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Abstract: In response to the challenge of handling large-scale 3D point cloud data, downsampling
is a common approach, yet it often leads to the problem of feature loss. We present a dynamic
downsampling algorithm for 3D point cloud maps based on an improved voxel filtering approach.
The algorithm consists of two modules, namely, dynamic downsampling and point cloud edge
extraction. The former adapts voxel downsampling according to the features of the point cloud, while
the latter preserves edge information within the 3D point cloud map. Comparative experiments with
voxel downsampling, grid downsampling, clustering-based downsampling, random downsampling,
uniform downsampling, and farthest-point downsampling were conducted. The proposed algorithm
exhibited favorable downsampling simplification results, with a processing time of 0.01289 s and
a simplification rate of 91.89%. Additionally, it demonstrated faster downsampling speed and
showcased improved overall performance. This enhancement not only benefits productivity but also
highlights the system’s efficiency and effectiveness.

Keywords: voxel filtering; 3D point cloud downsampling; dynamic downsampling; improved voxel
filtering

1. Introduction

With the rapid development of hardware devices for acquiring 3D point cloud data,
such as lidar [1] and depth cameras [2], the number of 3D point cloud data that can be
acquired is getting larger and larger. Three-dimensional point cloud data are widely used
in autonomous driving [3–5], robots [6], augmented virtual reality [7], and smart cities [8,9].
More and more attention is being paid to research on 3D point cloud technology. In the
field of smart home, equipment such as sweeping robots [10] and robot housekeepers [11]
need to construct 3D point cloud maps of indoor scenes. However, a 3D point cloud map
in an indoor environment alone has hundreds of millions of points. Processing such a huge
point cloud map, therefore, requires a lot of computing resources. The downsampling of
3D point cloud data plays a key role in subsequent operations, such as segmentation [12],
classification [13], and target recognition of 3D point cloud maps [14–17].

Point cloud downsampling methods can be categorized into deep learning-based [18–20],
grid-based [21,22], clustering-based [23], and voxel-based downsampling methods [24].
Although, in recent years, researchers have made significant progress in point cloud
downsampling, the challenges of detail loss and parameter tuning remain unresolved.

To address these issues in 3D point cloud downsampling, we investigate the down-
sampling algorithms for 3D point clouds and propose a dynamic downsampling algorithm
for 3D point cloud maps based on voxel filtering. This algorithm aims to retain the edge
information of point clouds. We introduce two modules: the dynamic downsampling
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module and the point cloud edge extraction module. The former dynamically segments
3D point cloud maps to perform adaptive voxel downsampling, while the latter preserves
the edge information in 3D point cloud maps. We conduct comparative experiments with
other downsampling algorithms, demonstrating the superior simplification effect of our
proposed downsampling method.

The structure of the paper is organized as follows: In Section 2, we provide an overview
of the background and significance of downsampling 3D point clouds. Section 3 introduces
the principle of voxel downsampling and highlights the challenges associated with voxel
downsampling. Section 4 presents the dynamic downsampling algorithm for 3D point
cloud maps based on voxel filtering. In Section 5, we conduct comparative experiments
between our downsampling algorithm and other existing methods, demonstrating the
superior simplification effect of our approach. Finally, Section 7 summarizes the innovative
aspects and contribution of this research paper and identifies its limitation.

2. Related Work

Point cloud downsampling is a crucial step in point cloud processing, as it effectively
reduces the size of point cloud data, decreases computational load, and accelerates sub-
sequent operations. Point cloud downsampling methods can be categorized into deep
learning-based, grid-based, clustering-based, and voxel-based downsampling.

