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Abstract: The goal of this study was to compare model-generated sounds with the process of sound
acquisition in humans. The research utilized two dictionaries of the Chaoshan dialect spanning
approximately one century. Identical Chinese characters were selected from each dictionary, and their
contemporary pronunciations were documented. Subsequently, inconsistencies in pronunciation were
manually rectified, following which three machine learning methods were employed to train the pro-
nunciation of words from one dictionary to another. These methods comprised the attention-based
sequence-to-sequence method, DirecTL+, and Sequitur. The accuracy of the model was evaluated
using five-fold cross-validation, revealing a maximum accuracy of 68%. Additionally, the study
investigated how the probability of a sound’s subsequent unit influences the accuracy of the ma-
chine learning methods. The attention-based sequence-to-sequence model is not solely influenced
by the frequency of input but also by the probability of the subsequent unit.

Keywords: attention-based seq2seq; Chaoshan dictionary; DirecTL+; Sequitur

1. Introduction

With the rapid development of science and technology, data exploration techniques can
now be applied to different levels of knowledge. The increasing sophistication of machine
learning models enables the simulation of a growing array of phonetic changes, therefore
mirroring real-world linguistic shifts. For example, the study conducted by [1] employs an
agent-based model (ABM) methodology to investigate speech stability and change by utiliz-
ing authentic speech data from a cohort of speakers. The analysis encompasses two distinct
speech databases, with the initial dataset comprising recordings of individuals across differ-
ent age groups speaking Standard Southern British English (SSBE). By employing an ABM
facilitated by unsupervised machine learning algorithms, the research identifies a progres-
sive phonetic shift concerning the /u/ vowel sound. However, no significant phonological
reclassification of any vowels was observed. These findings suggest a tendency towards
phonetic alteration while maintaining phonological stability. Furthermore, the ABM ap-
proach was extended to examine diphthongs in New Zealand English over the preceding
five decades, particularly focusing on the merger of /e@/ into /ı@/. This exploration delves
into the principles of exemplar theory to elucidate the dynamics of phonetic change within
the context of language evolution. As machine learning methodologies effectively cap-
ture these transformations, researchers in phonetics and phonology can leverage such
simulations to scrutinize and refine existing theoretical frameworks of phonetic change.
This comparative analysis serves to elucidate specific theories pertaining to the mechanisms
underlying phonetic evolution. In complement to micro-level analyses of speech evolution,
the macroscopic observation of historical linguistic changes represents another realm where
machine learning methodologies can offer substantial contributions.

In parallel, the history of sound changes in a language seems to be being investi-
gated, but this has rarely been found in previous studies. One of the related fields is
machine transliteration, which involves the phonetic conversion of words from a source
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language into the words of a target language. Positioned as a subset of machine translation,
it encompasses diverse methodological approaches aimed at addressing the intricacies
of transliteration tasks. In that sense, utilizing a novel corpus automatic detection method
could potentially bridge existing gaps by facilitating a comparative analysis between model-
generated predictions and the derivational sequence of sound development. This parallel
examination holds promise for enhancing our understanding of phonetic evolution and
the predictive capabilities of computational models in phonological research.

Indeed, a targeted approach involves leveraging established models to translate
a given word from one contemporary pronunciation to another. By systematically an-
alyzing the accurately generated words from such models in juxtaposition with the sound
acquisition sequence observed in human beings, which typically progresses from unmarked
features to marked ones, valuable insights into phonetic evolution and model performance
can be gleaned.

On the other hand, the evolution of the Chaoshan dialect within historical linguistic
contexts underscores its origins and development into the contemporary dialect spoken
today. Scholars such as [2,3] assert that the Chaoshan dialect is part of the Southern
Min dialect, which itself belongs to the broader Min dialect family. Historically, Min
dialects have exhibited close linguistic ties with other Chinese dialects, yet they have also
maintained a distinctiveness, rendering Min among the most conservative of all Chinese
dialect groups [4]: p. 216). The Chaoshan dialect’s formation can be traced back to around
the Song Dynasty. Evidence provided by scholars ([2]: p. 124; [3]: p. 97–99) suggests that
during the Tang and Song Dynasties, the Chaozhou and Fujian dialects exhibited only
regional differences without any fundamental distinctions. It was not until the Yuan and
Ming dynasties that the Chaoshan dialect gradually diverged from the Fujian dialect and
began to assimilate various aspects of Cantonese, including pronunciation, vocabulary, and
grammar ([5]: p. 17, p. 52–56).

