared with two common convolution patterns, Conv-P achieves a
4.7% and 4.1% increase in the Image Correlation Coefficient (CC), a 19.8% and 13.1% reduction in the
Relative Image Error (IE), a 0.67% and 1.59% increase in the Peak Signal-to-Noise Ratio (PSNR), and
a 3.24% and 0.74% increase in the Structural Similarity Index Measure (SSIM).

Keywords: electromagnetic tomography; convolutional neural networks; three-dimensional;
image reconstruction

1. Introduction

Electromagnetic tomography (EMT), also called magnetic induction tomography
(MIT), can reconstruct the distribution of conductivity or permeability to indicate an ob-
ject’s distribution by detecting the electrical signal around the boundary of the measurement
area. Therefore, EMT is a non-destructive detection method with the advantages of being
non-contact and non-invasive [1]. Since EMT was proposed, it has been studied in dif-
ferent application fields, including industrial process tomography [2,3], biological tissue
imaging [4], and the non-destructive testing of conductive and magnetic materials.

A standard EMT system includes excitation and measurement coils, signal excita-
tion and measurement circuits, and a computing device, such as a personal computer or
an embedded system, for image reconstruction. Generally, EMT research includes four
directions: the electronic hardware design of the sensor array and signal processing, for-
ward problem calculation, image reconstruction algorithm design, and field application.
In recent decades, significant advancements have been achieved in EMT research across
these domains. Around the year 2000, different EMT imaging systems were built with a
series of explorations, including multiple excitation field designs and signal demodulation
methods [5–7]. Based on these research efforts, more innovative research has made progress
in this field, including faster hardware designs with FPGAs, which significantly increase
the image reconstruction speed. Moreover, there have been some new attempts related to
magnetic sensor design and image reconstruction algorithms [1,8–10]. After 2010, more
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research began to focus on expanding the application fields and enriching their detection
models, such as multi-modality and 3D imaging [11–14].

1.1. Advancements in 3D Electromagnetic Tomography

Traditional 2D EMT systems non-destructively capture two-dimensional gray-scale
images of the measured cross-section. Generally, EMT coils are designed to be installed
around the cross-section being measured, which is convenient for generating an excita-
tion field and measuring the shape and size of the target from the tomographic image.
Nonetheless, traditional 2D systems face two primary challenges:

• It is impossible to obtain a complete 3D description of the whole object. The present
technology is limited to integrating a series of two-dimensional images within the
human mind to approximate a three-dimensional structure. Therefore, there is a
desire to obtain intuitive and accurate three-dimensional images that display the
spatial structure of the object under inspection, providing richer information than
two-dimensional images.

• Although the 2D system can reconstruct two-dimensional gray-scale images, the
detection targets are definitively distributed in three dimensions. Unlike CT, EMT is
a soft field, which means that the image reconstruction process is ill posed. In other
words, the reconstructed two-dimensional sectional distribution is influenced not only
by the object’s actual distribution on that section but also by the coupling effect of the
three-dimensional distribution surrounding the section. In light of this consideration,
studying the three-dimensional distribution of the target is a more straightforward
process than reconstructing two-dimensional images.

In the preliminary phase of research on 3D EMT, explorations were conducted through
both 2.5-dimensional (2.5D) approaches and direct 3D reconstruction. The first approach
is pseudo-three-dimensional, or 2.5D imaging, which involves obtaining a series of 2D
tomographic images at different radial heights based on 2D image reconstruction methods.
Subsequently, the 2D image sequence is processed using contour splicing and Marching
Cubes algorithms for interpolation to reconstruct the 3D image. Direct 3D reconstruction
can generate images during the reconstruction process by measuring the electrical signal
within the same layer and different layers. In contrast to the former, it obviates the need for
intermediary steps, such as two-dimensional tomographic imaging and interpolation, that
introduce errors.