2.1. Deep Learning-Based Downsampling

The application of downsampling methods based on deep learning in point cloud
processing is relatively scarce. Many combine deep learning technology with traditional
machine learning methods. Yu [18] proposed SIEV-Net, using a height information sup-
plementary module to minimize the height information loss during the aggregation of
point features in the voxel network. He [19] proposed a sparse voxel map attention net-
work, SVGA-Net, using a voxel map module and a sparse-to-density regression module to
achieve comparable 3D detection tasks from original lidar data with a good simplification
rate. Que [20] proposed VoxelContext-Net for static and dynamic point cloud compres-
sion. Nguyen [25] proposed a learning-based static point cloud geometric downsampling
method that exploited a deep convolutional neural network with a mask to learn the
probability distribution of voxels. Qin [26] applied deep learning methods to point cloud
downsampling and proposed a Gaussian model voxel network—GVnet. It introduces a
lightweight convolutional neural network to learn point cloud representation and semantic
information while using part of the point cloud information to improve the efficiency and
accuracy of point cloud sampling. FoldingNet, proposed by Yangyan Li [27], is a point
cloud downsampling method based on autoencoders. Gezawa [28] used a laser point cloud
downsampling method based on deep convolutional autoencoders to build a sampling
module based on a combined hybrid model. Point cloud and voxel data are used to de-
termine the relationship between each pair of point voxels. In this model, each voxel is
embedded using the magnitude view, which is the Euclidean distance between the view
and the center of the object, as well as the angle between each pair of views.

2.2. Grid-Based Downsampling

Grid-based downsampling methods [21,22] are another class of commonly used down-
sampling methods, first proposed by Garland and Heckbert [29]. The principle is to grid the
point cloud space and then use the average or weight of the points in each grid to replace
all the points in the original grid, thus reducing the number of points. Yuan [30] proposed a
point cloud simplification algorithm based on voxelized grid downsampling. This method
divides the point cloud space into different subspaces, then samples in each subspace,
and finally combines them into a complete sampled point cloud. This method is efficient
and scalable, with the capability to cope with large-scale point cloud sampling problems.
In experiments, this method showed better sampling effects and faster calculation speed
than other point cloud sampling methods. Zhang [31] proposed an adaptive triangular
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mesh model redistribution algorithm that could preserve the details and overall shape of
the point cloud at the same time. Grid subsampling fits the point cloud plane, but it is easy
to blur and stretch the shape of the original 3D point cloud image. The comparison before
and after grid subsampling is shown in Figure 1.

(a) (b)
Figure 1. Comparison of 3D point clouds before and after grid downsampling. (a) Original point
cloud image. (b) Grid downsampling.

2.3. Clustering-Based Downsampling

Clustering downsampling was not a main research direction in the early days but a
technique applied to specific problems. With the popularization and application of point
cloud data, clustering downsampling has become one of the common technologies in the
field of point cloud processing and has also been more researched and discussed. The
principle is to divide the point cloud into several clusters with a clustering algorithm and
then sample those clusters. Chao [23] proposed a clustering method based on K-means.
This method clusters the original majority class samples into the same number of clusters
as the minority class samples through K-means clustering, then finds the sample center for
each cluster, and uses the sample center as the new majority class sample. The algorithm
can handle irregular sampling points and is robust against changes in sampling point
density. Clustering downsampling has a poor sampling effect on high-density point clouds.
It is easy to lose the feature points of the point cloud image and blur the edge information.
A comparison of clouds before and after clustering downsampling is shown in Figure 2.

(a) (b)
Figure 2. Comparison of 3D point clouds before and after cluster downsampling. (a) Original point
cloud image. (b) Point cloud image after cluster downsampling.
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2.4. Voxel-Based Downsampling

Voxel-based downsampling is a commonly used downsampling method first proposed
by Rusinkiewicz and Levoy [32] in 2001. The principle of voxel downsampling is to
downsample the original point cloud by putting the 3D point cloud data into a 3D voxel
grid, calculating the center of gravity within each voxel, and then using the center of gravity
as the new sampling point. The advantage of voxel downsampling is the ability to convert
original point cloud data into regular grid data, so that point cloud data can be processed
and analyzed more conveniently [33]. At the same time, voxel downsampling can also
adjust the accuracy and density of downsampling by changing parameters such as the voxel
size and step size. This method is able to handle point cloud data sizes larger by orders of
magnitude. Domestic and foreign researchers have also proposed many research methods
based on voxel downsampling. Xiao [24] proposed a point cloud downsampling method
based on hierarchical voxel segmentation, which balances point cloud downsampling by
increasing the number of segmentation layers. A comparison of 3D point clouds before
and after voxel downsampling is shown in Figure 3.

