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Abstract: In the present work, a TiO2/zeolite photocatalyst was synthesized by dispersing TiO2

nanoparticles obtained through the sol-gel method onto the surface of natural zeolite derived from
ignimbrite residue. The zeolite was obtained from an ignimbrite rubble treatment collected from a
quarry in Arequipa City, Peru. The research focused on the effect of zeolite on the TiO2 nanoparticles.
The synthesized photocatalysts were characterized using various techniques, including field-emission
scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDS), X-ray diffraction (XRD),
diffuse reflectance spectroscopy (DRS), and Brunauer–Emmett–Teller surface area analysis (BET). The
results revealed that the TiO2/zeolite samples displayed high crystallinity, with TiO2 being present in
three phases and zeolite being present in the analcime phase. Furthermore, these samples exhibited a
band gap of 3.14 eV and a high surface area compared to that of bare TiO2. Finally, the photocatalytic
activity of the TiO2/zeolite composite obtained was evaluated toward the decomposition of 10 ppm
and 20 ppm of methyl orange (MO) dye. The TiO2/zeolite samples demonstrated improved pho-
tocatalytic activity compared to that of pristine TiO2 under the same experimental conditions. This
enhancement is primarily attributed to the increased specific surface area of the TiO2/zeolite samples,
making them promising materials for future efficient and sustainable photocatalytic applications.

Keywords: titanium dioxide; analcime zeolite; ignimbrite; photocatalysis; nanomaterial

1. Introduction

Water pollutants, including detergents, industrial chemicals, pesticides, and organic
dyes, pose significant environmental threats. These substances are produced by diverse
industries [1,2], such as the food, textile, cosmetics, paper, and other sectors [3]. Conse-
quently, efforts have been concentrated on exploring innovative materials and developing
efficient wastewater treatment methods to address this environmental concern. Several
techniques have been studied for their effectiveness, including adsorption, ion exchange,
chemical oxidation, electrolysis, and photocatalytic treatments [4,5].

In recent years, photocatalysis has emerged as a promising and eco-friendly technology.
This simple yet potent method has shown a high potential for reducing organic pollution
by facilitating an absolute decrease in toxic substances [6]. Several photocatalyst materials
have been described, such as ZnO, CuO, TiO2, WO3, Fe2O3, and CuO [7–9]; among them,
titanium dioxide (TiO2) stands out, especially due to its properties such as low cost, non-
toxicity, and high stability in aqueous media and its safe handling [10,11]. However, the
high aggregation tendency, low adsorption capacity, and difficult recovery of TiO2 limit
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its application in water treatment [12,13]; therefore, many researchers have focused on the
immobilization of TiO2 on suitable support materials to alleviate the recovery efficiency of
TiO2. Among the various support materials, activated carbon [14,15], glass [16], silica [17],
graphene [18], and zeolite [19,20] have been used as immobilization substrates to try to
improve their separation and recovery in water treatment. Zeolites are promising as a
support for TiO2 because they are abundant, readily available, and inexpensive [21]. In
addition, they exhibit a high specific surface area, excellent adsorption, and catalysis
capacity [21,22]. For these reasons, numerous studies have been conducted to explore the
utilization of TiO2/zeolite composites as photocatalytic materials, focusing on optimizing
the degradation rate of pollutants in various environmental applications. [23,24].

The synthesis of zeolites involves the use of precursors such as sodium silicate and
sodium aluminate together with structuring agents and alkali sources, which can be
synthesized from various natural sources that are rich in silica and alumina, known as
pozzolans. Examples of these sources include volcanic ash, volcanic tuff, pozzolanic clays,
minerals such as diatomite and kaolinite, and rice husk ash. According to the Instituto
Geológico Minero y Metalúrgico del Perú, the city of Arequipa is considered a volcanic area
where there are different types of volcanic deposits called ignimbrites [25]. The method
of extraction and carving of ignimbrite, which is also called “sillar”, generates a large
amount of residue, so the raw material is wasted, which contributes to the non-valuation
of natural resources. Thus, ignimbrite waste is currently a byproduct that is undervalued
and underutilized. Huanca et al. [26] synthesized zeolite from ignimbrite material from
the Arequipa area, obtaining a zeolite with high cation exchange capacity and promising
applications in the remediation and mitigation of heavy metal contamination in industrial
effluents. In addition, a study investigated ignimbrite coated with SiO2-TiO2 for NOx
degradation [9].