Our previous work has elucidated the advantages of direct 3D image reconstruction
over 2.5D image reconstruction [15]. The EMT sensor has 12 coils, and image reconstruc-
tion was performed using the Tikhonov regularization method, the Projected Landweber
iterative algorithm, and the total variation regularization method. Wei H.Y. proposed a
matrix-free reconstruction method that addresses the problems of large-scale inversion
in magnetic induction tomography [13]. Soleimani introduced a numerical solution for
solving three-dimensional magnetostatic permeability tomography [16]. In light of the
characteristics of metal defects, which are sparse, delicate, and concentrated on the surface,
Wang Qi designed a 3 × 3 matrix-distributed sensor array and proposed a sparse regulariza-
tion method, and they discussed the relationship between the excitation frequency and the
detection depth. Simulation and experimental results demonstrate that the total variation
regularization algorithm can accurately reconstruct the distribution of sample defects [17].
To improve the central area sensitivity (CAS), Martin Klein designed an excitation coil
with spatial undulations, significantly enhancing the CAS by more than 20 dB compared
to a traditional circular coil setup [18]. This enhancement allows the central region of a
voluminous object with low conductivity to be clearly discernible above the noise floor,
a fact that is confirmed by practical measurements. In biomedicine, particularly in the
study of cerebral hemorrhage, three-dimensional imaging has been thoroughly investi-
gated. A 3D head MIT simulation model was constructed based on actual CT data, and
based on this model, factors affecting the MIT signal were evaluated, as well as factors
influencing the safety of MIT devices [19]. Instead of the traditional multi-coil setup, a
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single coil consisting of several concentric circular wire loops was used for excitation and
detection [20]. The feasibility of this method in 3D MIT has also been studied, and it has
made breakthrough progress in differentiating tissues in conductivity distribution images
of the thoracic spinal column.

1.2. Deep Learning Innovations in Electrical Tomography

Since 2017, research on image reconstruction using deep learning has emerged. Deep
learning provides a novel alternative to traditional algorithms that rely on the sensitiv-
ity matrix, such as Linear Back Projection, the Tikhonov regularization method, and the
Landweber iterative algorithm. Also, deep learning is data-driven, which allows for learn-
ing the nonlinear mapping from detection signals to the actual field distribution. It has
demonstrated extremely high accuracy in image reconstruction for specific samples or
details. In our previous work, two optimized deep learning network structures, a stack
sparse autoencoder with a radial basis function network and an optimized fully connected
network, were used to achieve the two-dimensional image reconstruction of EMT in simu-
lations. We designed 30,000 samples, including two types: multiple disconnected small
objects and a single connected large object. Even after adding 7% noise, the image re-
construction results were relatively excellent [21]. The Restricted Boltzmann Machine,
Deep Belief Network, Stacked Autoencoder, and Denoising Autoencoder have all been
utilized for the detection of cerebral hemorrhage. The network’s noise resistance perfor-
mance reached 20 dB [22]. The Restricted Boltzmann Machine has also been applied to
the image reconstruction process of EMT, and experimental results have shown that this
method has high accuracy. A model-based deep learning network named FISTA-Net was
established [23]. After comparing four methods—Laplacian regularization, FISTA-TV, FBP-
ConvNet, and ISTA-Net—FISTA-Net exhibited superior performance and demonstrated
good generalization capabilities under different noise conditions.

Following extensive research on deep learning for 2D image reconstruction, some
progress was made in the study of deep learning for 3D reconstruction. Convolutional
neural networks with a SegNet architecture were utilized for 3D image reconstruction in
Electrical Resistance Tomography [24]. The study specifically addressed the influence of
various factors on 3D image reconstruction, including the size of the dataset in the training
process, data resolution, noise in data feeding, and the characteristics of the training models.
Graph Convolutional Networks were applied to 3D Electrical Capacitance Tomography [25].
A unique design of 1012 electric permittivity phantoms was created, with 1000 phantoms
for training and 12 for testing. The results showed improvements of 35.5% and 3.74%
in the normalized mean square error and Pearson correlation coefficient, respectively.
U2-Net with combined electrodes was used for 3D Electrical Impedance Tomography [26].
Simulations and experiments indicated that U2-Net exhibited better performance than
U-Net. Combined electrodes demonstrated greater robustness than traditional structures
and showed superior performance when the signal-to-noise ratio (SNR) was 20 dB or 30 dB.