(a) (b)
Figure 3. Comparison of 3D point clouds before and after voxel downsampling. (a) Original point
cloud image. (b) Voxel downsampling.

In summary, while each of these downsampling methods has unique advantages,
as shown in Table 1, they also present significant limitations, especially when dealing
with the complexities of 3D point cloud data. Traditional methods like grid and cluster
downsampling excel in noise reduction and feature preservation but often struggle with
dense or irregularly distributed datasets, leading to potential loss of critical details. On the
other hand, voxel-based downsampling provides a straightforward approach to regulate
sampling density and maintain the overall shape and structure of point clouds. However,
it tends to overlook fine local details and may introduce noise, underscoring the necessity
for a more dynamic and adaptable solution.

Table 1. Advantages and disadvantages of various downsampling methods.

Methods Advantages Disadvantages

Deep learning-based
downsampling

It can handle large-scale point
cloud data efficiently and has fast

processing speed.

It requires a significant number of
training data and abundant

computational resources. In cases
of imbalanced training samples, it

may lead to overfitting.

Grid downsampling

(1) It can effectively remove noise
and redundant information,
yielding consistent sampling

results.
(2) Compared with voxel

downsampling, it is better at
preserving the local features of

point clouds.

It is not effective for dense and
unevenly distributed point

clouds.
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Table 1. Cont.

Methods Advantages Disadvantages

Cluster downsampling

(1) It can effectively eliminate
noise and redundant information

while preserving local details.
(2) It performs better on point

clouds with non-uniform
distributions.

It performs poorly in processing
high-density point clouds and is

prone to creating voids.

Voxel downsampling

(1) Simple and easy to implement,
its sampling density can be

controlled by adjusting the voxel
size.

(2) It can preserve the overall
shape and structural

characteristics of the original
point cloud.

It cannot handle local detail
information and may introduce

noisy points.

Given these considerations, our proposed dynamic downsampling algorithm based on
voxel filtering emerges as a powerful alternative. It is specifically designed to address the
limitations of existing methods by efficiently processing high-density, large indoor scenes
and preserving both the edge features and local detail information of 3D point cloud maps.
This approach not only enhances the downsampling performance but also significantly
reduces the need for manual parameter tuning, setting a new benchmark for the field.

3. Preliminaries

Voxel downsampling is a method for reducing the density of point clouds while
preserving their structural information. In voxel downsampling, pi denotes the ith point
in a point cloud of n points, with coordinates (xi, yi, zi). The process divides the cloud
into cubic voxels of edge length l, assigning each point to a voxel with center coordinates
(xc, yc, zc). The floor function, ⌊·⌋, ensures that points are accurately grouped by rounding
down their coordinates to the nearest voxel center, facilitating efficient downsampling while
retaining essential spatial information. It involves dividing the point cloud into equally
sized cubic voxel blocks with a side length of l. Overall, the process includes three steps:

1. Divide the point cloud into cubic voxel blocks with a side length of l, allowing for the
calculation of the center coordinates of each voxel block, denoted by (xc, yc, zc), as
follows:

xc = l ·
⌊ xi

l

⌋
+

l
2

yc = l ·
⌊yi

l

⌋
+

l
2

zc = l ·
⌊ zi

l

⌋
+

l
2

(1)

2. For each voxel block, select a representative point based on a chosen strategy, such as
the point closest to the center or the one closest to the plane.

3. Combine all the selected representative points to create a new point cloud, which
represents the downsampled result.

The process of voxel downsampling is illustrated in Figure 4. By adjusting the side
length (l) of the voxel blocks, we can control the density of the downsampled point cloud. A
smaller l value retains more representative points and results in higher point cloud density,
while a larger l value retains fewer representative points and leads to lower point cloud
density. Therefore, in practical applications, the appropriate l value should be selected
based on particular requirements.