On the other hand, methyl orange (MO, C14H14N3NaO3S) is an organic chemical
compound used as a dye in the textile industry. It can act as a contaminant in water when
released. Methyl orange is challenging to biodegrade, and as a result, it may persist in
water, potentially causing adverse effects on aquatic ecosystems and water quality. For this
reason, removal methods, such as heterogeneous photocatalysis, are sought to effectively
decompose it and reduce its environmental impact in water [27].

Accordingly, the present research aims to develop a TiO2/zeolite photocatalytic ma-
terial using the sol-gel method. Zeolite was synthesized from “sillar” gravel through
the hydrothermal method, and it was intended for the zeolite to serve as a support to
enhance the photocatalytic discoloration properties of TiO2. The evaluation was conducted
using methyl orange as a model of an organic contaminant. To assess the properties of
TiO2/zeolite and its precursors, X-ray diffraction (XRD), field-emission scanning electron
microscopy (FE-SEM), reflectance (%R) (using a UV–visible spectrophotometer equipped
with an integrating sphere), and Brunauer–Emmett–Teller (BET) surface area analyses
were performed. Finally, dye decolorization under UV light irradiation was performed by
comparing the photocatalytic performance of TiO2/zeolite and pristine TiO2 samples.

2. Materials and Methods
2.1. Materials

All chemicals utilized were of analytical grade and employed without additional
purification. Hydrochloric acid (HCl, 37%), titanium (IV) Isopropoxide (C12H28O4Ti, 97%),
absolute ethyl alcohol (C2H5OH, 99.5%), and sodium hydroxide (NaOH, ≥99.9999%) were
used for the synthesis of TiO2 nanoparticles. Anatase-grade TiO2 with 99.7% purity from
Sigma Aldrich (Merck Peruana S.A., Lima, Perú) was acquired for comparison. Ignimbrite
remainders were purchased from the Añashuayco quarries from Arequipa. Ultrapure and
distilled water were used in all processes.
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2.2. Obtaining Zeolite from Ignimbrite Residue

The natural ignimbrite remainders used in this study were obtained from Añashuayco
quarry, Arequipa GD (latitude: −16.3592070, length: −71.6085700). The ignimbrite re-
mainders were reduced to smaller parts as required. Then, through a milling process in a
planetary ball mill (MP100-Retsch, Retsch, Düsseldorf, Germany) at 440 rpm for 30 min, the
powder obtained was sieved to homogenize the granulometry with a 200 µm mesh size.

The synthesis of zeolite was realized through hydrothermal treatment using 120 mL of
NaOH-3M with 15 g of milling ignimbrite residue. The mixture was placed in a stainless-
steel autoclave and finally placed in a furnace at 180 ◦C for 24 h.

After this time, it was cooled at room temperature in the autoclave. The resulting solid
was washed with distilled water until a pH of 7 was reached, and this was carried out in
10 replicates of 300 mL of distilled water through sonication and centrifugation. Finally, the
resulting zeolite was dried in a furnace at 100 ◦C for 12 h.

2.3. Synthesis of TiO2 Nanoparticles and the TiO2/Zeolite Material

Titanium (IV) isopropoxide served as the titanium source when preparing the TiO2/
Zeolite photocatalyst. The titanium precursor solution was prepared by following the
method by Hosseini et al. [28]. Initially, 10 mL of titanium (IV) isopropoxide was added
dropwise to 30 mL of absolute ethyl alcohol and stirred for 60 min at room temperature.
Subsequently, 1 g of synthesized zeolite was added, and the mixture was continuously
stirred at 70 ◦C for 30 min.