1.3. Convolution Patterns in EMT: A Projection-Based Approach

In 1998, Yann LeCun et al. developed LeNet-5, the first successful convolutional
neural network designed for handwritten digit recognition on the MNIST dataset [27]. In
recent years, CNNs have transcended their initial confinement to image processing and
have been extensively applied in various domains, such as natural language processing,
speech recognition, and medical image analysis. Innovative CNN architectures have been
employed in the field of deep learning for Electrical Tomography, in addition to those
mentioned in [24,25]. Tan et al. introduced a CNN-based method for image reconstruction
in Electrical Resistance Tomography, achieving an impressive Image Correlation Coefficient
of 0.95. Moreover, the study enhanced the model’s generalization capability and training
speed by exploring adjustments in network architecture, such as the addition of dropout
layers and moving averages [28]. Zheng et al. constructed a deep convolutional neural
network based on the physical principles of Electrical Capacitance Tomography, which can
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address both the forward and inverse problems. The network comprises two sub-networks:
an encoder consisting of convolutional and pooling layers for estimating capacitance
values and a decoder composed of fully connected layers for reconstructing images of the
dielectric constant distribution [29]. Chen et al. introduced a CNN-based algorithm for the
non-invasive and high-resolution detection of breast tumors through Magnetic Detection
Electrical Impedance Tomography. The results indicated that the relative reconstruction
error with the CNN algorithm could be reduced to 10% compared to the Truncated Singular
Value Decomposition algorithm and the Backpropagation algorithm [30]. Li et al. proposed
a Densely Connected Convolutional Neural Network to improve image reconstruction
in Electrical Resistance Tomography, effectively mitigating the issues of information and
gradient vanishing and significantly enhancing the accuracy and visual quality of the
reconstructed images [31]. Wu et al. improved the convolutional neural network approach
based on the Visual Geometry Group model by incorporating Batch Normalization layers,
ELU activation functions, Global Average Pooling layers, and radial basis function neural
networks to accelerate network convergence and improve reconstruction precision and
robustness [32]. Kłosowski et al. explored the use of Electrical Impedance Tomography in
conjunction with deep learning techniques, specifically convolutional neural networks and
Long Short-Term Memory networks, as well as their hybrid models, for detecting moisture
distribution within building walls [33].

However, there is scant specialized research concerning the convolution methods
applied to the input detection signals, particularly those integrating ET’s unique charac-
teristics. In [28,32], convolution was performed on a 16 × 13 matrix. In [29], convolution
was applied to a flattened 1 × 28 vector. Li et al. conducted detailed research on the
characteristics of voltage data in Electrical Impedance Tomography. They proposed an
image reconstruction method based on one-dimensional convolutional neural networks
(1D-CNNs). The experimental results indicated that this network significantly outperforms
traditional DNNs and 2D-CNNs in terms of image reconstruction quality [34]. The authors
also elucidated the reasons why 1D-CNNs are superior to 2D-CNNs. An excerpt from their
discussion states, ’It is time-consuming for converting 1D samples to 2D. Furthermore, the
structure of the original measurement signal may be destroyed so that incorrect features
may be extracted from 2D signals.’ Building upon this work, we wish to further explore
the physical significance behind the fact that the correlation of signals is destroyed after
converting 1D samples to 2D. To this end, it is necessary to trace back to the origins and
fundamental concepts of the two technologies, CNN and tomography.