Classical voxel filtering is a commonly used point cloud denoising method and is
based on the idea of segmenting the point cloud into regular voxel grids and averaging the



Appl. Sci. 2024, 14, 3160 6 of 16

points within each voxel. While this method effectively reduces point cloud noise, it has
the following limitations:

• Loss of point cloud map information:Voxel filtering essentially involves the sampling
and downsampling of point clouds. However, due to retaining only a single average
value within each grid cell, it suffers from information loss. In applications where
precise reconstruction and analysis of point cloud data are required, this information
loss can lead to significant errors.

• Point cloud map blurring: Voxel filtering applies averaging operations to the points
within each grid cell, potentially blurring fine details on the surfaces of objects in the
point cloud map. This may pose issues in applications that require the preservation of
detailed surface information.

• Inability to dynamically set downsampling ratios: Traditional point cloud down-
sampling methods, including classical voxel filtering, as well as other methods,
such as grid-based downsampling, random downsampling, uniform downsampling,
and clustering-based downsampling, cannot dynamically adjust downsampling ratios
for point cloud maps with varying point counts and densities. Manual parameter
tuning is required to set different downsampling factors for different point cloud
maps, increasing human effort and parameter tuning time.

Figure 4. Voxel downsampling process schematic.

4. Methods

In response to the issues of information loss and blurring in classic voxel filtering
for point cloud maps, we present an improved dynamic downsampling algorithm for 3D
point cloud maps based on voxel filtering. The proposed method aims to dynamically
segment 3D point cloud maps, preserving both edge information and crucial feature details.
Moreover, this method adaptively segments voxels into various sizes, depending on the
local density variations within the point cloud data, thereby reducing the need for manual
intervention and parameter tuning.

The dynamic voxel-based 3D point cloud map downsampling algorithm consists of
two modules: dynamic downsamplingand point cloud edge extraction. In the former,
downsampling operations are tailored based on the density of points within each voxel
block of the point cloud map. Specifically, if a unit voxel block has a higher density, it is
subdivided into smaller voxel blocks, whereas if a unit voxel block has a lower density,
it is subdivided into larger voxel blocks. This adaptive approach allows for different
downsampling operations on various voxel blocks, addressing the drawback of classic
voxel filtering, which rather tends to blur object characteristics by uniformly processing
each voxel block. The point cloud edge extraction module determines whether points
within the cloud represent an object’s edge by analyzing the angle feature values of their
normal vectors. Points identified as object edges are preserved and then merged with the
downsampled point cloud, resulting in the final, combined point cloud map.
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The flowchart of the dynamic voxel-based 3D point cloud map downsampling algo-
rithm improved by voxel filtering is illustrated in Figure 5. Accordingly, the implementation
steps of the improved algorithm are described below.

Figure 5. Flowchart of 3D point cloud map dynamic downsampling algorithm based on voxel filtering.

1. Input point cloud data: We begin with the input of 3D point cloud data.
2. Calculation of the maximum voxel block: The maximum values along the x-, y-,

and z-axes of the point cloud data, denoted by Xmax, Ymax, and Zmax, respectively, are
determined. Additionally, the minimum values (Xmin, Ymin, and Zmin) along these
axes are also computed [34]. The edge length of the largest voxel block is determined
by (2).

lx = Xmax − Xmin

ly = Ymax − Ymin

lz = Zmax − Zmin

(2)

Thus, the largest voxel block is obtained, as shown in Figure 6.
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Figure 6. Maximum voxel block.

3. Voxel block division: The largest voxel block is divided into unit voxel blocks, with a
designed edge length of L [35]. The division in three directions is described in (3).

M =

⌊
lx

cell

⌋
N =

⌊
ly

cell

⌋
L =

⌊
lz

cell

⌋ (3)

The summation of unit voxel blocks is illustrated in Figure 7.

Figure 7. Subdivision of the Largest Voxel into Unit Voxels.

4. We count the number of points in each voxel block to obtain the point count collection
for voxel blocks, denoted by NUM = (n1, n2, n3, . . . , nSUM).