After that, a hydrolysis catalyst solution was prepared by stirring 3 mL of HCl in
150 mL of ultrapure water for 10 min. This solution was then gradually added to the
mixture of titanium (IV) isopropoxide, ethanol, and zeolite, with continuous stirring at
70 ◦C for 80 min. The mixture was dried at 100 ◦C for 16 h to evaporate the solvent.
Finally, the resulting dry powders were calcined at 300 ◦C for 1 h to produce TiO2/zeolite
compounds, which primarily exhibited the anatase phase of TiO2 [29].

On the other hand, to obtain pure TiO2 for the tests, the same steps as those of the
previously described sol-gel method were followed, excluding the addition of zeolite in the
procedure.

2.4. Characterization

Various characterization tests were performed to compare the features among the
zeolite, TiO2, and TiO2/zeolite samples. In the case of pure TiO2, two types were used: those
that were commercially obtained from Sigma-Aldrich and a sample synthesized according
to what was described above. The crystal structure and identification of the phases in
the obtained samples were analyzed using an X-ray diffractometer (XRD, Aeris Research,
Malvern PANalytical, Malvern, UK) equipped with a CuKα radiation source (λ = 1.5406 Å).
Morphological analyses were conducted through scanning electron microscopy (Scios 2,
ThermoFisher Scientific, Waltham, MA, USA), and energy-dispersive X-ray spectroscopy
(EDS, Thermo Scientific, UltraDry) was utilized for elemental chemical analysis with a
working range of 20–25 keV.

To estimate the energy of the band gap of semiconductors, it is crucial to highlight
the effectiveness of contemporary methodologies, such as the photoacoustic methodol-
ogy, in meticulously deciphering the distinct contributions of scattering and absorption.
These advanced techniques, which are grounded in the Kubelka–Munk theory, provide a
sophisticated perspective on the intricacies of semiconductors, facilitating a more detailed
exploration of their energy gap characteristics [30–32]. In this study, the optical properties
of the samples were tested using a UV-vis DRS (diffuse reflectance spectroscopy) spec-
trophotometer (Perkin Elmer, Waltham, MA, USA) equipped with an integration sphere
in the wavelength range of 200–700 nm. The energy band gaps (Eg) were determined
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using the Kubelka–Munk theory and Tauc plot analysis, as per Equations (1) and (2),
respectively [33].

F(R) =
[

K
S

]
(1)

[F(R∞) x hν]1/p = A
(
hν − Eg

)
(2)

where K and S are the absorption and scattering coefficients, hν is the photon energy, Eg is
the optical band gap energy, and A is a proportionality constant independent of the photon
energy [34]. To determine the band gap energy (Eg), a linear fit to a plot of [F(R∞)x hν]1/p

versus hν must be obtained through extrapolation to zero. In the case of an indirect band
gap, such as that of TiO2, a value of p = 2 will be used [33,34].

The textural properties of the samples were assessed through nitrogen isotherms at
77 K using a Micromeritics Gemini VII (Micromeritics, Norcross, GA, USA), where each
sample (approximately 0.2 g) underwent a preliminary degassing at 200 ◦C for 2 h. The
specific surface area was determined using the multipoint BET calculation method by
following the BET expression in its linear form as outlined by Müller [35].

2.5. Photocatalytic Activity

The photocatalytic activity of the TiO2/zeolite composite was evaluated by decoloriz-
ing aqueous solutions containing methyl orange (MO) at concentrations of 10 and 20 ppm.
In each test, 0.6 g of the photocatalyst was dispersed in 200 mL of the corresponding MO
solution. Subsequently, the suspension was illuminated with a 300 W OSRAM Ultravitalux
lamp, where 70 Wm−2 was measured in the UV-A intensity range. The experiments were
realized at room temperature. During irradiation, 10 mL of the treated solution was col-
lected every 10 min and centrifuged at 6000 rpm for 4 min. Then, the supernatant was
removed, and another centrifugation was performed at 6000 rpm for 2 min, resulting in
a clear solution. The remaining concentration of methyl orange was analyzed using a
Lambda 365 UV-vis spectrophotometer (PerkinElmer, Waltham, MA, USA) at 507 nm. A
comparison of the photocatalytic efficiency of the TiO2/zeolite composite and pure TiO2
was carried out. The methyl orange removal efficiency in percentage degradation (%Ef fdeg)
was calculated with Equation (3) [27]:

