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Abstract: This study introduces a novel predictive methodology for diagnosing and predicting gear
problems in DC motors. Leveraging AdaBoost with weak classifiers and regressors, the diagnostic
aspect categorizes the machine’s current operational state by analyzing time–frequency features
extracted from motor current signals. AdaBoost classifiers are employed as weak learners to effectively
identify fault severity conditions. Meanwhile, the prognostic aspect utilizes AdaBoost regressors, also
acting as weak learners trained on the same features, to predict the machine’s future state and estimate
its remaining useful life. A key contribution of this approach is its ability to address the challenge of
limited historical data for electrical equipment by optimizing AdaBoost parameters with minimal
data. Experimental validation is conducted using a dedicated setup to collect comprehensive data.
Through illustrative examples using experimental data, the efficacy of this method in identifying
malfunctions and precisely forecasting the remaining lifespan of DC motors is demonstrated.

Keywords: DC motor; diagnosing; AdaBoost; weak classifiers; fault severity conditions; remaining
useful life

1. Introduction

The reliable and safe operation of electrical machinery has been receiving more atten-
tion in recent years. A great deal of research has been conducted on diagnostics, the early
identification of electrical machine defects, and the estimation of remaining life [1]. Within
the realm of automotive engineering, the utilization of DC motors stands as a cornerstone,
celebrated for their versatility, precise control capabilities, and robust torque output. Based
on the basic ideas of electromagnetism, these motors use Lorentz force interactions to turn
electrical energy into mechanical motion. They play important roles in many automotive
applications [2]. Notably, in the context of vehicle propulsion, DC motors often assume the
pivotal role of self-starters, facilitating the ignition process in internal combustion engines
with seamless efficiency. The evolutionary trajectory of DC motors has been marked by sig-
nificant milestones, prominently characterized by the transition from conventional brushed
motors to advanced brushless DC motor variants [2]. The relentless pursuit of enhanced
performance metrics, including elevated efficiency, extended operational lifespan, and
reduced maintenance requirements, has fueled this paradigm shift. Brushless DC motors,
in particular, have emerged as the vanguard of this technological revolution, leveraging
sophisticated electronic control mechanisms to deliver unparalleled precision and reliability
in automotive systems [3]. Amidst these advancements, the integrity and functionality of
DC motor gear systems have emerged as focal points of concern within automotive engi-
neering circles [4]. These gear systems, indispensable for torque transmission and speed
regulation, are susceptible to a myriad of faults that can compromise their performance
and longevity. Some common problems are gear wear, which is when material slowly
breaks down because of frictional forces; misalignment from bad assembly or mechanical
stress; and tooth damage from too much load or manufacturing flaws [4]. The ramifications
of gear faults can be particularly pronounced in the context of starter DC motors, which
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initiate the combustion process in internal combustion engines. The onset of gear wear, for
instance, can manifest as diminished torque output and increased mechanical noise during
operation, adversely affecting the engine’s ignition process and overall performance [4].
Similarly, misaligned or damaged gear teeth can exacerbate these issues, leading to sub-
optimal engine starting capabilities and potential safety hazards. Given the critical role
of DC motor gear systems in ensuring the reliable operation of automotive systems, the
development of comprehensive diagnostic and maintenance strategies is imperative [4].
By leveraging advanced predictive maintenance techniques, such as condition monitoring
and fault prognostics, automotive engineers can proactively identify and address poten-
tial gear faults before they escalate into critical failures. Additionally, ongoing research
efforts aimed at optimizing gear design, material selection, and lubrication practices hold
promise for further enhancing the resilience and durability of DC motor gear systems
in automotive applications. Moving forward, diagnostics of electrical machinery encom-
pass three main techniques: model-based, signal-based, and data-based [5]. It is possible
to use signal-based techniques in the time, frequency, and time–frequency domains [6].
The classification of faults also makes use of artificial intelligence and pattern recognition
techniques [7]. A variety of time–frequency transformations were applied, such as the
Choi–Williams, Wigner–Ville, short-time Fourier, and undecimated wavelet transforms [8].
To identify and categorize nonstationary defects in permanent magnet AC machines at an
early stage, these transformations were coupled with classification techniques, including
the multiple discriminant-based classifier, the closest neighborhood classifier, and the linear
discriminant classifier [9]. In contrast to prognosis, diagnosis has been the main focus
of study. More research has been conducted in the recent literature on fault prognosis,
which includes estimating remaining useful life (RUL) and projecting future states [10].
One frequently used prognostic method revolves around particle filters, especially when
it comes to forecasting the RUL of rotary systems experiencing problems like cracks [11].
Moreover, similarity-based prognostic techniques play a role in estimating RUL. These
methods involve examining the life patterns of machines derived from run-to-failure data
found in training datasets [12]. Predicting the RUL of a test sample involves matching
patterns against these established ones. Another notable approach to prognosis employs
neural networks, particularly in forecasting the RUL of batteries [13]. Both similarity-based
prognostication and neural networks are categorized as data-based methods. Another
important category of prognostic methods is the model-based approach. Here, models are
created using a mathematical approach, the physical installation of the equipment, or a
combination of both [14]. This approach views faults as continuous variables, following
either a definite or random rule in their development. Models such as the Time-Dependent
Dielectric Breakdown (TDDB) model and the Hot Carrier model play crucial roles in es-
timating the lifespan of semiconductor devices [15]. Batteries also use these models to
determine their state of charge. Another significant approach to fault prognosis is through
the use of Hidden Markov Models (HMMs). These statistical models are highly effec-
tive due to their inherent dual statistical nature. HMMs have widespread applications
across various fields, including speech recognition, hand gesture recognition, and text
segmentation [16]. Moreover, they are instrumental in tasks like detecting and predicting
tool wear, as well as monitoring bearing faults. HMMs also play a crucial role in classi-
fying structural damage and tracking the wear of machine tools. Transitioning from the
discussion on fault prognosis, recent advancements in fault diagnosis methodologies have
introduced innovative approaches to address challenges in prognostics. A multihop graph
pooling adversarial network based on distributed federated learning (MHGPAN-DFL)
is one such approach that aims to accurately predict the remaining useful life (RUL) in
complex systems [17]. Multihop graph pooling and adversarial transfer learning are two
strategies that MHGPAN-DFL uses to deal with data dispersion and domain drift issues in
a good way. The weighted modified conditional variational autoencoder (WM-CVAE) is a
new tool that was created to help with class imbalance problems in data-driven methods.
This method improves the quality of the data and the ability of fault diagnosis models
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to learn, as demonstrated by tests on real-world industrial datasets [18]. The method
also created health indicators and predictions for the remaining useful life (RUL) of sys-
tems with few failures, changing operating conditions, and little labeled data. This was
made possible by using an LSTM autoencoder [19]. DC machines, valued for their simple
operation and control, are widely used across various operations, including within the
auxiliary systems of automobiles [20]. Despite not being directly involved in the traction
system, their malfunction can lead to the overall failure of the vehicle. Over the past
century, researchers have extensively studied DC motors, but only recently have they
focused on diagnosing and predicting faults in these machines. Such research aims to
ensure the continuous operation of these machines and estimate their remaining useful life
(RUL). This study proposes an innovative prognosis method that uses weak classifiers in
AdaBoost to predict future fault severity conditions in automotive starter DC machines
with gear faults. Unlike traditional approaches, this method utilizes a combination of weak
classifiers to enhance predictive accuracy and robustness. AdaBoost enables the effective
integration and iterative performance improvement of multiple weak classifiers, leading
to more accurate fault severity condition predictions. The primary contributions of this
research lie in the novel methodologies developed for computing the parameters of the
weak classifiers and devising the prediction algorithm. This approach provides a more
reliable and effective tool for prognosticating faults in DC machines, thereby enhancing the
reliability and longevity of automotive systems. The problem of training weak classifiers
with Adaboost becomes more difficult when limited data is available. This paper explores
the complexities of computing weak classifier parameters with sparse training data. An al-
gorithm is suggested to determine the next most likely fault severity condition, addressing
an important part of fault prognosis when limited data is available. This work provides
a thorough discussion and a complete description of the implementation methods, going
beyond simple preliminary findings. The goal is to give researchers and practitioners the
tools and insights they need to deal with the challenges of training weak classifiers with
Adaboost under data restrictions by offering a thorough overview.