5. Subdivision of voxel blocks: By mapping (min(NUM), max(NUM)) to
( 3

4 Π, Π
)
, we

project the count of points within each unit voxel to the range of
( 3

4 Π, Π
)
. This

calculation involves subdividing voxel blocks based on the side length of each unit
voxel. According to the property defined in (4) and (5), it is possible to subdivide
voxel blocks into different sizes based on the quantity of points within each unit voxel.
The cutting principle is illustrated in Figure 8.
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ϑ = Normalize
(

NUM,
(

3
4

Π, Π
))

(4)

lnormalize = cos(ϑ) + 1 (5)

Figure 8. Dynamic subdivision of unit voxels.

6. We compute the centroid point within each voxel block, retain this centroid point,
and discard the remaining points within the voxel block. We store the downsampled
centroid point set. The principle is illustrated in Figure 9.

Figure 9. Preservation of centroid point cloud.

7. Detection of the characteristics of normal vectors to identify the edges of a point cloud.
Let us assume a point cloud dataset with a point, denoted by p, having a normal vector
Np. The set of neighboring points around point p is denoted by Q = q1, q2, . . . , qn.
The covariance matrix (C) can be computed as shown in (6).

C =
k

∑
i=1

(qi − p̄)(qi − p̄)T (6)

where p = ∑k
i=1

qi
n represents the 3D point cloud coordinates of the neighboring point

set around point p. The normal vector of point p is given by (7).

C · npj = αj · npi (7)

where αj(j = 1, 2, 3) represents the eigenvalues of the covariance matrix (C).
The formula for calculating the feature quantity of the angle between normal vectors
is given by (8). In flat regions, the angle between normal vectors is small, and in
horizontal regions, the angle may even be 0, while in non-flat regions, the angle
between normal vectors is relatively large.
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nk
p =

1
k

k

∑
i=1

arccos

 np · nk
pi∥∥np

∥∥ · ∥∥∥nk
p

∥∥∥
 (8)

8. The detected edge point set is merged with the downsampled centroid point set to
create a new point set.

5. Experiments
5.1. Evaluation Metrics

The point cloud simplification rate is a well-known metric to measure the goodness of
point cloud map downsampling. This simplification rate is calculated by (9).

R =
NUM − numd

NUM
(9)

where NUM is the total number of points in the original point cloud, numd is the total num-
ber of points in the downsampled point cloud, and R is the point cloud simplification ratio.

5.2. Experimental Results and Analysis

We used the nvida RTX3070 8G video memory in ubuntu 18.04, and the versions
corresponding to the environment dependencies used are shown in Table 2.

Table 2. List of environmental dependencies.

System Environment Version

cuda 11.0

conda 23.1.0

python 3.7

pytorch 1.8.1

Our algorithm was evaluated against traditional downsampling techniques, namely,
voxel downsampling, uniform downsampling, random downsampling, grid downsam-
pling, clustering-based downsampling, and farthest-point sampling (FPS), through compar-
ative experiments. The original point cloud used in these experiments consisted of 196,133
points [36].

As shown in Figure 10, the point cloud processed by our method (Figure 10b) has
significantly reduced data volume while preserving key boundary information compared
to the original point cloud (Figure 10a).

(a) (b)
Figure 10. Comparison between original and proposed methods. Images generated with (a) original
method and (b) our method.

Our algorithm is capable of identifying and prioritizing the retention of key points
that define the shape and structure of objects.
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Figure 11a–c demonstrate that voxel downsampling mandates the manual tuning of
the leafsize parameter. A large leafsize overly sparsens the cloud, erasing critical features,
whereas a small leafsize inadequately simplifies the cloud, failing to efficiently reduce
data complexity.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 11. Cont.
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(p) (q) (r)

Figure 11. Comparative experimental evaluation of various downsampling methods. Voxel down-
sampling: (a) leafsize = 0.1, (b) leafsize = 0.01, and (c) leafsize = 0.05. Uniform downsampling:
(d) every k points = 10, (e) every k points = 25, and (f) every k points = 100. Random downsampling:
(g) leafsize = 0.1, (h) leafsize = 0.01, and (i) leafsize = 0.05. Grid downsampling: (j) target number of
triangles = 5000, (k) target number of triangles = 10,000, and (l) target number of triangles = 15,000.
Cluster downsampling (m) leafsize = 0.1, (n) leafsize = 0.01, and (o) leafsize = 0.05. FPS: (p) tar-
get number of triangles = 5000, (q) target number of triangles = 10,000, and (r) target number of
triangles = 15,000.