In 1959, experiments conducted by Hubel and Wiesel on the visual cortices of cats
revealed that specific cortical neurons were susceptible to edges or stripes of specific orien-
tations, laying the biological foundation for the subsequent development of convolutional
neural networks [35]. Inspired by the cognitive processes of animal vision, the CNN elimi-
nates the one-to-one connections between specific pixels, adopting a convolutional kernel
to implement a weight-sharing mechanism. This change uses the high correlation between
adjacent pixels in images, reducing the number of network parameters while preserving
the characteristics of pixel connectivity. For the convolution of EMT detection signals,
it is necessary to examine the characteristics of EMT in order to select the appropriate
convolution method for them.

In 1917, the Radon transform laid the theoretical foundation for tomographic imag-
ing [36]. Tomographic imaging is a technique that reconstructs internal structures by
collecting projection data that pass through an object from different angles. The concept
of projection is significant in the tomographic imaging process. Physically, it refers to the
measure of changes in the detected signal values due to the presence of the object when an
excitation signal passes through the object in a particular direction (linear or nonlinear).
Each projection contains information as seen from a specific angle but is insufficient to
reconstruct the structure of the object being measured independently. These projection data
are collected and used to reconstruct the internal image of the object through mathematical
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algorithms. The core of tomographic imaging lies in integrating these projection data from
different angles to reconstruct a complete internal structure.

Figure 1 describes the sensitivity regions of projection p1−3, projection p1−4, and
projection p5−7 in an eight-coil EMT system. Taking projection p1−3 as an example, the
notation refers to the configuration where coil 1 serves as the excitation source and coil 3
serves as the detector. From Figure 1, it can be seen that projection p1−3 has an overlapping
sensitivity region with projection p1−4. However, projections p1−3 and p5−7 hardly have
overlapping sensitivity regions.

Figure 1. Three projections: p1−3, p1−4, and p5−7.

From this, we can infer that it may be inappropriate to convolve projection p1−3 with
projection p5−7 together, as they are not adjacent in physical space, so such an approach
would fail to provide commonalities and be prone to extracting erroneous features. Thus,
the 1D-CNNs and 2D-CNNs in [34] were reanalyzed. Because the input signals of 1D-
CNNs and 2D-CNNs are distributed through signal acquisition, there is no second design.
Between the two, 1D-CNNs use more adjacent projections to participate in convolution
than 2D-CNNs (the use of projection by 2D-CNNs is also chaotic), which is consistent with
the better image reconstruction effect of 1D-CNNs compared to that of 2D-CNNs. However,
careful observation shows that 1D-CNNs do not make good use of all adjacent projections
to participate in convolution, and non-adjacent projections participate in convolution. This
may be the physical interpretation of the process.

In summary, there is limited research on deep learning for 3D ET, especially EMT.
Compared to the classic 2D image reconstruction algorithms for 3D image reconstruction,
deep learning offers an end-to-end approach, a more direct method for 3D image recon-
struction. Convolutional neural networks extract standard features by exploiting the spatial
correlations of adjacent elements. If this process could be integrated with the intrinsic
relationships between the projections of EMT itself, it would likely result in a convolution
pattern that is more suitable for EMT applications. However, research on this topic is scarce,
and it merits further investigation. For this reason, this paper proposes a rotational convo-
lution pattern, ’Conv-P’, which utilizes adjacent projections for convolution, applicable to
3D EMT.

2. Theory and Model

This section mainly introduces the fundamental theories of EMT, as well as the EMT
model and convolutional neural networks used in this paper.

2.1. EMT Theory

In EMT, the displacement current can be ignored when the excitation frequency is low
(ω < 107). Inserting B = ∇× A into Maxwell’s equations results in

∇×
[

1
µ(x, y, z)

∇× A
]
= σ(x, y, z)E (1)

Considering electromagnetic induction, ignoring the electric field component caused
by a potential change ∇ϕ , it can be considered that
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E = −jωA (2)

Putting Equation (2) into Equation (1) leads to

∇×
(

1
µ(x, y, z)

∇× A
)
+ jωσ(x, y, z)A = 0 (3)

Equation (3) describes how the vector magnetic potential A changes in EMT under a
given conductivity and permeability distribution.