2. Background

In modern industrial environments, ensuring the continuous and reliable operation of
machinery is crucial for maintaining productivity and minimizing downtime [21]. Fault de-
tection and diagnosis play a pivotal role in this context, allowing for proactive maintenance
and timely interventions to prevent costly failures. To address these challenges, researchers
and practitioners have turned to machine learning algorithms, which offer powerful tools
for analyzing complex data and identifying patterns indicative of machinery faults [21].
This section explores various machine learning techniques employed in fault detection
and diagnosis for industrial systems. The discussion encompasses popular algorithms
such as K-Means clustering, linear regression, Long Short-Term Memory (LSTM) networks,
Levenberg–Marquardt Neural Networks (LMNN), Random Forest Classifiers, Gradient
Boosting Machines (GBMs), Extreme Gradient Boosting (XGBoost), Logistic Regression
Classifiers, Support Vector Machines (SVMs) with linear kernels, Decision Tree Classifiers,
and AdaBoost with weak classifiers. Each algorithm is examined in terms of its underlying
principles, applications, and effectiveness in fault detection and diagnosis tasks. This
exploration aims to provide insights into the diverse range of machine learning approaches
available for fault detection and diagnosis in industrial settings. By understanding the
strengths and limitations of each algorithm, practitioners can make informed decisions
when selecting the most appropriate techniques for their specific application scenarios. This
discussion also shows how important it is to use advanced machine learning techniques
to make fault detection and diagnosis more reliable and effective. This will lead to better
operational performance and cost savings in industrial systems [21].
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2.1. K-Means Clustering

K-Means clustering, a popular unsupervised machine learning algorithm, divides
data into K clusters. It aims to minimize the within-cluster variance by iteratively updating
cluster centroids, as explained in Equation (1).

argmin
C

K

∑
i=1

∑
x∈Ci

||x− µi||2 (1)

where C is the set of clusters, Ci is the ith cluster, µi is the centroid of cluster Ci, and
|| · || denotes the Euclidean distance. K-Means clustering is explored as a precursor to
Operational Modal Analysis (OMA) in monitoring rotating machines used in energy
generation [22]. By distinguishing suitable excitation conditions through statistical features,
this approach enhances OMA accuracy, ensuring effective Structural Health Monitoring
(SHM) and potentially preventing shutdowns or catastrophic failures, thereby safeguarding
economic and social interests [22].

2.2. Linear Regression

Linear regression is a linear approach to modeling the relationship between a depen-
dent variable and one or more independent variables [23]. The equation for a simple linear
regression explained in Equation (2) with one independent variable x is

Y = β0 + β1X + ϵ (2)

The independent variable, X, influences the dependent variable, Y. The intercept
is represented by β0, the slope coefficient by β1, and the error term by ϵ. By employing
linear regression analysis, vibration signals are examined to accurately forecast bearing
failures. The signals are converted into the frequency domain, allowing for the computation
of the integral of the curve, thus offering information on the remaining usable life (RUL)
of the bearing [23]. It is important to note that the slope of the regression line is a very
important clue; a positive slope means things are getting worse or will soon break down [23].
The proactive method described in [23] helps the industry reduce costs associated with
unexpected periods of inactivity, urgent repairs, and replacing components. This technique
improves operational efficiency and reliability.

2.3. Long Short-Term Memory

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) archi-
tecture designed to model sequential data [24]. It addresses the vanishing gradient problem
of traditional RNNs by introducing gating mechanisms to control the flow of information.
The LSTM unit consists of several gates, including an input gate (i), forget gate ( f ), output
gate (o), and cell state (C). Activation functions control these gates and learn to regulate the
flow of information through the cell. The Equations (3)–(8) governing LSTM operations are
as follows:

ft = σ(W f · [ht−1, xt] + b f ) (3)

it = σ(Wi · [ht−1, xt] + bi) (4)

C̃t = tanh(WC · [ht−1, xt] + bC) (5)

Ct = ft ∗ Ct−1 + it ∗ C̃t (6)

ot = σ(Wo · [ht−1, xt] + bo) (7)

ht = ot ∗ tanh(Ct) (8)

The hidden state at time t is denoted as ht, the input at time t is denoted as xt, the
sigmoid activation function is denoted as σ, element-wise multiplication is denoted as ∗,
and the weight matrices and bias vectors are denoted as W and b, correspondingly. These
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parameters are learned during training. This method utilizes Long Short-Term Memory
(LSTM) networks to advance the field of fault prognosis for rolling element bearings,
which are crucial components in industrial setups [24]. The model achieves improved
performance by directly importing raw time series sensor data, minimizing the need for
feature engineering. LSTM, or Long Short-Term Memory, allows the model to surpass other
models that rely on conventional characteristics, demonstrating its ability to accurately
forecast faults [24]. Moreover, using unprocessed vibration data improves the model’s
capacity to make accurate predictions across different types of energy sources, including
hydro and wind power turbines, demonstrating the robustness of LSTM in proactive,
predictive maintenance applications [24].

2.4. Levenberg–Marquardt Neural Network

The Levenberg–Marquardt algorithm is an optimization method commonly used for
training neural networks, especially in regression tasks [25]. Its purpose is to minimize
the error function E(w), which measures the discrepancy between predicted outputs yi(w)
and actual outputs ti for a given set of input data xi. The error function is defined in
Equation (9):

E(w) =
1
2

N

∑
i=1

(yi(w)− ti)
2 (9)

where N represents the total number of training samples. The algorithm iteratively adjusts
the parameters w of the neural network model to minimize this error. It blends elements of
gradient descent and Gauss–Newton methods to achieve optimization. At each iteration,
the algorithm computes the Jacobian matrix J(w), which contains the partial derivatives of
the outputs concerning the parameters. This matrix offers insights into the local curvature
of the error surface, aiding in determining the direction and magnitude of parameter
updates. The update rule for adjusting the parameters is given by Equation (10).

w(k+1) = w(k) − α(J(w(k))T J(w(k))−1∇E(w(k))) (10)

where w(k) denotes the parameter vector at iteration k, α represents the learning rate,
and ∇E(w(k)) is the gradient of the error function. The algorithm inherently includes a
regularization effect through its parameter update mechanism, which effectively constrains
the model’s complexity and reduces the risk of overfitting. By iteratively updating the
parameters based on the gradient and curvature information provided by the Jacobian
matrix, the Levenberg–Marquardt algorithm converges to the optimal parameter values,
enabling effective training of neural networks for regression tasks.

2.5. Random Forest Classifier

Random Forest is an ensemble learning technique that creates several Decision Trees
during training and produces the most frequent class (classification) or the average predic-
tion (regression) of the various trees [26]. A randomly selected portion of the training data
trains each tree inside the forest, and a randomly selected subset of features informs each
split. A Random Forest Classifier’s prediction is determined by aggregating each tree’s
majority vote. Denote the ith tree forecast as Ti(x). The ultimate prediction of the Random
Forest ensemble is determined by Equation (11).

Ŷ(x) = mode{T1(x), T2(x), . . . , Tn(x)} (11)

where x represents the input data point. Random Forest stands out as a versatile and
potent tool, significantly enhancing the reliability and efficiency of predictive maintenance
strategies across diverse industrial applications [26]. Its robustness in handling complex
datasets and ability to capture intricate patterns make it a valuable asset in ensuring the
optimal performance and longevity of critical machinery like rolling bearings [26].
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2.6. Gradient Boosting Classifier

Gradient Boosting is an ensemble learning strategy that constructs a powerful learner
by iteratively incorporating weak learners, usually Decision Trees, into the ensemble [27].
In contrast to Random Forest, the Gradient Boosting model trains each tree on the residual
errors of the preceding trees. Subsequent trees in the model prioritize the remaining faults.
A Gradient Boosting Classifier determines its prediction by summing up the predictions of
all the weak learners. Let fi(x) denote the prediction of the ith weak learner, then the final
prediction of the Gradient Boosting ensemble is given by Equation (12).

Ŷ(x) =
n

∑
i=1

fi(x) (12)

n is the total number of weak learners, and x represents the input data point. Gradient
Boosting, a potent ensemble learning technique, is a versatile tool for various practical
applications. This iterative model sequentially enhances prediction accuracy by iteratively
creating new models [28]. Proposing a data-driven diagnostics and prognostics framework,
researchers devised a precise data labeling approach for supervised learning, validating
the framework using real vending machine data with SVM, RF, and Gradient Boosting
Classifiers [29]. Results show the Gradient Boosting model achieved over 80% accuracy
in diagnostics and outperformed traditional prediction models in two-stage prognostics,
showcasing its efficacy in diagnosing and monitoring complex systems [29].

2.7. Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is a highly sophisticated implementation of the
Gradient Boosting technique designed to prioritize speed and performance. The method
employed is Gradient Boosting, which constructs a collection of weak learners, usually
Decision Trees, and enhances the standard Gradient Boosting approach by integrating
regularization and parallel processing [30]. Aggregating the predictions from several weak
learners determines the prediction of an XGBoost classifier. The prediction of the ith weak
learner is denoted as fi(x). The final prediction of the XGBoost ensemble is determined
by Equation (13).