Thus, this section will introduce Chaoshan phonology, with two meticulously pre-
served Chaoshan dictionaries employed as the case study. Subsequently, we focus on the se-
quential emergence of vowels, consonants, and tones in children’s acquisition processes.
The anticipated outcomes predicted by models for the Chaoshan dictionaries include a par-
allel assessment of children’s speech sound acquisition processes. Such analysis is poised
to augment our comprehension of the predictive efficacy inherent in computational models
within the domain of speech research.

1.1. Chaoshan Phonology

According to [6], the Chaoshan dialect has 18 initials, /p, t, k, ph, th, kh, b, g, ts,
tsh, s, z, m, n, N, l, h, and ø/; six vowels /i, e, a, o, and u, î/; and eight tones, T1 = 33,
T2 = 52, T3 = 213, T4 = 2, T5 = 55, T6 = 35, T7 = 11, and T8 = 4, with respect to the five-
scale tonal description of [7]. The syllable structure is reported to be CGVE, where C is
a [+consonantal] segment; G is a glide; V is the vowel nucleus; and E is either a nasal
or a glide. According to the two dictionaries, Chaoshan has systematically lost the mostly
unmarked [t] and [n] at the end of the rhyme after more than 100 years. This evaluation
was replicated in the perception and production experiments conducted by [8–10].

1.2. The Acquisition of Vowels, Consonants, and Tones by Children in Terms of Their Order
of Emergence

Concerning the development and acquisition of languages by children, several differ-
ent studies have been undertaken in relation to the Sino-Tibetan language family, including
Mandarin Chinese, Taiwan Southern Min (TSM), and Cantonese. Consonant, vowel, and
tone acquisition have been discussed based on different Sino-Tibetan languages. In con-
sonant acquisition, with regards to the manner of articulation (MOA), stops have been
found to be acquired earlier than fricatives and following affricates [11,12] for Mandarin
Chinese in Taiwan, [13], for TSM, [14], and for Cantonese). As for the place of articulation
(POA), it has been found that consonants articulated in the anterior part of the mouth are
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usually acquired earlier than consonants in the posterior part of the mouth [15]. This is
supported by [11,12] for Mandarin Chinese in Taiwan and [13] for TSM. However, ref.
[14] assert that coronals are acquired earlier than labials in Cantonese. As for voiced
features, voiced consonants are usually acquired earlier in English [16], TSM [13], and
Cantonese [14], compared to Mandarin Chinese in Taiwan [11,12]. As for aspirated features,
unaspirated consonants are acquired first, followed by their aspirated counterparts in
Taiwan Mandarin Chinese [11,12], in TSM, [13], and in Cantonese, [14]. Overall, the or-
der of consonant acquisition in Taiwan Mandarin Chinese, TSM, and Cantonese pretty
consistently goes from unmarked to marked features according to Jakobson’s definition.

In vowel acquisition, most studies have demonstrated that children acquire vowels
earlier than consonants. Regarding the nature of the vowels, [a] seems to be acquired
first, then [i] and [u], followed by the mid-vowels and others. In Mandarin Chinese
in Taiwan, ref. [11] not only demonstrated the same pattern but also reported that the CV
structure is dominant at the first stage, followed by CVC, CVV, and the rest of the complex
syllabic structures. Moreover, oral vowels are acquired earlier than nasalized vowels,
and single vowels are acquired first, compound vowels second, and triple vowels last
in TSM [13]. For vowel acquisition by children in Mandarin, Jakobson’s mature theory,
i.e., from unmarked to marked feature acquisition, seems to hold.

Finally, the subject of tone acquisition appears to have drawn the most attention
from scholars. It has been established that level tones are acquired earlier than contour
tones ([11,12] for Mandarin Chinese in Taiwan; [13] for TSM; [14] for Cantonese). For TSM,
Hsu (1989) [13] reported that high initial tones (high-level, high-falling, and high-rising)
were acquired first, followed by the low-falling tones, and then the mid-level tones. The low,
entering tone, yin-ru, was acquired last because the high, entering tone, yang-ru, merged
into the mid-level tone, yielding a total of six tones. In addition, an unchecked tone is
acquired earlier than a checked tone.