If the permeability does not depend on the internal change, we consider µ(x, y, z) to
be a constant µ. According to the vector identity ∇× (∇× A) = ∇(∇ · A)−∇2A, in the
case of Coulomb gauge ∇ · A = 0, the above formula can be written as

∇2A = jωµσ(x, y, z)A (4)

This simplified Equation (4) describes how the vector magnetic potential A changes in
EMT under a given conductivity distribution σ(x, y, z) in EMT.

2.2. The 16-Coil 3D EMT Model

Because multi-layer sensors can provide more projections between different layers,
such sensors are more suitable for 3D imaging. Taking scalability into account, we refer-
enced the classic 8-coil EMT model and constructed a dual-layer, 16-coil model with 8 coils
per layer, as illustrated in Figure 2. In Figure 2, the green parts represent the coils, while
the gray sections indicate the tube.

Figure 2. Dual-layer 16-coil configuration for 3D Electromagnetic Tomography System.

By sequentially exciting and detecting through 16 coils, a two-dimensional matrix
D16×16 can be created with 256 projections. Suppose considerations for the removal of
information redundancy are taken into account. In that case, the Reciprocity Theorem
stipulates that the outcome of coil i acting as the exciter and coil j as the detector is equivalent
to that when coil j is the exciter and coil i is the detector.

dpi−j = dpj−i (5)

Upon excluding all self-induction signals dpi−i(i=1:16), a total of n×(n−1)
2 = 120 inde-

pendent detection signals are obtained.

2.3. Convolutional Neural Networks

With the advancement of deep learning, the needs of traditional industrial and biomed-
ical applications have expanded into a broader algorithmic realm. This article’s CNN net-
work architecture is shown in Figure 3. It has been demonstrated that a single convolutional
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layer can achieve satisfactory image reconstruction results, thereby negating the necessity
for additional convolutional layers.

Convolution 

operation

(n-1)×(n-1)×5 (n-1)×(n-1)×5 ((n-1)×(n-1)×5,1) 3240×1 3240×1

Convolutional kernel

2×2×5

length × width × channels

n×n×1

1×(m-1)×5 1×(m-1)×5 ((m-1)×5,1) 3240×1 3240×1

Convolutional kernel

1×2×5

length × width × channels

1×m×1

Convolution 

operation

Step size 

is 1

Relu

activate

Flatten FC softmax

Step size 

is 1

Relu

activate

Flatten FC softmax... ......

...

......

Two-dimensional convolution

One-dimensional convolution

...

Figure 3. Traditional CNN structures of one-dimensional and two-dimensional convolutions.

Both one-dimensional and two-dimensional convolutions are utilized for the image re-
construction process. The input for the one-dimensional convolution is a 1× m input vector
processed through a convolutional kernel of size 1 × 2 × 5 (length × width × number of
channels). The input for the two-dimensional convolution is an n × n × 1 matrix processed
through a convolutional kernel of size 2 × 2 × 5 (length × width × number of channels).
Subsequently, a convolution operation with a stride of 1 is performed, followed by activa-
tion through the ReLU activation function. Given the low dimensionality of the input, no
down-sampling is performed. The data are then passed through a fully connected network,
and the output is a 3240-dimensional distribution of 3D space after a softmax function:

So f tmax(x) =
exi

∑i exi
(6)

In this study, the loss function employed is the cross-entropy loss function. Through
the utilization of softmax mapping, it establishes associative relationships between various
outputs while concurrently expanding the distance between them. This approach aims to
maximize the probability values of outputs that contain the object, thereby facilitating the
imaging operation. H(g, ĝ) denotes the cross-entropy, which is expressed as follows:

H(g, ĝ) = −
n

∑
i=1

gi · log(ĝi) (7)

Here, gi denotes the actual distribution within the ith element, while ĝi represents the
predicted distribution for the same element. n signifies the total number of elements, which
amounts to 3240 in this study.