Ŷ(x) =
n

∑
i=1

fi(x) + γ
n

∑
j=1

Ω( f j) (13)

Let n denote the total number of weak learners, fi(x) represent the prediction of the ith
weak learner given input x, γ be the regularization parameter, and Ω( fj) be the regularization
term. XGBoost was employed as one of the models for diagnostic analysis, demonstrating
its efficacy in promptly and accurately detecting motor problems [31]. The results obtained
from stratified K-fold cross-validation demonstrate that XGBoost is suitable for practical
implementation in fault diagnosis for induction motors. In addition, a user-friendly graphical
interface was created to simplify the execution of the diagnostic technique [31].

2.8. Logistic Regression Classifier

Logistic Regression is a popular classification algorithm used to model the probability
of a binary outcome based on one or more predictor variables [32]. It estimates the prob-
ability that a given input belongs to a particular class by fitting a logistic function to the
data. The Logistic Regression model predicts the probability of the positive class (Y = 1)
using the logistic function, also known as the sigmoid function. The probability p of class
membership is given by Equation (14).

p(X) =
1

1 + e−βT X
(14)

where X represents the input features, β is the vector of coefficients (including the intercept
term), and e is the base of the natural logarithm. This study looks at Logistic Regression (LR)
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as a way to find problems in battery systems and shows that it is more accurate and easier to
set up than other machine-learning-based methods [32]. LR demonstrates superior overall
performance compared with k-NN, GNB, KSVM, and classical NN methods. However,
this study did not consider various uncertainties present in real-world applications during
model training and testing [32].

2.9. Support Vector Machine with Linear Kernel

Support Vector Machine (SVM) is a supervised learning algorithm for classification
tasks. When using a linear kernel, SVM constructs a hyperplane that best separates the
classes in the feature space. It maximizes the margin between the support vectors and the
decision boundary [33]. In the case of SVM with a linear kernel, the decision function for
classifying a new data point X is given by Equation (15):

f (X) = sign(
n

∑
i=1

αiyiK(X, Xi) + b) (15)

where n is the number of support vectors, αi are the Lagrange multipliers, yi are the class
labels, Xi are the support vectors, K is the linear kernel function, and b is the bias term.
Detecting bolt loosening in rotating joints is a critical challenge in industrial settings [33].
This study employs Support Vector Machines (SVMs) for vibration-based detection in a
custom sewer-cleaning vehicle transmission. The SVM proved highly effective, achieving a
remarkable 92.4% accuracy [33]. Using information from accelerometers placed in strategic
places, the SVM shows how reliable it is at finding faults in important industrial parts like
rotating joints [33].

2.10. Decision Tree Classifier

A Decision Tree is a nonparametric supervised learning method for classification and
regression tasks [34]. It recursively partitions the feature space into subsets based on the
values of input features, with each partition represented by a tree node. Decision Trees are
simple to understand and interpret, making them popular for exploratory data analysis [34].
A series of conditional statements based on input features represent the decision function
of a Decision Tree Classifier. Let X represent the input features and T be the Decision Tree
model. The prediction of the Decision Tree Classifier is given by Equation (16):

Ŷ(X) = T(X) (16)

T(X) represents the output of traversing the Decision Tree with input features X. An
approach leveraging the Decision Tree algorithm is proposed for fault detection and diagnosis
in grid-connected photovoltaic systems [35]. The Decision Tree algorithm accurately sorts
faults into groups like free fault, string fault, short circuit fault, or line–line fault. This shows
how well it works for finding and fixing faults in grid-connected photovoltaic systems [35].

2.11. Ensemble Learning Methods

Ensemble Learning Methods combine multiple base learners to enhance predictive
performance. Techniques like Random Forests, Gradient Boosting Machines (GBMs),
and Ensemble of Neural Networks leverage the diversity of individual models to reduce
overfitting and improve generalization. The output of an ensemble classifier is obtained by
aggregating the predictions of base learners, weighted by their respective performances.

2.12. AdaBoost with Weak Classifiers for Fault Severity Prediction

The proposed method utilizes a boosting algorithm known as AdaBoost, which com-
bines multiple weak classifiers to improve predictive accuracy [34]. In this context, the
algorithm utilizes three time–frequency features extracted from the motor current signal
as machine health indicators, denoted as f1, f2, and f3. AdaBoost works by iteratively
training weak classifiers on a weighted dataset, where each weak classifier focuses on
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specific aspects of the input features. These weak classifiers are combined in a weighted
manner to form the ensemble classifier. Let ht(x) represent the prediction of the t-th weak
classifier for the input feature vector x and αt represent its corresponding weight. The
final prediction model, denoted as H(x), is a function of the input feature vector x. It is
computed by combining the predictions of all weak classifiers, weighted by their respective
performances, as given in Equation (17):

H(x) =
T

∑
t=1

αt · ht(x) (17)

where T is the total number of weak classifiers. AdaBoost with weak classifiers improves
prediction by leveraging the strengths of multiple models that work well together. This
makes it suitable for predicting the severity of faults in machine health monitoring. Weak
classifiers with AdaBoost emerge as a superior technique for fault severity prediction due to
several key advantages over alternative methods [34]. While Hidden Semi-Markov Models
(HSMMs) offer flexibility in modeling variable-duration states, they may struggle with
complex data patterns and require extensive parameter tuning [36]. Deep Learning Neural
Networks, renowned for capturing intricate patterns, demand substantial computational
resources and extensive data for effective training, limiting their practical applicability
in resource-constrained environments [37]. Ensemble Learning Methods, including Ran-
dom Forests and Gradient Boosting Machines, provide robustness against overfitting and
enhance generalization by combining multiple models. However, they may suffer from
increased computational complexity and a lack of interpretability [38]. Fuzzy Logic Sys-
tems offer a framework for handling uncertainty but may struggle with capturing complex
nonlinear relationships in data [39]. In contrast, AdaBoost with weak classifiers achieves
high predictive accuracy while maintaining computational efficiency [40]. By iteratively
training weak learners on weighted subsets of data, AdaBoost focuses on misclassified
samples, gradually improving performance. This approach effectively addresses the chal-
lenges of noisy data and complex data patterns, making it particularly suitable for fault
severity prediction tasks in industrial settings [40]. Additionally, the simplicity of weak
classifiers enhances model interpretability, facilitating insights into the underlying factors
contributing to fault severity. It turns out that AdaBoost with weak classifiers is a strong
and effective way to accurately predict the severity of a fault, which can be used in a
number of real-world situations [40].

3. Method

In this research, data collection involved gathering vibration, current, and voltage
signals from operational DC motors using high-fidelity sensors and acquisition systems,
capturing signals under diverse conditions. After that, visual inspection and Fast Fourier
Transform (FFT) spectral analysis helped find patterns that could tell the difference be-
tween healthy and faulty states. Logarithmic scaling made frequency domain visualization
easier. Frequency analysis pinpointed fault-associated components within specific ranges,
extracting features crucial for gear fault diagnosis. Leveraging machine learning, particu-
larly the AdaBoost Ensemble Approach with weak classifiers, classifiers were trained on
these features for fault diagnosis, while model parameters were meticulously calculated
to optimize predictive performance. Testing the method on different sets of data and
different operating conditions proved that it accurately found and predicted gear faults in
DC motors, demonstrating that it can be used in real life.

3.1. Feature Extraction and Fault Diagnosis

The fault diagnosis and prognosis methodology for the DC motor’s gear system
involves a detailed analysis of features extracted from the motor’s current signals. Various
techniques for feature extraction, such as time-domain and frequency-domain analysis, are
explored. This study’s proposed methodology focuses on utilizing a boosting algorithm
with weak classifiers for fault diagnosis and prognosis. During diagnosis, an ensemble
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classifier is trained on the extracted features from the motor current signal. The ensemble
classifier is adept at classifying the present fault state of the machine based on the extracted
features. As for prognosis, the ensemble classifier is utilized to anticipate future fault
severity conditions. By amalgamating predictions from multiple weak classifiers trained
during the diagnosis phase, the boosting algorithm computes the most probable next
state and assesses the severity of potential faults. The weights of the weak classifiers are
determined during the training phase of the boosting algorithm, where classifiers exhibiting
better performance are assigned higher weights. This meticulous weight allocation ensures
that well-performing classifiers contribute more significantly to the ensemble’s decision-
making process. The proposed methodology offers a reliable and comprehensive approach
to fault diagnosis and prognosis, leveraging ensemble learning techniques to provide
accurate predictions of fault severity in machine health monitoring, thereby enhancing
reliability and efficiency in industrial operations.