%E f f deg =

[
C0 − Ct

C0

]
× 100% (3)

where C0 and Ct represent the initial concentration of the MO solution and the concentration
of MO analyzed after light irradiation during a specific time interval, respectively.

3. Results and Discussion
3.1. XRD Analysis

Figure 1 shows the XRD patterns of the ignimbrite precursor material, zeolite, TiO2/
zeolite, and pure TiO2 obtained with the sol-gel method. The ignimbrite pattern reveals
that its main identified crystalline phase is anorthoclase, followed by cristobalite and albite.
Anorthoclase is a feldspar composed of aluminum silicates with varying percentages of
potassium, sodium, and calcium [36,37]. Furthermore, the obtained peaks are primarily
located between angles of 15◦and 40◦ (2θ), which is consistent with zeolite synthesis
studies by Rajakrishnamoorthy et al. [38] and Verrecchia et al. [39]. The open halo that was
observed suggests thermodynamically metastable amorphous aluminosilicate structures
with high pozzolanic activity [40].
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Figure 1. X-ray diffraction patterns for TiO2, TiO2/zeolite, zeolite, and ignimbrite samples.

The zeolite pattern shows that the peaks of ignimbrite decreased, whereas new peaks
appeared. This reduction in initial crystalline phases may be attributed to the dissolution of
precursors with an alkaline solution, contributing to the increase in silicate and aluminate
solutions present in these [41]. This assumption is supported by the study by Ojha et al. [42],
where a reduction in the intensity of quartz and mullite was observed after the synthesis
process using NaOH. The zeolite spectrum indicated characteristic peaks at 2θ = 15.7◦,
18.1◦, 25.8◦, and 30.4◦ corresponding to the analcime-type zeolite structure (JCPDS no.
76-0904) [43].

Finally, the XRD patterns of the TiO2 and TiO2/zeolite catalysts evidence characteristic
peaks for the anatase phase (JCPDS no. 96-901-5930) that were observed at approximately
25.3◦, 37.7◦, 48.0◦ 54.1◦, and 62.6◦ [44]; a rutile phase (JCPDS no. 01-078-1510) was detected
in a small proportion [45]. No significant changes were observed in the TiO2 peaks after
incorporating zeolite. However, in the TiO2/zeolite compound, two additional peaks corre-
sponding to analcime zeolite were observed. Therefore, the TiO2/zeolite photocatalytic
material exhibits the structure of the TiO2 component in the anatase phase along with peaks
corresponding to the analytical structure of zeolite.

3.2. SEM Analysis

The samples were analyzed using scanning electron microscopy to examine their
surface morphology, interactions, particle size, and elemental chemical composition. The
weight percentages of the significant oxides are shown in Table 1, and silicon dioxide (SiO2)
was the predominant component in the ignimbrite, zeolite, and TiO2/zeolite samples. The
term “others” in Table 1 includes MgO, K2O, CaO, and Fe2O3 oxides.
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Table 1. Weight percentages of oxides in the samples.

Weight Percentage %

Oxides Ignimbrite Zeolite TiO2 TiO2/Zeolite

SiO2 74.97 54.72 ---- 73.55
Al2O3 13.52 19.60 ---- 5.77
Na2O 4.38 12.98 ---- 1.06
TiO2 0.18 0.52 99.52 17.54