Figure 11d–f reveal that uniform downsampling in the PCL library also necessitates
manual adjustment, this time of the every_k_points parameter. Higher values of ev-
ery_k_points lead to excessive data loss, while lower values do not simplify the cloud
enough. Our proposed method eliminates the need for such adjustments, automatically
adapting to cloud scale and density, thereby preserving edge and feature integrity more ef-
fectively.

As shown in Figure 11g–i, the proposed downsampling algorithm requires artificial
adjustment of the leafsize coefficient, like random downsampling in the PCL library. The
difference from voxel downsampling is that if leafsize is too small, the sampling is sparser,
and the original points are lost. For cloud feature information, the larger the leafsize,
the denser the sampling. Compared with the random downsampling method in the PCL
library, the proposed algorithm saves the cost of manual parameter adjustment. It can
dynamically segment point cloud maps according to different scales of point cloud maps
and different numbers of local point clouds and can effectively preserve the edge of the
point cloud image and the feature information of the object.

Figure 11j–l illustrate the necessity of manually setting target number of triangles
for grid downsampling. This parameter directly influences the downsampling density,
with lower values resulting in significant data loss and higher values inadequately simplify-
ing the cloud. Unlike this method, our algorithm requires no manual parameter adjustment
and dynamically adjusts parameters to the cloud’s complexity, ensuring optimal simplifica-
tion while retaining critical structural details.

Figure 11m–o illustrate that clustering downsampling, like voxel downsampling, ne-
cessitates the manual tuning of the leafsize parameter. Oversized leafsize values lead to
excessive sparsity and feature loss, whereas too small values result in insufficient simplifi-
cation, failing to meet the goals of effective point cloud reduction.

The FPS (farthest-point sampling) method demands manual specification of the output
size, denoted by object number of triangles. A lower count results in overly sparse clouds
and potential feature loss, while a higher count compromises the simplification objective.
Figure 11p–r display the outcomes of varying the FPS parameters.

Table 3 provides a comparative analysis showcasing the effectiveness of our dynamic
downsampling algorithm against traditional methods. Notably, it achieves a superior bal-
ance between simplification rate (91.89%) and processing speed (0.01289 s), highlighting its
efficiency and practicality for real-time applications. The algorithm significantly reduces the
data volume to 15,906 downsampled points from the original 196,133, maintaining essential
details without the extensive manual parameter tuning required by other methods. This
adaptability not only streamlines the downsampling process but also enhances usability,
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setting a new benchmark in 3D point cloud processing. The comparison underscores the
algorithm’s potential to revolutionize point cloud processing tasks, offering a user-friendly,
efficient, and effective solution for various applications.

Table 3. Experimental comparison table of various downsampling methods.