3.2. Model Parameter Calculation

As discussed previously, the proposed methodology leverages a boosting algorithm
with weak classifiers to facilitate fault diagnosis and prognosis, eliminating the reliance
on HMMs. The boosting algorithm determines crucial model parameters, including the
weighting coefficients of the weak classifiers, during its training phase. In scenarios where
extensive historical data are unavailable, alternative methods for model parameter cal-
culation are explored. Extensive-scale testing involves evaluating significant samples of
faulty machines, enabling the natural progression of using methods like finite element
analysis, stress analysis, and nondestructive testing, while fatigue analysis looks at how
the starter motor gear and flywheel wear over time. Additionally, online estimation esti-
mates transition probabilities during vehicle operation, leveraging similarities to previous
transitions. These approaches provide valuable insights into model parameter calculation,
ensuring robust fault diagnosis and prognosis methodologies in machine health monitoring
applications. However, practical constraints limit the feasibility of the first two options.
Online estimation, the third method, is applicable only during machine operation, where
faults develop naturally. For laboratory setups, heuristic methods are employed to estimate
these probabilities. The proposed methodology presents a pragmatic approach to model
parameter calculation, harnessing ensemble learning techniques for precise fault diagnosis
and prognosis in machine health monitoring. The equations of the boosting algorithm
elucidate the mathematical formulas utilized for training and prediction making with the
ensemble classifier. This is very important for correctly identifying faults and predicting
their outcomes in machine health monitoring. The weighted error rate errt shown in
Equation (18) for the t-th weak classifier ht is computed by summing the weights wi of
misclassified samples and dividing by the total sum of sample weights.

errt =
∑N

i=1 wi · indicator(ht(xi) ̸= yi)

∑N
i=1 wi

(18)

The weight αt, as shown in Equation (19) assigned to the t-th weak classifier ht, is
determined based on the computed error rate errt. It represents the contribution of ht to
the final ensemble classifier.

αt = 0.5 · log
(

1− errt

errt

)
(19)

Equation (20) explains sample weights wi are updated based on the weak classifier ht
performance, adjusting them to emphasize correctly classified samples and de-emphasize
misclassified ones.

wi = wi · exp(−αt · yi · ht(xi)), i = 1 to N (20)
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The sample weights wi are normalized to sum up to 1, as shown in Equation (21),
maintaining their probabilistic interpretation:

wi =
wi

∑N
i=1 wi

, i = 1 to N (21)

The ensemble classifier H(x) can be calculated using Equation (22), aggregating
the predictions of all weak classifiers ht weighted by their respective weights αt, and
producing the final prediction. The model parameter calculation is crucial to the proposed
methodology for fault diagnosis and prognosis in machine health monitoring:

H(x) = sign

(
T

∑
t=1

αt · ht(x)

)
(22)

By exploring alternative methods such as large-scale testing, fatigue analysis, and
online estimation, this methodology offers practical solutions for scenarios where exten-
sive historical data may be unavailable. The detailed equations presented elucidate the
training and prediction process of the boosting algorithm with weak classifiers, high-
lighting their significance in achieving accurate fault severity predictions. By leveraging
insights from robust techniques for parameter calculation, the subsequent pseudocode
defined in Algorithm 1 delineates the implementation of AdaBoost with weak classifiers
for fault detection in DC motor gears. This algorithm is very good at finding patterns
that point to gear problems by improving the classification model over and over again
using weighted training data. Consequently, it facilitates the development of dependable
predictive maintenance strategies for DC motor systems.

Algorithm 1 AdaBoost with weak classifiers

1: Input: Training dataset D = {(x1, y1), (x2, y2), ..., (xn, yn)} where xi are feature vectors
and yi ∈ {−1,+1} are labels, number of weak classifiers T

2: Output: Final strong classifier H(x)
3: procedure ADABOOST(D, T)
4: Initialize weights wi =

1
n for i = 1, 2, ..., n

5: Initialize an empty list H to store weak classifiers
6: for t = 1 to T do
7: Train a weak classifier ht(x) using weighted dataset Dt = {(xi, yi, wi)}n

i=1
8: Calculate error εt = ∑n

i=1 wi ·⊮(ht(xi) ̸= yi)
9: Ensure εt < 0.5 to ensure classifier performance above random guessing

10: Compute weak classifier weight αt =
1
2 ln
(

1−εt
εt

)
11: Update weights: wi ← wi · exp(−αtyiht(xi)) for i = 1, 2, ..., n
12: Normalize weights: wi ← wi

∑n
i=1 wi

for i = 1, 2, ..., n
13: Append weak classifier ht(x) to list H
14: end for
15: return Final strong classifier H(x) = sign

(
∑T

t=1 αtht(x)
)

16: end procedure

The AdaBoost algorithm with weak classifiers defined in Algorithm 1 operates by
iteratively refining a solid classifier from a collection of weak learners. Initially, the algo-
rithm assigns equal weights to all training samples, ensuring each observation contributes
equally to the learning process. Through a series of iterations, known as rounds, weak
classifiers are trained on weighted subsets of the training data. These weak classifiers
are typically simple models, such as decision stumps, which focus on capturing specific
patterns in the data. After training each weak classifier, its performance is evaluated by
calculating the error rate, which measures the discrepancy between the predicted and actual
labels. To maintain the classifier’s performance above random guessing, the algorithm
requires each weak classifier’s error rate to remain below 0.5. The weight of each weak
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classifier is then determined based on its error rate, with more accurate classifiers assigned
higher weights. Additionally, the weights of the training samples are adjusted to prioritize
misclassified instances, effectively emphasizing challenging data points in subsequent iter-
ations. After normalization, the weak classifiers are combined into a final robust classifier
using a weighted voting scheme, where each weak classifier’s contribution is weighted
based on its performance. This ensemble approach allows AdaBoost to effectively leverage
the collective knowledge of the weak classifiers, resulting in a robust classifier capable of
accurately predicting DC motor gear faults. Through its iterative learning process and
adaptive weight adjustment, AdaBoost with weak classifiers enhances the reliability of
predictive maintenance strategies for DC motor systems, facilitating early detection and
mitigation of gear faults to ensure uninterrupted operation and prolong the lifespan of the
equipment. This holistic approach underscores the importance of robust model parameter
calculation techniques in developing effective machine health monitoring systems. The
explanation effectively delineates the methodology’s approach to determining vital model
parameters for fault diagnosis and prognosis in machine health monitoring. It adeptly
discusses alternative methods such as large-scale testing, fatigue analysis, and online esti-
mation, showcasing the methodology’s adaptability in scenarios where extensive historical
data may be scarce. The detailed equations show how the boosting algorithm with weak
classifiers is trained and how it makes predictions. This shows how important they are for
getting accurate predictions of fault severity. This comprehensive explanation provides
valuable insights into how robust model parameter calculation techniques contribute to the
methodology’s efficacy in developing dependable machine health monitoring systems.

4. Implementation

The DC motor under investigation is an integral part of automotive starting systems.
Faults within the gear mechanism, such as gear wear, misalignment, or damage, can impede
the functionality of the starter motor system by disrupting the smooth transmission of
rotational energy from the motor to the engine’s flywheel [41]. For instance, worn or
damaged gear teeth may lead to improper engagement and ineffective engine starting [42].
Similarly, misalignment of the gear components can cause uneven wear and increased
friction, reducing the efficiency of the starter motor system. These gear faults hinder
engine ignition and can accelerate wear and tear on the motor components, necessitating
timely diagnosis and repair to ensure optimal vehicle performance. Moreover, faults within
the gear mechanism, particularly in the teeth, can have significant repercussions on the
performance of the starter motor system [41]. When gear teeth are worn, damaged, or
misaligned, the smooth transmission of rotational energy is compromised, leading to gear
slippage, where the gear fails to engage with the flywheel properly [41,42]. Additionally,
damaged or misaligned teeth can create uneven contact surfaces, increasing friction and
wear on the gear components over time. These problems can escalate if left unaddressed,
potentially causing further damage to the motor and associated components [41]. Thus,
addressing gear tooth problems is crucial to maintaining the integrity of the starter motor
system and ensuring reliable engine start-up [42]. Given the inherent complexities of
starter motor operation, accurately determining its lifespan is challenging. However, the
proposed method offers a solution by providing predictions for different fault severities
that may occur during subsequent starting attempts and the likelihood of complete failure.
This estimation of the failure state can indirectly indicate the motor’s remaining useful
life. Demonstrations were conducted using real-world data collected from laboratory
experiments to validate the approach.