Cl 0.37 0.83 0.48 1.18
Others 6.58 11.35 ---- 0.90

Total 100 100 100 100

3.2.1. Ignimbrite

SEM micrographs of the precursor material (ignimbrite), which was previously milled
and passed through a 200 µm mesh, are shown in Figure 2a. The figure reveals agglomer-
ated particles with a varied morphology, suggesting a particle size below 100 µm, which
was consistent with the expected milling size. The EDS chemical composition analysis is
shown in Figure 2c. In this sample, large amounts of silicon, aluminum, and oxygen were
revealed, demonstrating the siliceous nature of ignimbrite, which favors zeolite synthesis.
The spectrum also shows signals related to CaO and Fe2O3, which could negatively affect
the synthesis process [46].
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Figure 2. SEM micrograph of (a) milling ignimbrite and (b) the analyzed area of ignimbrite. (c) EDS
of the area analyzed in (b).

3.2.2. Zeolite

SEM micrographs of the synthesized zeolite are shown in Figure 3a,b. The measured
size of the synthesized zeolites ranges from 9 µm to 46 µm, with an average dimension of
approximately 45 µm. This average size notably exceeds the measurements reported by ear-
lier researchers [47,48]. Furthermore, the particles exhibit an octahedral three-dimensional
crystalline structure, a characteristic of analcime-type zeolite [49]. The EDS spectrum in
Figure 3c and the oxide weight percentages listed in Table 1 for the obtained zeolite reveal
that SiO2 is the predominant component (54.72%), which is consistent with the starting
material, whereas the oxides MgO, K2O, CaO, and Fe2O3 comprise 11.35%.
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3.2.3. Synthesized TiO2 Nanoparticles

SEM micrographs of the TiO2 synthesized with the sol-gel method are presented in
Figure 4a,b. These images reveal agglomerated TiO2 nanoparticles, which, according to the
measurements, exhibit a size range from 18 nm to 45 nm. In addition, it should be noted
that in Figure 4c and Table 1, titanium oxide is the predominant component (99.52%).
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Figure 4. SEM micrograph of (a) the synthesized TiO2 nanoparticles and (b) the analyzed nanoparticle
area. (c) EDS of the entire area analyzed in (b).
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3.2.4. TiO2/Zeolite Photocatalytic Material

The SEM micrographs in Figure 5a,b exhibit the morphology of the TiO2/zeolite
photocatalyst synthesized via the sol-gel method. The images confirm the presence of
zeolite and TiO2 nanoparticles, aligning with the EDS analysis and consistent with findings
from prior studies [13,50,51]. The diameter of the TiO2 nanoparticles on the zeolite surface
was determined to be in the range from 15 nm to 47 nm. Furthermore, the TiO2/zeolite
composite demonstrates enhanced material dispersion within its structure compared to
that in the pure TiO2 sample. The EDS spectrum (Figure 5c) and Table 1 reveal that SiO2
and TiO2 are the predominant components, constituting the majority, while the remaining
0.90% comprises various other oxides.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 17 
 

3.2.4. TiO2/Zeolite Photocatalytic Material 
The SEM micrographs in Figure 5a,b exhibit the morphology of the TiO2/zeolite pho-

tocatalyst synthesized via the sol-gel method. The images confirm the presence of zeolite 
and TiO2 nanoparticles, aligning with the EDS analysis and consistent with findings from 
prior studies [13,50,51]. The diameter of the TiO2 nanoparticles on the zeolite surface was 
determined to be in the range from 15 nm to 47 nm. Furthermore, the TiO2/zeolite compo-
site demonstrates enhanced material dispersion within its structure compared to that in 
the pure TiO2 sample. The EDS spectrum (Figure 5c) and Table 1 reveal that SiO2 and TiO2 
are the predominant components, constituting the majority, while the remaining 0.90% 
comprises various other oxides. 

 

Figure 5. SEM micrograph of (a) the TiO2/zeolite photocatalytic material and (b) the ana-
lyzed nanoparticle area. (c) EDS of the entire area analyzed in (b). 