Methods Number of Down-
sampled Points

Simplification
Rate Time (s) Parameters

Voxel
downsampling

94,743 0.5169 0.1025 leafsize = 0.01

4718 0.9759 0.0125 leafsize = 0.05

1284 0.9934 0.0085 leafsize = 0.1

Random
downsampling

1961 0.9900 0.0143 leafsize = 0.01

9806 0.9500 0.0126 leafsize = 0.05

19613 0.9000 0.0135 leafsize = 0.1

Uniform
downsampling

1962 0.9899 0.1129 every_k_points = 100

7846 0.9599 0.3493 every_k_points = 25

19,614 0.9000 1.0615 every_k_points = 10

Grid
downsampling

5000 0.9745 3.1347 arget_number_of
_triangles = 5000

10,000 0.9490 3.5045 arget_number_of
_triangles = 10,000

15,000 0.9235 4.0243 arget_number_of
_triangles = 15,000

Cluster
downsampling

95,240 0.5144 1.0808 leafsize = 0.01

4830 0.9753 1.007 leafsize = 0.05

1248 0.9936 0.9958 leafsize = 0.1

FPS

1000 0.9745 34.8717 arget_number_of
_triangles = 5000

5000 0.9490 65.9702 arget_number_of
_triangles = 10,000

10,000 0.9235 109.9000 arget_number_of
_triangles = 15,000

Our method 15,906 0.9189 0.0129

6. Discussion

The findings presented in this study underscore the efficacy of the proposed dynamic
downsampling algorithm for 3D point cloud maps, particularly in terms of simplifica-
tion rate, processing speed, and the reduced necessity for manual parameter adjustment.
This discussion further explores these results in the context of existing research, practical
applications, and future directions.

6.1. Comparison with Existing Methods

Our dynamic downsampling algorithm demonstrates significant improvements over
traditional downsampling techniques, such as voxel, random, uniform, grid, and cluster
downsampling, as well as farthest-point sampling (FPS). The key advantages include a
balance between high simplification rates and rapid processing times, crucial for real-time
processing applications. Unlike previous methods that often require labor-intensive param-
eter tuning to optimize performance, our algorithm’s adaptive nature significantly reduces
this burden, offering a more user-friendly approach. These enhancements align with the
growing demand for efficient point cloud processing in applications like autonomous
driving, robotics, and smart city planning.
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6.2. Practical Implications

The practicality of our algorithm extends beyond its immediate performance benefits.
By facilitating a faster and more intuitive downsampling of 3D point cloud data, the al-
gorithm enables more efficient subsequent processing tasks, such as segmentation and
classification. This efficiency can profoundly impact industries relying on 3D scanning
and modeling technologies, where processing speed and data quality directly influence
operational effectiveness and innovation capabilities.

6.3. Limitations and Future Work

While our algorithm represents a substantial advancement in point cloud down-
sampling, certain limitations warrant further investigation. For instance, the algorithm’s
performance in extremely dense or noisy environments remains an area for improvement.
Future research could explore enhancements to the edge preservation mechanism or the
introduction of noise-resistant features to address these challenges.

Moreover, the adaptability of the algorithm to various point cloud data types and
sources could be further examined. Extensive testing across a broader spectrum of datasets
will help refine the algorithm’s applicability and efficiency across different scenarios.

7. Conclusions

This study introduced a novel dynamic downsampling algorithm for 3D point cloud
maps, showcasing its superiority in balancing simplification rates and processing speeds
while minimizing the need for manual parameter tuning. Our contributions, through the
development and validation of this algorithm, address critical challenges in the processing
of large-scale 3D point cloud data, offering significant advancements over traditional
downsampling methods.

The implementation of our algorithm demonstrates not just a technical achievement,
but also promises substantial practical benefits across various applications. From au-
tonomous driving systems and robotics to augmented reality and urban planning, the ef-
ficient processing of 3D point cloud data is foundational. Our work paves the way for
more streamlined data analysis processes, potentially unlocking new innovations and
improvements in these fields.

However, the journey to perfecting downsampling algorithms is far from complete.
Despite the promising results, our algorithm, like all methods, has its limitations. The per-
formance in scenarios with extreme density variations and noise levels presents an oppor-
tunity for further research. Additionally, the exploration of the algorithm’s adaptability
across different types of point cloud data sources could yield even more versatile and
robust solutions.

Looking ahead, we anticipate a multifaceted approach to future research. Efforts will
likely focus on enhancing the algorithm’s ability to preserve finer details in highly com-
plex environments, improve noise resilience, and further reduce computational demands.
Moreover, integrating machine learning techniques to dynamically adjust downsampling
parameters based on the specific characteristics of each point cloud dataset could offer a
pathway to even more sophisticated and automated processing tools.

In conclusion, our dynamic downsampling algorithm represents a significant step for-
ward in the field of 3D point cloud processing. It addresses several longstanding challenges
and opens up new possibilities for both academic research and practical applications. We
remain committed to advancing this field, inspired by the potential to contribute to the
next generation of technologies that rely on 3D point cloud data.
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