To summarize, the development and acquisition of Mandarin Chinese in Taiwan,
Taiwan Southern Min (TSM), and Cantonese among children is in line with that proposed
by [15]. Regarding acquisition by children, ref. [15] proposed a prototype of ‘maturational
theory’, whereby the biological programming in human beings determines the structure
of language acquisition. Based on Jakobson’s hierarchy of development at the word level,
each component can be assigned as a subset of binary distinctive features (DFs) underlying
the phonemes of the world’s languages. The higher the hierarchy where the phoneme is
located, the easier/earlier it can be produced by a child. This sequence/order of the emer-
gence of sounds usually indicates a shift from unmarked to marked features, which, due
to being harder, are acquired later by children. Maturational theory implies that phones
may be acquired in the same order all over the world. In addition, quantitatively speaking,
the number of sounds with unmarked features is always more than or equal to those with
marked features. For example, ref. [17] documented sound distributions in more than
300 languages. They found that when compared to unmarked sounds, infrequent sounds
are marked, and the domain could be either within one language, usually referring to the
phoneme level, or exist across languages. Furthermore, simple-articulated sounds are
more frequent than complex-articulated sounds. The vowel [a] offers a good example, as it
appears in all languages, whereas the vowel [ë] is relatively rare. It is well known that [i, a,
and u] are canonical vowels, meaning all languages have them. As such, it is no wonder that
these canonical vowels are easier models to learn. As for consonants, with respect to the
MOA and POA, it is clear that stops are more consonant-like compared to other consonants
(and fricatives are more easily articulated than affricates), while coronals represent the de-
fault/unmarked POA. As for tones, previous studies on the unchecked tones acquired
by children were reviewed because the checked tones are seldom reported. For Mandarin
Chinese, ref. [18] proposed that the high-level and falling tones are acquired before the ris-
ing and dipping tones, meaning the level tones are likely easier than the contour tones.
In this case, the former maintains a consistent frequency in pitch, while the latter needs
to change the pitch level at least once. Yip (2001) postulated a similar argument. In addition
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to contour vs. level tones, she also proposed that rising tones are more marked than falling
tones, while high-level tones are more marked than low-level tones. Her theory of tone
thus predicts that all the unmarked tones are acquired earlier than the marked tones.

2. Related Work

In computational linguistics, automated models focusing on language evolution pri-
marily concentrate on detecting cognates among different related languages [19–23] and
inferring phonological correspondences [24]. These efforts aim to construct phylogenetic
trees representing the relationships between languages. However, the objective is to iden-
tify the rules of sound change rather than to actually build a model capable of predicting
the historical evolution of language sounds. A similar task is found in machine translitera-
tion, which phonetically converts the words of a source language into the words of a target
language. Machine transliteration can be regarded as a subtask of machine translation.
Many different approaches to machine translation have been adopted to solve the task
of machine transliteration. Early approaches were based on dictionaries or lexicons to map
the phonemes between the source and target languages [25,26]. Later, statistical machine
learning methods were adopted to learn the mapping from the source to the target lan-
guages [27,28].

Statistical machine learning constitutes a foundational framework for the domain
of machine learning, deriving its principles from the disciplines of statistics and functional
analysis. This theoretical construct is primarily concerned with the challenge of statis-
tical inference, specifically the derivation of a predictive function from a given dataset.
The implementation of statistical learning theory has precipitated significant advancements
across a variety of domains, including but not limited to computer vision, speech recogni-
tion, and bioinformatics. Through its rigorous approach to understanding and modeling
the underlying patterns within data, statistical learning theory has played a pivotal role
in the development and enhancement of algorithms that facilitate complex decision-making
and predictive analyses in these fields.

Ref. [27] proposed a statistical machine learning framework that facilitates direct ortho-
graphical mapping (DOM) between two distinct languages via a joint source-channel model,
herein referred to as the n-gram Transliteration Model (TM). The n-gram TM model stream-
lines the orthographic alignment process by automatically generating aligned transliteration
units from a bilingual dictionary. Employing the n-gram TM within the DOM framework
significantly diminishes the effort required for system development and achieves a substan-
tial enhancement in transliteration accuracy, surpassing the performance of contemporary
state-of-the-art machine learning algorithms. The efficacy of this modeling framework is
corroborated through a series of experimental validations focusing on the transliteration
between the English and Chinese language pair.

Ref. [28] utilized conditional random field (CRF) models to formulate transliteration
as a sequence-labeling problem. The many-to-many (m2m) aligner was used to generate
character mappings between English and Arabic, and then a CRF model was trained based
on the alignment results to label each English input character with a sequence of Arabic char-
acters. CRFs are a class of statistical modeling methods often applied in pattern recognition
and machine learning and are used for structured prediction. Diverging from traditional
classifiers, which determine labels for individual samples in isolation, CRFs are designed
to incorporate contextual information, considering the interdependencies among adja-
cent samples. This contextual consideration is operationalized through the formulation
of a graphical model, encapsulating the dependencies among predictions. The architecture
of the graph utilized is contingent upon the specific requirements of the application at hand.