4.1. Experimental Setup

A 12V battery powered a comprehensive engine module that included the starter
motor assembly in the laboratory configuration. Faults are intentionally induced in the
motor gear mechanism to replicate real-world scenarios where gear damage occurs. This
deliberate process involves controlled manipulation of the gear system to introduce spe-
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cific types of faults, such as One-Half Tooth, One Tooth, Two Teeth, and Two Half Teeth.
Techniques like controlled wear, deliberate misalignment, or simulated damage to gear
teeth are employed to replicate common issues encountered in practice accurately. Each
induced fault is meticulously created to closely mimic the characteristics and severity of
the corresponding fault category. This meticulous process ensures that the induced faults
accurately represent the types of damage observed in real-world situations, providing
valuable insights into the behavior and performance of the motor gear mechanism under
different fault conditions. The PC controlled the starter motor solenoid via signal condi-
tioning devices. The data acquisition program initiated the generation of starting signals,
while a commercially available data acquisition card (NI DAQ-6229) and Labview software
were used for sampling. Signals such as motor current, battery voltage, and vibration were
collected. However, this study focused solely on the motor current. A position sensor,
equipped with an optical pulse counter, was utilized to acquire precise measurements of
gear locations and motor speed. The diagram in Figure 1 provides an overview of the
experimental setup.

Figure 1. Block Diagram of Experimental Setup.

4.2. Operation of Motor and Nature of Fault

During each starting attempt, the starter DC motor operates for approximately 1 s.
Within this time frame, the starter motor gear engages with the flywheel attached to the
engine crankshaft, a critical step in the starting process. During the compression cycle of
each cylinder, the torque exerted by the starter motor is significant, leading to increased
force on the teeth of the starter gear. When the teeth are damaged, the impact and meshing
pattern differ, causing variations in the motor current. This results in a periodic signal
synchronized with the engine’s compression and expansion frequencies. In faults, such as
damaged teeth, high frequencies are superimposed on this signal due to knock. In an 8000
ms timeframe, which accommodates approximately eight starting attempts of 1 s each, the
motor’s operational cycles are observed, reflecting the dynamic engagement of the starter
gear with the engine flywheel. The current signature is shown in Figure 2.
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Figure 2. Current signatures of starter DC motor operation with healthy and faulty conditions.

4.3. Spectral Analysis

In the spectral analysis section, the vibration and current signals from the DC motor
are put through a full frequency domain analysis to find fault signatures. The Fast Fourier
Transform (FFT) algorithm is applied to convert the time-domain signals into frequency-
domain representations, enabling the identification of specific frequency components
associated with various fault conditions. By analyzing the amplitude and frequency
characteristics within distinct frequency ranges, the spectral analysis provides valuable
insights into the nature and severity of faults in the DC motor system. In addition, the
spectral features that are taken from the vibration and current signals are used as inputs for
later machine learning algorithms. This makes fault diagnosis and prediction more accurate.
The Fast Fourier Transform (FFT) is utilized to convert the time-domain signals x(t) into
their corresponding frequency-domain [43] representations X( f ), defined in Equation (23):

X( f ) =
∫ ∞

−∞
x(t)e−j2π f tdt (23)

where f represents frequency in Hz, t denotes time in seconds, and j denotes the imaginary
unit. The FFT result is often plotted with logarithmic scaling to emphasize frequency
components that might be hidden in linear plots. The logarithmic scaling of the FFT result
|X( f )| is given by Equation (24):

Log10|X( f )| = 10 · log10(|X( f )|) (24)
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This transformation enhances the visualization of frequency components, particularly
those with lower amplitudes, aiding in identifying fault-related signatures. The analysis is
shown in Figure 3.

Figure 3. FFT analysis results with logarithmic scaling.

4.4. Frequency Range Analysis and Feature Extraction

In spectral analysis, distinct frequency ranges are meticulously examined to uncover
fault-related signatures within the signal. This process involves dividing the frequency
spectrum into specific bands, within which the amplitude and frequency of dominant
peaks are meticulously analyzed. By focusing on these bands, fault-related frequencies
can be isolated and their severity characterized. Critical spectral features, including peak
amplitudes, peak frequencies, and spectral bandwidths, are then extracted from these
frequency-domain representations. These features play a crucial role as discriminative
parameters for machine learning algorithms, empowering them to achieve precise fault
diagnosis and prognosis. Through this detailed spectral analysis, the methodology gains
insights into the underlying fault mechanisms, enabling effective monitoring and main-
tenance strategies for the DC motor. Figure 4 illustrates the spectral features of a single
sample within the frequency range of 0.1 to 0.2 Hz and 0.2 to 0.3 Hz, showcasing important
fault-related parameters such as peak amplitudes and frequencies. In the frequency range
of 0.1 to 0.2 Hz, an increase in the amplitude of the peaks correlates with a higher severity
of faults. Conversely, in the frequency range of 0.2 to 0.3 Hz, a decrease in peak amplitude
is associated with a more pronounced fault occurrence. These findings indicate a direct
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relationship between fault severity and the strength of specific frequency components
within each frequency range.

Figure 4. FFT plots showcasing the dominant frequency components within the 0.1 to 0.2 and 0.2 to
0.3 Hz ranges for different fault levels in DC motor operation.

4.5. Diagnosis Algorithm Implementation

In this study, the AdaBoost (Adaptive Boosting) algorithm was applied for fault
classification using the provided dataset. AdaBoost is an ensemble learning technique
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that combines multiple weak classifiers to form a robust classifier [40]. Let X denote the
feature matrix and y denote the target variable, assumed to be ’Fault Status’ in this context.
The dataset was partitioned into training and testing sets, with a test size of 20% and a
random state of 40 to ensure reproducibility. The weak classifier chosen for AdaBoost
was a Decision Tree Classifier with a maximum depth of 1, denoted as h(x; θi), where θi
represents the parameters of the weak classifier. The Decision Tree Classifier is defined in
Equation (25).

h(x; θi) =

{
1 if xj < s
−1 otherwise

(25)

xj represents the feature value, and s is the splitting threshold determined during
training. For classification tasks, a Decision Tree Classifier serves as a supervised learning
algorithm. It works by recursively partitioning the feature space into regions and assigning
a class label to each region. The Decision Tree consists of root, internal, and leaf nodes.
Each internal node represents a decision based on the value of a feature, and each leaf node
represents a class label. Let X denote the feature space, Y denote the set of class labels,
and D = {(x1, y1), (x2, y2), . . . , (xN , yN)} denote the dataset, where xi is a feature vector
and yi is the corresponding class label. A Decision Tree Classifier recursively splits the
feature space into regions using decision rules. Each tree node applies a decision rule with
a splitting threshold s to a feature xj. The process takes the left branch if the feature value xj
is less than the threshold s; otherwise, it takes the right branch. The process continues until
it meets a stopping criterion, which could be reaching a maximum depth or a minimum
number of samples in a node. Mathematically, a Decision Tree Classifier at each internal
node t applies a decision rule based on a feature xj and a threshold s. Let Rt denote the
region of feature space associated with node t. The decision rule can be represented as
explained in Equation (26):

Rt =

{
{x ∈ X : xj < s} if xj < s
{x ∈ X : xj ≥ s} otherwise

(26)

The decision rule is determined during the training phase by selecting the feature xj
and threshold s that optimally split the data according to a specific criterion, such as mini-
mizing impurity or maximizing information gain. Once the Decision Tree is constructed,
class labels are assigned to each leaf node based on the majority of the training samples in
that region. This study used a Decision Tree Classifier with a maximum depth of 1, meaning
that the Decision Tree consists of only a root node and two leaf nodes. This simple Decision
Tree serves as a weak learner within the AdaBoost Ensemble. In our implementation, a
Decision Tree Classifier with a maximum depth of 1 was denoted as DT(d = 1, R = 40).
An AdaBoost classifier with base estimator b = DT(d = 1, R = 40), number of estima-
tors n = 100, and random state R = 42 was utilized. After initializing the Decision Tree
Classifier as the weak learner, the AdaBoost algorithm is applied to sequentially fit the
weak classifiers to the data and adjust the weights of misclassified samples to emphasize
difficult-to-classify instances. The final robust classifier, denoted as H(x) and explained in
Equation (27), is a linear combination of the weak classifiers weighted by their performance:

H(x) = sign

(
T

∑
i=1

αih(x; θi)

)
(27)

where T is the total number of weak classifiers, αi is the weight assigned to the ith weak
classifier, and sign(·) is the sign function. The AdaBoost algorithm was trained on the
training data (Xtrain, ytrain) and evaluated on the testing data (Xtest, ytest). The performance
of the AdaBoost classifier was assessed using various metrics, such as accuracy.
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4.6. Prognosis Algorithm Implementation

A prognosis becomes feasible if the features extracted from samples with increasing
fault severity display a discernible trend. Faults of varying severity were induced in
four machines by grinding one tooth. To identify such a trend, A clear pattern emerges
by systematically analyzing the extracted features as fault severity increases, enabling
the formulation of a prognosis model. This model becomes crucial for predicting and
preventing potential machine failures, optimizing maintenance schedules, and ensuring
uninterrupted operations. This proactive approach significantly enhances the efficiency
and reliability of the machinery, resulting in improved productivity and cost savings. This
prognostic endeavor necessitates an explanation of the algorithm, specifically focusing
on AdaBoost, an Ensemble Learning Method for regression tasks. This method combines
multiple weak regressors, particularly Decision Tree regressors, to create a robust regressor,
enhancing prediction accuracy. The algorithm fits weak regressors to the data one step at a
time, changing the weights of samples that were wrongly predicted to focus on the most
difficult cases. The last regressor, which is a weighted sum of the weak regressors, gives
us a full model for prognosis prediction that was trained and tested on different datasets.
Mathematically, the Decision Tree regressor is defined in Equation (28).

h(x; θi) =

{
y1 if xj < s
y2 otherwise

(28)

where xj represents the feature value, s is the splitting threshold determined during training,
and y1 and y2 are the predicted output values. The final strong regressor, denoted as H(x),
is a weighted sum of the weak regressors, as explained in Equation (29):

H(x) =
T

∑
i=1

αih(x; θi) (29)

where T is the total number of weak regressors, and αi is the weight assigned to the ith
weak regressor. The AdaBoost algorithm is trained on the training data (Xtrain, ytrain) and
evaluated on the testing data (Xtest, ytest). Performance metrics such as mean squared error
(MSE) are used to assess the effectiveness of the regressor for prognosis.