3. The Design of the New Rotational Convolution Pattern

As analyzed previously, the design of convolution patterns is crucial for CNN applica-
tions. In this part, we compare three convolution patterns and study their impacts on the
quality of image reconstruction. Regarding samples, three different sizes of solid spheres
with radii of 6 mm, 7.5 mm, and 15 mm are selected as imaging objects. The samples
can contain one sphere or two spheres. A total of 31,476 samples were generated and
distributed in a ratio of Training set/Validation set/Test set = 8 : 1 : 1. The data in each
set are non-repetitive. The data in the validation set are only used to adjust the network’s
hyper-parameters during training and do not participate in testing. The data of the test set
will only be used in the final testing phase.
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3.1. Comparison of Convolution Patterns

When applying a CNN to EMT, the targets of convolution are the detection signals
collected by the sensors, namely, the different projections. These signals are arranged
according to the order of acquisition, without a special secondary design for convolution.
For clarity, we chose to set the total number of coils to 5 in Figures 4–6, aiming to make
the convolution pattern descriptions more intuitive. Nonetheless, the entire process is
consistent with the 16-coil EMT model in this article.

1-1 1-2 1-3 1-4

3-1 3-2 3-3 3-4

4-1 4-2 4-3 4-4

5-1 5-2 5-3 5-4

1-5

3-5

4-5

5-5

2-1 2-2 2-3 2-4 2-5

1
st
 conv

End conv

Figure 4. Convolution pattern: Conv-A.

1-41-2 1-3 1-5 2-3 2-4 2-5 3-4 3-5 4-5

movement1
st
 conv End  conv

Figure 5. Convolution pattern: Conv-B.
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Step 1 Step 2

2

43

1

5
                 P2-5

5

1

43

2

5

3

2

1

4

Step 3

4

2

1

5

3

Step 4

2

3

1

5

4

Step 5

1
st
 conv

3
rd

 conv

movement

P4-3

4
th

 conv

7
th

 conv

8
th

 conv
10

th
 conv

11
th

 conv

13
th

 conv

End conv

14
st
 conv

Figure 6. Rotational convolution pattern: Conv-P.

Typically, the process involves two conventional patterns: a two-dimensional con-
volution pattern and a one-dimensional convolution pattern. Figure 4 illustrates the
conventional two-dimensional convolution pattern termed ‘Conv-A’, which involves se-
quential convolution over a 2× 2 matrix region, moving from left to right and top to bottom,
executing a total of (n − 1)2 convolution operations, where n represents the number of coils.

Figure 5 shows the normal one-dimensional convolution pattern, termed ‘Conv-B’ in
this paper, which consists of executing convolution sequentially over a 1 × 2 region of a
vector. In practice, the normal one-dimensional convolution operation is performed on a
one-dimensional vector, with a total of n×(n−1)

2 − 1 convolution operations conducted.
It is observed that part of the convolution process in Conv-A and Conv-B is chaotic.

In Conv-A, many adjacent projection combinations do not participate in convolution. In
Conv-B, after the convolution of p1−4 and p1−5 is completed, p1−5 must be followed by
p2−3, and the two projections p1−5 and p2−3 are not adjacent. Therefore, we refer to the
development of CNN, how it works in image recognition, and the reconstruction mode of
tomography (this part has been described in Section 1.3). Building on these insights, we
introduce a rotational convolution pattern with projection design termed ‘Conv-P’.