In recent decades, deep learning-based models have been widely adopted for machine
transliteration. Deep learning is the subset of machine learning methods based on artifi-
cial neural networks (ANNs) with representation learning. The adjective “deep” refers
to the use of multiple layers in the network. The methods used can be either supervised,
semi-supervised, or unsupervised. Artificial neural networks (ANNs) draw inspiration
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from the paradigms of information processing and the distributed communication observed
within biological systems. Despite this inspiration, ANNs exhibit several fundamental
distinctions from biological brains. Notably, ANNs typically manifest as static and sym-
bolic constructs, which is in contrast to the dynamic (plastic) and analog nature inherent
to the biological brains of most living organisms. Consequently, ANNs are often regarded
as rudimentary or low-fidelity models when it comes to accurately replicating the complex
functionalities and adaptive capabilities of the brain.

Ref. [29] proposed a neural network model combining a convolutional neural network
(CNN) and a recurrent neural network (RNN) for English-Chinese transliteration. A CNN
is a type of feedforward neural network, the neurons of which can respond to a subset
of the surrounding units within a certain coverage range, demonstrating outstanding perfor-
mance in large-scale image processing. Composed of one or more convolutional layers atop
fully connected layers (akin to classical neural networks), CNNs also incorporate pooling
layers along with associated weights. This architecture allows CNNs to leverage the two-
dimensional structure of input data. Compared to other deep learning structures, CNNs
yield superior results in image and speech recognition tasks. Moreover, this model can be
trained using the backpropagation algorithm. With fewer parameters to consider compared
to other deep, feedforward neural networks, CNNs represent an attractive deep learning
architecture. Moreover, RNNs represent one of the primary categories of ANNs, distin-
guished by the bi-directional flow of information across its layers. Unlike unidirectional
feedforward neural networks, RNNs facilitate a feedback loop within their architecture,
allowing outputs from certain nodes to influence the subsequent inputs to those same
nodes. This distinctive feature endows RNNs with the capacity to maintain an internal
state or memory, therefore enabling the processing of sequences of inputs of arbitrary
lengths. This capability renders RNNs particularly suited for applications in tasks that in-
volve sequential data, such as unsegmented, connected handwriting recognition or speech
recognition. The terminology “recurrent“ neural network specifically applies to networks
classified by an infinite impulse response, which is in contrast to “convolutional” neural
networks, which are characterized by a finite impulse response. Both types of networks
demonstrate temporal dynamic behavior, which is crucial for processing time-dependent
data. A network with a finite impulse response can be conceptualized as a directed acyclic
graph, which permits unfolding into an equivalent strictly feedforward neural network.
Conversely, a network with an infinite impulse response, due to its cyclical graph structure,
cannot be unfolded in this manner, reflecting its inherent capacity for modeling complex
temporal dynamics.

Ref. [30] used an attentional sequence-to-sequence (seq2seq) model for Arabic-English
transliteration. The seq2seq model transforms input sequences into output sequences. It
avoids the problem of vanishing gradients by utilizing RNNs or, more commonly, networks
based on LSTM (long short-term memory) or GRU (gated recurrent unit) architectures.
The content of a current item always stems from the output of the previous step. The seq2seq
model is primarily composed of an encoder and a decoder. The encoder converts the input
into a hidden state vector, which encapsulates the content of the input items. Conversely,
the decoder performs the reverse process, transforming the vector back into an output se-
quence, and uses the output from the previous step as the input for the next step. This model
was initially developed to enhance machine translation technology, allowing machines
to discover and learn how to map a sentence from one language to its corresponding
sentence in another language.