3.3. UV–Visible Spectroscopy 
The determination of the band gap is a crucial characterization for photocatalytic ma-

terials, as it plays a significant role in the photocatalytic reaction—specifically, in light 
absorption and the generation of electron–hole pairs [52]. According to the Kubelka–
Munk model and the extrapolation of the linear adjustment to zero, the corresponding 
Tauc plot was created for commercial pure TiO2 (Figure 6a), synthesized TiO2 (Figure 6b), 
and TiO2/zeolite (Figure 6c) with Equations (1) and (2). The results, which are summarized 
in Table 2, reveal that the calculated band gap for TiO2/zeolite is 3.14 eV, which is smaller 
than the values obtained for commercial TiO2 (3.29 eV) and synthesized TiO2 (3.18 eV) and 
is in proximity to the reported values [53–55]. These values imply activation only with a 
UV light source [56]. In addition, the band gap of TiO2/zeolite implies heightened light 
absorption, which leads to an increased generation of excited charge carriers and, conse-
quently, enhances photocatalytic activity. 

Table 2. The calculated band gaps of the samples. 

Sample Band Gap (eV) 
TiO2/zeolite 3.14 

(a) (b) 

(c) 

Figure 5. SEM micrograph of (a) the TiO2/zeolite photocatalytic material and (b) the analyzed
nanoparticle area. (c) EDS of the entire area analyzed in (b).

3.3. UV–Visible Spectroscopy

The determination of the band gap is a crucial characterization for photocatalytic
materials, as it plays a significant role in the photocatalytic reaction—specifically, in light
absorption and the generation of electron–hole pairs [52]. According to the Kubelka–Munk
model and the extrapolation of the linear adjustment to zero, the corresponding Tauc
plot was created for commercial pure TiO2 (Figure 6a), synthesized TiO2 (Figure 6b), and
TiO2/zeolite (Figure 6c) with Equations (1) and (2). The results, which are summarized in
Table 2, reveal that the calculated band gap for TiO2/zeolite is 3.14 eV, which is smaller
than the values obtained for commercial TiO2 (3.29 eV) and synthesized TiO2 (3.18 eV)
and is in proximity to the reported values [53–55]. These values imply activation only
with a UV light source [56]. In addition, the band gap of TiO2/zeolite implies heightened
light absorption, which leads to an increased generation of excited charge carriers and,
consequently, enhances photocatalytic activity.
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Table 2. The calculated band gaps of the samples.

Sample Band Gap (eV)

TiO2/zeolite 3.14
TiO2—Sigma Aldrich 3.29
Synthesized TiO2 3.18

3.4. Physisorption Test Parameters

The BET surface area, pore volume, mean pore diameter, and particle size constitute
interconnected characteristics that are essential for optimizing the photocatalytic efficiency
of a material [57]. In this case study, these parameters were assessed through physisorption
testing, and the findings are detailed in Table 3. The results indicated that the TiO2/zeolite
material exhibited the highest surface area (169.079 ± 0.802 m2/g), surpassing those of
the synthesized TiO2 (86.951 ± 0.346 m2/g), the commercial TiO2 from Sigma Aldrich
(80.571 ± 0.278 m2/g), and zeolite analcime (1.740 ± 0.005 m2/g). The zeolite analcime
exhibited the lowest surface area value, which was characteristic of this structure type
due to its high-temperature synthesis [49]. On the other hand, the value obtained for
TiO2/zeolite was approximately double that of the synthesized pure TiO2. The high surface
area and porous structure obtained for this material favor the adsorption, desorption, and
diffusion of reagents, resulting in high photocatalytic activity [58]. Furthermore, the other
measured parameters, such as the pore volume and pore size, in the TiO2/zeolite composite
also exhibit the highest values compared to those of the other samples, as indicated in
Table 3.
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Table 3. The textural properties of all samples.