5. Results

This section explores various machine learning techniques employed in predictive
methodology for diagnosing and predicting gear problems in DC motors, emphasizing the
effectiveness of AdaBoost with weak classifiers. A lot of well-known algorithms are talked
about, including K-Means clustering, linear regression, Random Forest Classifiers, Gradient
Boosting Machines (GBMs), Extreme Gradient Boosting (XGBoost), Logistic Regression
Classifiers, Support Vector Machines (SVMs) with linear kernels, and AdaBoost with weak
classifiers. Each algorithm is examined regarding its underlying principles, applications,
and effectiveness in fault detection and diagnosis tasks in diagnosing and predicting gear
problems in DC motors. Among these algorithms, AdaBoost stands out for its ability to
boost the performance of weak classifiers, making it particularly suitable for this predictive
methodology, where accurate and reliable predictions are crucial for maintaining the health
and functionality of DC motor gears.

5.1. K-Means Clustering

This research investigated the effectiveness of K-Means clustering for fault diagnosis in
DC motors using frequency and amplitude data. Despite identifying five clusters, the visual
inspection of the clustered data revealed significant overlap, indicating a lack of distinct
separation between fault conditions. This observation suggests that K-Means clustering
may need to be better suited for accurately categorizing faults in DC motors based solely
on these features. Potential factors contributing to this limitation include the complexity
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and variability of faults in DC motors and the inherent sensitivity of K-Means clustering to
initialization and dataset dimensionality. As shown in Figure 5, the overlap among clusters
is evident, reinforcing the challenges associated with using K-Means clustering for fault
diagnosis in DC motors.

Figure 5. The scatter plot illustrates the clustering results obtained using K-Means algorithm for fault
diagnosis in DC motors.

5.2. Linear Regression

It is known that linear regression is easy to understand and use. However, the use
of this method to diagnose and predict gear problems in DC motors, as shown in the
accompanying Figure 6, highlights the difficulties that come from not having enough data
and the dataset’s inherent limits. The linear regression model has a hard time capturing the
complex relationships in the time–frequency features that are taken from motor current
signals. This is especially true when the historical records are limited. This constraint
significantly challenges the model’s ability to generalize effectively and accurately predict
fault conditions and remaining useful life. Because of this, linear regression is still a popular
method, but it has trouble dealing with complex and nuanced data, which is made worse
by a lack of data. This makes it less likely to be useful for reliable fault diagnosis and
prognostics in DC motors. Future research efforts may need to explore alternative machine
learning approaches to better accommodate the limited data availability and address the
complexities inherent in fault diagnosis and prognostic tasks.

Figure 6. Scatter plot showing the relationship between Amplitude2 and Frequency2 with different
fault statuses.
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5.3. Long Short-Term Memory

When dealing with small datasets, particularly gear problems in DC motors, LSTM
models encounter several challenges. Firstly, due to their large number of parameters,
LSTMs are prone to overfitting, potentially memorizing training examples rather than
generalizing well to unseen data. This challenge is especially pertinent in applications like
diagnosing gear problems in DC motors, where the limited dataset may need to capture
real-world conditions’ total variability adequately. Consequently, the model’s ability to
generalize to unseen instances may need to be improved, leading to suboptimal perfor-
mance. Additionally, the capacity of LSTMs to learn complex patterns is constrained by
the scarcity of training examples, further exacerbating the risk of overfitting and hindering
the model’s ability to capture the underlying dynamics of gear faults. Moreover, small
datasets often contain higher noise levels relative to the signal, amplifying the challenge of
separating meaningful patterns from noise during training. Tuning hyperparameters also
becomes challenging in this scenario, as there are limited data to estimate their impact on
performance reliably. Finally, the risk of data leakage is heightened with small datasets, as
inadequate partitioning between training and validation sets may lead to overly optimistic
performance estimates. While the challenges mentioned are significant, the performance of
the LSTM model can be visually evaluated through the generated plots, showcasing the
predicted values compared with the actual values over time, as shown in the generated
graphs in Figure 7. Here, 75% of the data are used for training and 25% are reserved for
testing purposes.

Figure 7. Comparison of LSTM predictions and actual values for training and testing data in gear
fault diagnosis for DC motors.

Drawing inspiration from challenges in aviation prognostics [19], this study evaluates
LSTM autoencoders for prediction, demonstrating their potential to enhance prognostic
capabilities despite the limited availability of labeled data. However, LSTM autoencoders
encounter significant hurdles, particularly in scenarios involving small datasets such as
DC motor gear problems. Their intricate architectures, laden with parameters, increase
the risk of overfitting, potentially impeding generalization. This challenge is pivotal in
gear problem diagnosis, where limited datasets may inadequately capture real-world con-
ditions, affecting performance. Furthermore, the scarcity of training examples restricts
the autoencoder’s ability to discern fault patterns. Small datasets often harbor elevated
noise levels, complicating pattern extraction during training. Additionally, hyperparameter
tuning becomes challenging due to insufficient data for accurate estimation. Improper par-
titioning between training and validation sets heightens the risk of data leakage, resulting
in overly optimistic performance estimates. Despite these obstacles, visual inspection of
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plots remains crucial for evaluation, facilitating comparison of predicted values over time
and displaying predicted values alongside their corresponding actual values over time, as
depicted in the graphs generated in Figure 8.

Figure 8. Evaluating LSTM autoencoder predictions against actual values in DC motor gear
fault diagnosis.

5.4. Levenberg–Marquardt Neural Network

The methodology applied for detecting and managing faults in DC motor teeth,
utilizing the Levenberg–Marquardt Neural Network (LMNN) model, draws parallels with
an approach proposed for extending the longevity of power conversion systems [44]. This
method integrates the Levenberg–Marquardt Back Propagation Neural Network (LM-
BPNN) for state estimation and power routing, focusing on predictive maintenance in
industrial contexts [44]. Specifically addressing fault detection, the LMNN model analyzes
motor performance and fault data to discern patterns indicative of tooth faults within the
gear system. Employing LMNN, a variant of the Backpropagation Neural Network (BPNN),
trained via the Levenberg–Marquardt optimization algorithm, the architecture encompasses
input, hidden, and output layers initialized with random weights. Through Levenberg–
Marquardt (LM) algorithm-based training on provided data, including features derived
from frequency and amplitude measurements alongside corresponding fault statuses,
the model strives to optimize weights. However, limitations stemming from the small
dataset or fault complexity may impede accurate fault detection and classification, as
depicted in Figure 9. The restricted dataset size constrains the LMNN model’s ability to
capture the variability of fault manifestations and motor performance patterns, thereby
limiting its performance. Despite these constraints, this approach outperforms LSTM and
LSTM autoencoder-based techniques. Regarding Root Mean Square Error (RMSE), the
LMNN method surpasses LSTM and LSTM autoencoder techniques. While the RMSE
values for LSTM and LSTM autoencoder are 17 and 21, the LMNN technique achieves a
significantly lower RMSE of 12. This disparity in RMSE values underscores the LMNN
model’s superior predictive accuracy compared with the LSTM and LSTM autoencoder
models. Further refinement of the dataset and enhancements to the model’s architecture
and methodology are crucial to enhancing its effectiveness and reliability in real-world
fault detection scenarios for DC motors used in starter applications. To address these
challenges, practitioners may explore techniques such as data augmentation, transfer
learning, regularization, leveraging pretrained models, and considering simpler model
architectures or alternative approaches tailored to the specific constraints of small datasets
in gear fault diagnosis for DC motors.



Appl. Sci. 2024, 14, 3105 21 of 29

Figure 9. Evaluating Levenberg–Marquardt Neural Network predictions against actual values in DC
motor gear fault diagnosis.