In Figure 6, the convolution process, according to the logical working principle of
EMT, is depicted in five steps. Starting with Step 1, convolution begins with the projection
from p1−2 to p1−5, using coil 1 for excitation. Since the previous step concluded with the
projection direction p1−5, Step 2 begins at this point, ensuring continuity by concatenating
the convolution related to coil 1 with that of coil 5. Consequently, the excitation shifts
from coil 1 to coil 5. The convolution proceeds from p1−5 to p4−5 and concludes at p4−5,
indicating that the sequential convolution involving coil 5 is completed. This process
is repeated through three additional steps, with each convolution movement between
steps being rotational in the spatial projection. Notably, in Step 5, the final projection
is p2−1, which coincides with the initial projection from Step 1, thus creating a closed
loop. Therefore, from Step 1 to Step 5, a total of n × (n − 2) + 1 convolution operations
are executed.

3.2. Reconstructed Images

The simulation environment is the multiphysics software from COMSOL 5.4. The net-
work is constructed and implemented in PyCharm based on the TensorFlow environment.
Upon establishing the network, we implement the image reconstruction process in two
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steps. First, we train the network with a pre-determined training set and then use the test
set to test the results on the trained network.

The evaluation parameters for reconstructed images are the Image Correlation Coeffi-
cient (CC), the Relative Image Error (IE), the Peak Signal-to-Noise Ratio (PSNR), and the
Structural Similarity Index Measure (SSIM).

CC =
∑N

i=1(ĝi − ¯̂g)(gi − ḡ)√
∑N

i=1(ĝi − ¯̂g)2 ∑N
i=1(gi − ḡ)2

(8)

IE =
∥ĝ − g∥
∥g∥ (9)

MSE =
1
N

N

∑
i=1

[gi − ĝi]
2 (10)

PSNR = 10 · log10

(
MAX2

g

MSE

)
(11)

SSIM =
(2µgµĝ + c1)(2σgĝ + c2)

(µ2
g + µ2

ĝ + c1)(σ2
g + σ2

ĝ + c2)
(12)

Here, g denotes the vector of the actual distribution (the ground truth), while ĝ represents
the vector of the predicted distribution (reconstructed image). Both g and ĝ have dimen-
sions of 1 × 3240. MAXg is the maximum possible pixel value of the image (in this paper, it
is 1). µg is the average value of the actual distribution. µĝ is the average value of the
predicted distribution. σ2

g is the variance of the actual distribution. σ2
ĝ is the variance of

the predicted distribution. σgĝ is the covariance between the actual distribution and the
predicted distribution. c1, c2 are small constants added to avoid division by zero.

Reconstructed images with higher imaging quality generally tend to have higher CCs,
lower IEs, higher PSNRs, and higher SSIMs. Table 1 presents the average values of the CC,
IE, PSNR, and SSIM across all training and testing sets.

Table 1. The evaluation parameters of reconstructed images.

Train Set CC IE PSNR (dB) SSIM

Conv-A 0.7840 0.7685 18.0234 0.8397
Conv-B 0.8006 0.6927 18.4263 0.8624
Conv-P 0.8438 0.5721 18.7501 0.8702

Test Set CC IE PSNR (dB) SSIM

Conv-A 0.7689 0.7974 18.0841 0.8422
Conv-B 0.7735 0.7363 18.2479 0.8631
Conv-P 0.8052 0.6398 18.3705 0.8695

In terms of imaging quality metrics, the efficacy of the convolution patterns is ranked
as follows: Conv-P > Conv-B > Conv-A. The superiority of Conv-P over Conv-B suggests
that the rotational convolution pattern with projection design is more adept at utilizing the
spatial projection information inherent in the EMT sensing modality. This approach can
provide the CNN with more spatial structural information from the sensors.

The fact that Conv-B outperforms Conv-A indicates that the current one-dimensional
convolution pattern is more effective in imaging than the two-dimensional approach,
possibly because the latter does not adequately exploit the spatial projection information of
EMT. In Conv-A, signals with low correlations may be convoluted together, contributing to
effective feature extraction.