Sample Surface Area
[m2/g]

Pore Volume
[cm3/g]

Average Pore
Diameter

[nm]

Zeolite analcime 1.740 ± 0.005 0.000489 2.1426
TiO2—Sigma Aldrich 80.571 ± 0.278 0.022379 2.1420
Synthesized TiO2 86.951 ± 0.346 0.025958 2.1505
TiO2/zeolite 169.079 ± 0.802 0.042061 2.1411

3.5. Photocatalytic Performance Results

To evaluate the photocatalytic activity, the photodegradation of methyl orange dye
was measured at concentrations of 10 and 20 ppm in aqueous solutions under UV light.
The photocatalytic activity results for 10 and 20 ppm are shown in Figure 7, with Ct/Co
representing the ratio of the concentration at time “t” to the initial concentration of methyl
orange over time in minutes. The highest photocatalytic efficiency during the first 60 min
under UV light irradiation was observed for the TiO2/zeolite sample compared to pure
TiO2 in the anatase phase for both concentrations. The percentage of degradation efficiency
was calculated according to Equation (3), and the results are shown in Table 4. For a
concentration of 10 ppm, the TiO2/zeolite synthesized from ignimbrite residue as a source
of zeolite degraded 94.71% of the dye in the first 60 min, while the synthesized TiO2
degraded 83.93%, which was 10.78% lower. For the case of 20 ppm, the TiO2/zeolite
photocatalyst (71.36%) also demonstrated higher efficiency than that of pure TiO2 (56.78%).
The pH remained constant at 3.5 for all cases.

Table 4. Comparison of the degradation efficiency for the samples.

Sample Concentration
[ppm] %Ef fdeg

TiO2/zeolite 10 94.71
Pure synthesized TiO2 10 83.93
TiO2/zeolite 20 71.36
Pure synthesized TiO2 20 56.78

The photodegradation of MO with the various photocatalysts was fitted to the pseudo-
first-order kinetic model [59]:

ln
(

Co

Ct

)
= kt (4)

where Ct, C0, and k represent the residual MO concentration, initial MO concentration, and
pseudo-first-order rate constant, respectively. Figure 8 displays a graph representing the
relationship between ln(C0/Ct) and time for various concentrations of MO when utili-zing
TiO2/zeolite and pristine TiO2 as photocatalysts. A robust fit for the first-order model
was achieved, with a correlation coefficient (R2) exceeding 0.90 in all cases, as depicted in
Table 5. Additionally, the rate constant was determined from these graphs, and the results
are presented in Table 5. As shown in the figure and table, TiO2/zeolite exhibited the
highest rate constants for the photodegradation of MO both for the concentration of 10 ppm
(0.0436 min−1) and for that of 20 ppm (0.0207 min−1), and they were higher than those
obtained for pure TiO2 (0.0286 min−1 and 0.0139 min−1 for 10 and 20 ppm, respectively).
The enhanced efficiency of the TiO2/zeolite photocatalytic material was attributed to the
presence of zeolite, which facilitated the adsorption of the dye and the interaction with
TiO2 to break down these organic dyes, which agreed with other studies that were carried
out [13,15,21]. The synergy of TiO2 nanoparticles with zeolite boosts the photocatalytic
activity by leveraging zeolites’ high surface area and many active sites for enhanced
adsorption of methyl orange [13]. This combination prevents nanoparticle aggregation
and amplifies light adsorption. Furthermore, zeolites act as electron sinks, diminishing
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electron–hole recombination and prolonging electron lifetime [13,21]. Consequently, this
enhances the overall photocatalytic activity of the material.
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3.5.1. Effect of Catalyst Loading

In photocatalysis, the degradation efficiency is affected by the photocatalyst dose. To
examine the effect of the catalyst dose on the photodegradation of MO for 30 min, the
amount of TiO2/zeolite was varied from 0.2 to 1 g at a constant MO concentration of
10 ppm. As shown in Figure 9, as the amount of photocatalyst increased from 0.2 to 1 g,
the MO degradation efficiency increased (0%, 45%, 58%, 88%, and 95% for 0.2, 0.4, 0.6, 0.8,
and 1 g, respectively). This occurs because a higher catalyst concentration offers additional
active sites for redox reactions. In other words, irradiation produces more charge carriers
to participate in redox reactions [60].
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Figure 9. Photodegradation efficiency of MO using various amounts of TiO2/zeolite for 30 min.