5.5. Random Forest Classifier

The Random Forest Classifier demonstrates mixed performance in classifying gear
problems in DC motors, as reflected in its precision, recall, and F1-score metrics. While
achieving perfect scores for the ’Healthy’ and ’Two Half Teeth’ classes, with precision
and recall of 1.00, the classifier struggles notably with the ’One-Half Tooth’ and ’One
Tooth’ categories, where it shows significant deficiencies, yielding precision, recall, and
F1-score metrics close to zero. Overall, the classifier’s accuracy of 50% indicates a no-
table misclassification rate across the dataset, as shown in Table 1. These discrepancies
underscore challenges in accurately identifying specific gear fault categories, potentially
stemming from factors such as imbalanced class distributions or limitations in the model’s
capacity to discern subtle patterns within the data. Addressing these weaknesses may
necessitate adjustments in feature selection and model hyperparameters or exploring alter-
native classification algorithms better suited to handle the intricacies of gear fault diagnosis
in DC motors.

Table 1. Performance Metrics of Random Forest Classifier.

Class Precision Recall F1-Score Support

Healthy 1.00 1.00 1.00 1
One Half Tooth 0.00 0.00 0.00 3

One Tooth 0.50 0.50 0.50 2
Two Half Teeth 1.00 1.00 1.00 2

Two Teeth 0.00 0.00 0.00 0

Accuracy 0.50
Macro Avg 0.50 0.50 0.50 8

Weighted Avg 0.50 0.50 0.50 8

Table 1 presents the performance metrics of a Random Forest Classifier for classifying
different categories or classes, including precision, recall, and F1-score, as well as overall
accuracy, macroaverage, and weighted average values. Precision indicates the accuracy of
optimistic predictions, measuring the proportion of correctly predicted positive instances
among all instances predicted as positive. Recall, also known as sensitivity, gauges the
ability of the classifier to capture all positive instances, calculating the ratio of correctly
predicted positive instances to the total actual positives in the dataset. The F1-score, as the
harmonic mean of precision and recall, offers a balanced measure of a classifier’s perfor-
mance, accommodating scenarios where either precision or recall is disproportionately low.
Additionally, support values indicate the number of occurrences of each class in the dataset,
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providing context for the precision and recall metrics. Overall accuracy reflects the ratio of
correctly predicted instances to the total number of instances, while macro- and weighted
averages offer comprehensive assessments across all classes, considering potential class
imbalances. These metrics collectively offer comprehensive insights into the performance
of a classifier across different classes and are vital for evaluating its effectiveness in classi-
fication tasks. This table summarizes the classifier’s performance across various metrics,
facilitating evaluation and comparison of its effectiveness in classifying different classes.
Additionally, it should be noted that 80% of the data are used for training purposes, while
the remaining 20% are used for testing. The same distribution is applied to the rest of the
testing in this research. To ensure consistency and facilitate comparability in the evaluation
process, we employ the same table format for all subsequent tests.

5.6. Gradient Boosting Classifier

The Gradient Boosting Classifier’s performance metrics demonstrate comparable weak-
nesses to those observed in the Random Forest Classifier. Although achieving perfect precision
and recall scores for the ’Healthy’ and ’Two Half Teeth’ classes, it notably struggles with the
’One-Half Tooth’ and ’One Tooth’ categories, exhibiting poor performance with precision,
recall, and F1-score metrics approaching zero. Consequently, the classifier’s overall accuracy
is only 50%, indicating a significant misclassification rate across the dataset.

5.7. Extreme Gradient Boosting (XGBoost)

XGBoost, short for Extreme Gradient Boosting, is a sophisticated machine learning
algorithm highly regarded for its exceptional performance across diverse classification and
regression tasks. It operates on Gradient Boosting, sequentially training weak learners,
often Decision Trees, to refine predictions and improve accuracy. The Classification Report
for the XGBoost Classifier reveals a mixed performance across different classes. While
achieving perfect precision and recall for the ’Healthy’ and ’Two Half Teeth’ categories, the
classifier encounters challenges with the ’One-Half Tooth’ and ’One Tooth’ classes. Despite
achieving perfect precision for ’One-Half Tooth,’ its recall is notably lower, leading to a
lower F1-score. Similarly, ’One Tooth’ exhibits moderate precision and recall, resulting
in an average F1-score. The absence of support instances for ’Two Teeth’ results in zero
precision and recall. With an overall accuracy of 62%, the classifier displays a moderate
level of misclassification across the dataset, as shown in Table 2. The macroaverage F1-score
of 0.60 underscores the classifier’s moderate performance in generalizing across all classes.
In contrast, the weighted average F1-score of 0.69 highlights its overall performance, giving
higher weight to classes with more significant support. These insights suggest opportunities
for refining the model to enhance classification accuracy and generalization capability.

Table 2. Performance Metrics of XGBoost Classifier.

Class Precision Recall F1-Score Support

Healthy 1.00 1.00 1.00 1
One-Half Tooth 1.00 0.33 0.50 3

One Tooth 0.50 0.50 0.50 2
Two Half Teeth 1.00 1.00 1.00 2

Two Teeth 0.00 0.00 0.00 0

Accuracy 0.62
Macro Avg 0.70 0.57 0.60 8

Weighted Avg 0.88 0.62 0.69 8

5.8. AdaBoost Classifier with Logistic Regression Weak Learner

The AdaBoost Classifier with Logistic Regression Weak Learner achieves an accuracy
of 62%, indicating its overall effectiveness in classifying instances across all categories
as represented in Table 3. However, its performance varies significantly across different
classes. While it demonstrates high precision and recall for the ’Healthy’ and ’Two Half
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Teeth’ classes, it struggles with the ’One Tooth’ class, exhibiting low precision, recall, and
F1-score. This discrepancy suggests that while the classifier is generally successful in
identifying specific categories, it encounters challenges in accurately classifying instances
belonging to others, thereby impacting its overall performance.

Table 3. Performance Metrics of AdaBoost Classifier with Logistic Regression Weak Learner.

Class Precision Recall F1-Score Support

Healthy 0.67 1.00 0.80 2
One-Half Tooth 0.50 0.50 0.50 2

One Tooth 0.00 0.00 0.00 1
Two Half Teeth 1.00 0.67 0.80 3

Two Teeth 0.00 0.00 0.00 0

Accuracy 0.62
Macro Avg 0.43 0.43 0.42 8

Weighted Avg 0.67 0.62 0.62 8

5.9. AdaBoost Classifier with SVM Weak Learner

The AdaBoost classifier with SVM (linear kernel) demonstrates poor performance
across all classes, with precision, recall, and F1-score values of 0.00 for most classes. This
indicates that the classifier needs help to classify instances belonging to each class correctly.
The accuracy of 0.12 reflects the classifier’s overall low performance in correctly predicting
the class labels. The macro-average and weighted-average F1-scores are both 0.20, as
explained in Table 4, suggesting a lack of effectiveness in capturing the actual positive rate
and overall performance across all classes. The linear SVM classifier’s inability to effectively
separate the classes in the given dataset, leading to inadequate predictive capabilities, may
be the cause of this poor performance.

Table 4. Performance Metrics of AdaBoost Classifier with SVM (linear kernel).

Class Precision Recall F1-Score Support

Healthy 1.00 1.00 1.00 1
One-Half Tooth 0.00 0.00 0.00 3

One Tooth 0.00 0.00 0.00 2
Two Half Teeth 0.00 0.00 0.00 2

Two Teeth 0.00 0.00 0.00 0

Accuracy 0.12
Macro Avg 0.20 0.20 0.20 8

Weighted Avg 0.12 0.12 0.12 8

5.10. AdaBoost Ensemble with Decision Tree as Weak Classifiers

The AdaBoost Classifier with Decision Tree as a weak classifier does a great job overall,
especially when it comes to correctly putting people into the ’Healthy’ and ’Two Half Teeth’
classes, where it obtained perfect precision, recall, and F1-scores. However, it struggled
with the ’One-Half Tooth’ class, achieving perfect precision but relatively lower recall and
F1-score due to misclassifications. Notably, it failed to classify any instances correctly
in the ’Two Teeth’ class, resulting in zero precision, recall, and F1-score. Despite these
shortcomings in certain classes, the classifier’s weighted average F1-score of 0.92 indicates
good overall performance across all classes. The AdaBoost Classifier with Decision Tree as
a weak classifier achieved an overall accuracy of 0.88, reflecting its ability to classify 88%
of instances correctly. Details are shown in Table 5. This high accuracy underscores the
model’s capacity to learn and generalize patterns effectively, leading to reliable predictions
on unseen data. However, to comprehensively evaluate its performance, it is essential
to analyze other metrics like precision, recall, and F1-score, providing insights into its
performance across different classes and highlighting areas for refinement and optimization.
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Table 5. Performance Metrics of AdaBoost Classifier with Decision Tree as Weak Classifier.