However, it is noteworthy that the differences among Conv-P, Conv-B, and Conv-A
are not substantial. If a 3D industrial application requires faster computing speed, and if
Conv-B’s imaging accuracy meets on-site demands, then Conv-B could also be a viable
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option. This is especially relevant considering that Conv-P has nearly twice the number of
parameters compared to Conv-B. Additionally, within this sample set, it can be observed
that the training set achieves slightly higher quality compared to the test set. The slight
difference hints at the model’s ability to adeptly learn the distribution mapping from sensor
signals to sample representations.

For a statistical analysis of the process, we employed the Mann–Whitney U test. Given
the large sample size (3147 samples in the test set), the normal approximation was used
for p-value computation. The mean (µU) and standard deviation (σU) of the U distribution
were calculated using the following equations:

µU =
n1 × n2

2
(13)

σU =

√
n1 × n2 × (n1 + n2 + 1)

12
(14)

Here, n1 and n2 represent the sizes of the two comparative sample groups. The Z-score
was determined by taking the observed U value, subtracting µU , and then dividing by σU :

Z =
U − µU

σU
(15)

This Z-score was subsequently utilized to ascertain the corresponding p-value from
the standard normal distribution. A p-value less than 0.05 indicates a statistically significant
difference between the two sample groups. The obtained p-values are shown in Table 2
after the calculations.

Table 2. The p-values between Conv-A, Conv-B, and Conv-P.

p (Conv-A, Conv-B) p (Conv-A, Conv-P) p (Conv-B, Conv-P)

2.34 × 10−28 3.31 × 10−73 4.88 × 10−13

These results indicate statistically significant differences among Conv-A, Conv-B, and
Conv-P. The exceedingly small p-values strongly affirm the presence of distinct statistical
disparities between Conv-A, Conv-B, and Conv-P.

The specific reconstructed images are presented in Figure 7. It can be seen that the CNN
for three-dimensional image reconstruction in EMT is feasible. The detection signals from
the 16 coils in three dimensions indeed contain information about the three-dimensional
distribution of the objects. The CNN network in this paper could learn this relationship
and reconstruct images of reasonable quality. As observed in Figure 7, the objects in the
reconstructed images are generally clustered rather than dispersed, indicating good perfor-
mance. This outcome is also related to the choice of loss function employed. Moreover, it
can reconstruct positional, size, and shape information for various object configurations,
including a single small sphere, a single large sphere, and a combination thereof.

The reconstructed images also demonstrate that, compared to the Conv-A and Conv-B
patterns, the Conv-P pattern performs better-quality image reconstruction. For instance, in
the reconstructed image of the second sample, the completion and filling in of the volume
of two large spheres can be observed as the process progresses from Conv-A to Conv-B and
then to Conv-P. In the fifth sample, there are also some peripheral artifacts in Conv-A. The
reconstructed images of Conv-B and Conv-P are almost consistent with the ground truth. In
the reconstructed images of the fourth and seventh samples, the two objects that are nearby
appear to be fused in the Conv-A and Conv-B patterns. In contrast, the distinction between
the two objects is noticeably more apparent in the Conv-P reconstruction. Therefore, the
image quality of the Conv-P reconstruction has improved compared to that of the Conv-A
and Conv-B patterns. This suggests that the rotational convolution pattern with projection
design positively enhances the image reconstruction quality.
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Figure 7. Three-dimensional reconstructed images.
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4. Conclusions

This paper introduces an innovative convolution pattern design tailored for 3D EMT
image reconstruction using a CNN. This convolution pattern, Conv-P, constructs a convolu-
tional route using the real sensor 3D structure information and the logical EMT rotational
projection sequence. A dual-layer, 16-coil 3D EMT model was built to test the proposed
rotational convolution. Compared with the 2D EMT model, the dual-layer 3D model has
a more significant sensor spatial structure. Simulated reconstructions of the distributions
with different object configurations were performed with Conv-P. The results show that
Conv-P on this testing model can increase the quality of image reconstruction with evalua-
tion indicators. This result demonstrates that designing a convolution pattern according to
a real system’s structure and logical working principle is a reasonable method.
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