3.5.2. The Reusability Study

The study of photocatalytic applications places significant importance on reusability.
This aspect is crucial, as it enables us to determine whether a photocatalyst can be effectively
reused in wastewater treatment. Given this, to evaluate the reusability of the TiO2/zeolite
composite, three consecutive tests of degradation of MO were conducted under the same
reaction conditions. As shown in Table 6, the TiO2/zeolite photocatalysts retain their ability
to degrade MO solutions at 10 ppm even after three uses, showing a slight difference
from the initial experiment. However, for 20 ppm solutions of MO, the sample presents
a considerable decrease in its degradation efficiency after two cycles. The loss might be
attributed to the catalyst leaching that inevitably occurs during the recovery and washing
process, as well as the blocking of the active site by the surface coverage with the dye and
its degradation intermediates [61].

Table 6. Reutilization of TiO2/zeolite for the photodegradation of methyl orange.

Sample Degradation Efficiency (%) Concentration

TiO2/zeolite (First Test) 92.80
10 ppmTiO2/zeolite (Second Test) 88.15

TiO2/zeolite (Third Test) 87.64

TiO2/zeolite (First Test) 70.20
20 ppmTiO2/zeolite (Second Test) 67.69

TiO2/zeolite (Third Test) 18.06

3.5.3. Comparative Analysis

The TiO2/zeolite photocatalyst was compared with previously reported photocatalysts
for the photodegradation of organic dyes, and the results are noted in Table 7. It should be
noted that while the presented photocatalyst is comparable and even improved with respect
to those reported in the literature, direct comparisons are challenging due to differences in
dye type and its initial concentration, light source, catalyst morphology, irradiation time,
and source of zeolite. In this research, the source of zeolite was ignimbrite, which is a
good source of zeolites used in the synthesis of photocatalytic materials. Therefore, these
considerations suggest that the TiO2/zeolite presented here is a novel and suitable material
for the photodegradation of methyl orange.
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Table 7. Comparison of the photocatalytic performance for different TiO2/zeolite materials.

Sample Degradation/Time Test Concentration

TiO2/zeolite (this work) 94.71%/60 min 10 ppm
TiO2/zeolite [23] 77.68%/60 min 10 ppm
TiO2/SDS [50] 90%/300 min 30 ppm
TiO2 layers on glass substrates—3 layers [16] 97.6%/180 min 30 ppm
TiO2/zeolite (this work) 71.36%/60 min 20 ppm
TiO2/zeolite [23] 68.61%/60 min 20 ppm

4. Conclusions

In summary, a TiO2/zeolite photocatalytic material was synthesized through the
sol-gel method to facilitate the degradation of organic dyes. The zeolite, which was
sourced from ignimbrite residues from the Añashuayco quarry in Arequipa, was ob-
tained in its analcime type, while the TiO2 was obtained in its anatase form, which is
preferred for its photocatalytic activity. Furthermore, the synthesized pure TiO2 showed a
band gap and physisorption parameters like those of commercial TiO2. Meanwhile, the
TiO2/zeolite photocatalytic material exhibited superior physisorption properties and dye
degradation, achieving a photocatalytic efficiency of 94.71% and 83.93% for solutions of
10 and 20 ppm, respectively, in 60 min. This occurred due to its high specific surface area
(169.0788 m2/g), larger pore volume (0.04 cm3/g), and band gap of 3.14 eV. On the other
hand, the TiO2/zeolite photocatalytic material can be reused in photocatalytic applications
with slight changes in its performance. However, at higher concentrations, this reusability
decreases. Zeolite improved the photodegradation performance of the TiO2/zeolite mate-
rial due to its influence on the surface morphology and interaction, favoring the uniform
dispersion of TiO2 nanoparticles and providing more active sites for the adsorption of
contaminants. Thus, this TiO2/zeolite photocatalytic material based on zeolite obtained
from ignimbrite residue effectively removes organic dyes such as methyl orange from water,
demonstrating high efficiency and potential applications in wastewater treatment.
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