Class Precision Recall F1-Score Support

Healthy 1.00 1.00 1.00 2
One-Half Tooth 1.00 0.50 0.67 2

One Tooth 1.00 1.00 1.00 1
Two Half Teeth 1.00 1.00 1.00 3

Two Teeth 0.00 0.00 0.00 0

Accuracy 0.88
Macro Avg 0.80 0.70 0.73 8

Weighted Avg 1.00 0.88 0.92 8

5.11. Diagnosis and Prognosis of Fault

The diagnostic outcomes underscore the effectiveness of the AdaBoost ensemble
utilizing Decision Trees as weak classifiers in accurately identifying fault statuses. With an
impressive 88% overall accuracy, the model exhibits notable precision, recall, and F1-scores
across diverse fault categories, particularly excelling in identifying ’Healthy’ and ’Two
Half Teeth’ cases. However, it faces challenges in accurately classifying ’One-Half Tooth’
instances, displaying perfect precision but relatively lower recall, leading to a reduced
F1-score. Notably, the model struggles with the ’Two Teeth’ category, failing to make
accurate predictions. Nevertheless, the weighted average F1-score of 0.92 indicates robust
overall performance. Figure 10 showcasing the classification performance of the AdaBoost
ensemble model using a confusion matrix. Each cell represents the number of samples
classified into a particular fault status, aiding in classification accuracy assessment. The
right subplot illustrates the feature’s importance, indicating the contribution of each feature
in predicting fault statuses. This comprehensive analysis provides insights into the model’s
diagnostic efficacy and the significance of different features in fault diagnosis.

Figure 10. Diagnostic performance and feature importance analysis.

The mean squared error (MSE) of 1.12 shows how well the AdaBoost ensemble can
guess the system’s remaining useful life (RUL). Lower MSE values mean that the predicted
and actual RUL values are more closely related. Overall, the AdaBoost ensemble with
Decision Trees as weak classifiers emerges as a promising technique for fault diagnosis and
prognosis, offering accurate insights into system health and future performance.

Figure 11 shows the relationship between the actual remaining useful life (RUL) values
and the predicted RUL values generated by the AdaBoost regressor for prognosis. Each
blue point represents an individual sample from the test dataset, where the x-coordinate
corresponds to the actual RUL and the y-coordinate represents the predicted RUL. The
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red dashed line indicates the line of perfect prediction, where the predicted RUL perfectly
matches the actual RUL. Additionally, a green line, added as a line of best fit, illustrates the
trend of the predicted RUL values concerning the actual RUL values. This line provides
insights into the overall accuracy of the predictions and the direction of any systematic
deviations between predicted and actual values. Including the green line in the legend
enhances the graph’s clarity by explicitly stating its purpose.

Figure 11. Performance evaluation of RUL prognosis through actual vs predicted scatter plot.

6. Discussion

This study delves into applying various machine-learning techniques for diagnosing
and predicting gear problems in DC motors, focusing on the efficacy of AdaBoost with weak
classifiers. Some well-known algorithms that have been studied are K-Means clustering,
linear regression, Random Forest Classifiers, Gradient Boosting Machines (GBMs), Extreme
Gradient Boosting (XGBoost), Logistic Regression Classifiers, Support Vector Machines
(SVMs) with linear kernels, and AdaBoost with weak classifiers. Each algorithm’s perfor-
mance in fault detection and diagnosis tasks is scrutinized in the context of diagnosing and
predicting gear problems in DC motors.

6.1. K-Means Clustering

The effectiveness of K-Means clustering in fault diagnosis was assessed using fre-
quency and amplitude data. Although the algorithm identified five clusters, significant
overlap was observed, suggesting inadequate separation between fault conditions. This
limitation indicates that K-Means clustering may not be suitable for accurately catego-
rizing faults in DC motors based solely on these features due to fault complexity and
dataset dimensionality.

6.2. Linear Regression

Despite its simplicity, Linear regression struggled to capture nuanced relationships in
time-frequency features extracted from motor current signals, mainly due to limited data
availability and dataset constraints. Challenges in generalization were highlighted, raising
concerns about its suitability for robust fault diagnosis and prognostics in DC motors.

6.3. Long Short-Term Memory (LSTM)

LSTM models faced challenges with small datasets, were prone to overfitting, and
needed more training examples to generalize effectively. Additionally, we encountered
difficulties with noise amplification and hyperparameter tuning, underscoring the need
for alternative approaches tailored to the constraints of small datasets. Using LSTM
autoencoder techniques also presented similar, if not exacerbated, challenges. Despite their
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potential for capturing temporal dependencies and extracting meaningful features, these
models encountered issues with small datasets, exacerbating overfitting tendencies and
hindering generalization.

6.4. Levenberg–Marquardt Neural Network

The selection of the LMNN model for fault detection in DC motor teeth necessitates
recognition of its inherent limitations. The quality and quantity of the training data heavily
influence the model’s success, and restricting the datasets can lead to erroneous fault
identification. Furthermore, the intricate nature of fault patterns and fluctuations in motor
function may pose a challenge to the model’s efficacy. It may not always guarantee the
convergence of the training process to optimal solutions, thereby requiring a significant
amount of tuning. Given the aforementioned constraints, it may be necessary to investigate
other algorithms or hybrid methodologies to enhance the effectiveness of fault detection.

6.5. Random Forest Classifier

The Random Forest Classifier exhibited mixed performance, excelling in certain fault
categories while struggling with others. We highlighted challenges in accurately identifying
certain gear fault categories, potentially stemming from imbalanced class distributions or
model limitations in discerning subtle patterns.

6.6. Gradient Boosting Classifier

Similar to Random Forest, the Gradient Boosting Classifier faced challenges in ac-
curately classifying certain fault categories, indicating limitations in identifying subtle
patterns within the data.

6.7. Extreme Gradient Boosting (XGBoost)

XGBoost showed comparable weaknesses in accurately classifying certain fault cate-
gories, suggesting opportunities for refining the model to enhance classification accuracy
and generalization capability.

6.8. AdaBoost Classifier with Logistic Regression and SVM Weak Learners

The AdaBoost classifiers with Logistic Regression and SVM (linear kernel) weak
learners had varying levels of performance. They had major problems correctly classifying
instances across all fault categories, which shows that they have trouble telling fault
classes apart.

6.9. AdaBoost Ensemble with Decision Tree as Weak Classifiers

The AdaBoost Ensemble with Decision Tree as a weak classifier demonstrated strong
overall performance, accurately classifying most fault categories. It showcased notable
strengths in accurately identifying fault statuses, particularly excelling in certain fault
categories. Despite observing some challenges in accurately classifying specific fault
instances, the ensemble’s overall performance remained robust.

6.10. Diagnostic and Prognostic Analysis

The diagnostic outcomes highlighted the AdaBoost ensemble’s effectiveness in accu-
rately identifying fault statuses, underscoring its potential for fault diagnosis in DC motors.
Despite encountering challenges in accurately classifying certain fault instances, the ensem-
ble maintained a high level of performance across various fault categories. The AdaBoost
ensemble performed well in prognosis, indicating its potential utility for prognostic tasks
related to DC motors.

Overall, the AdaBoost ensemble with Decision Tree as a weak classifier shows promise
in fault diagnosis and prognosis for DC motors. While certain challenges exist, such
as accurately classifying certain fault instances, the ensemble’s overall performance and
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potential for further refinement make it a valuable tool for addressing diagnostic and
prognostic tasks in DC motors.

7. Conclusions

In conclusion, this analysis underscores the robust performance of the AdaBoost
ensemble with Decision Trees as weak classifiers in diagnosing and predicting gear issues
in DC motors. Despite the challenge of a relatively small dataset, AdaBoost demonstrates
significant strengths in accurately identifying fault statuses. Achieving an impressive 88%
overall accuracy, AdaBoost excels particularly in categorizing instances such as ’Healthy’
and ’Two Half Teeth’. While encountering some limitations with certain fault categories,
AdaBoost maintains a high level of performance with a weighted average F1-score of
0.92. These findings highlight the effectiveness of AdaBoost with Decision Trees in fault
diagnosis, providing valuable insights into system health despite the constraints of limited
data availability. With a mean squared error (MSE) of 1.12, this ensemble also does a good
job of predicting the system’s remaining useful life (RUL). This shows that it can make
predictions.Overall, this study shows that AdaBoost with Decision Trees is very good at
finding and predicting gear problems in DC motors. However, it is important to note
that these results are only valid for the specific experiment setup and dataset used in this
manuscript. Therefore, this warrants further validation on diverse datasets and real-world
applications to ascertain the broader applicability and generalizability of AdaBoost with
Decision Trees, despite its promising potential for fault diagnosis and prognosis in DC
motor gear systems.
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