The Named Entity Workshop (NEWS) was established in Singapore in 2009 by the Agency
for Science, Technology, and Research (A*STAR) to develop machine transliteration techniques.
The NEWS compiles high-quality multilingual datasets for machine transliteration and defines
metrics to evaluate performance. In this study, we have attempted to adopt statistical and deep
learning machine transliteration methods to train models for sound changes in the Chaoshan
dialect and utilize the metrics from the NEWS to evaluate their performance.
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Typologically, linguists collected data to extract shared innovative features, which were
judged to have the same/different ancient languages. Take the implementation of Chinese
languages as an example; Refs. [31–34] have carried out a series of studies on the rela-
tionships between Chinese dialects. In [32]’s work, Pearson’s correlation coefficients are
employed within the statistical analysis to compute the presence of vocabulary and pho-
netic forms, categorized by the existence of sounds, rhymes, and tones. The significance
of quantitative calculation methodologies in language classification resides in their estab-
lishment of a framework for gauging dialectical proximity, therefore offering a systematic
approach to delineating dialect groupings. Additionally, phonological characteristics were
scrutinized across 17 dialects, focusing on initial consonants [p, ph, and b], tracing their
descent from Middle Chinese. This examination encompassed considerations of nucleus
(vowels), lips (rounded/unrounded), and mouths (open/closed), elucidating the clas-
sification of rimes. Tonal aspects were analyzed based on the four tones of flat, rising,
falling, and entering, alongside three distinct categories of initial consonants: voiceless
consonants, voiced stops and sibilants, and sonorants. It is acknowledged that the voiced
or voiceless nature of the initial consonant influences the tonal pattern, a phenomenon
rooted in ancient Chinese phonology. Most phonologists concur that the characteristics
of the initial consonant interact with tonal variations. As a result, ref. [32] reported that Min
languages exhibit greater mutual affinity compared to Hakka and Gan languages. Concern-
ing the tones, ref. [31] observes a quantitative correlation between the pitch characteristics
of yin and yang tones and the phonetic attributes of initial consonants. In an inventory en-
compassing 3433 dialects within 737 distinct linguistic variations, it was revealed that high
tones predominate in most dialects. The falling tones are the most prevalent contour tone,
while bi-directional tones are comparatively rare, which is categorized by [35] as a more
marked tone. There is an observed trend wherein the dialects situated further south tend
to exhibit a greater diversity of tones, whereas those located farther north tend to possess
fewer tones [31].

Ref. [34] conducted a comparative analysis of vowel rhyme structures between cal-
culated representations and the contemporary Beijing dialect. This analysis employed
the notion of “communication degree” as a criterion for evaluating phonological histor-
ical constructs. For two dialects, A and B, the communication degree was determined
by examining cognate words in A and B, with A serving as the source and B as the target,
utilizing the “one-way communication degree” criterion. Each phonetic element, including
initial consonants, glides, vowels, endings, and tones, is assigned a basic weight of one
out of five, with positive (informational) and negative (noisy) values attributed accord-
ingly. By multiplying these weights, the one-way communication degree is computed,
enabling a comparison of the relative relationships between dialects. The ultimate finding
indicates that in terms of communicative proficiency, the Beijing dialect holds the third
position, trailing behind the Chengdu and Hankou dialects. Furthermore, ref. [34] in-
ferred that the maximum mutual intelligibility between old and young generations, based
on the index derived by [33], was typically 0.92, suggesting a generational discrepancy
of up to 0.08. This discrepancy serves as a benchmark for mutual intelligibility. Moreover,
the formula is extended to assess intelligibility among different dialects, where a high index
indicates seamless communication and a lower index signifies potential communication
barriers. For example, when the mutual intelligibility between Chengdu and Hankou
reaches the highest level at 0.795, communication between speakers of these dialects poses
no significant challenges. However, a decrease in mutual intelligibility to 0.475 between
Beijing and Guangzhou dialects indicates potential communication difficulties [34]. By com-
bining the findings of [33,34], and if the life expectancy difference between two generations
is about 100 years, the study extrapolates a mutual intelligibility loss of 0.08 per century,
offering insights into historical language dynamics. Notably, this research contributes
to our understanding of mid-phonological changes and dialectical relationships.

Ref. [36] proposed and implemented a method for the study of historical phonetics.
The main idea is that the speech database requires native speakers to provide a corpus,
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especially in cases where there has been a gradual decline in native speakers. We are left
with a question: Without fieldwork, can a prediction by a model be used to fill in unknown
pronunciations? Furthermore, can this help preserve cultural heritage in the future? They
applied the method to the seven major Chinese languages of the Sino-Tibetan language
family: Mandarin, Wu, Cantonese, Xiang, Hakka, Gan, and Fujian. Ref. [36] translated
the pronunciation of each Chinese character into IPA and marked eight phonological charac-
teristics: tonal category, tonal value, initials, mediations, vowels, diphthongs, nasalization,
and final rhymes. They proposed a new generative model, which imported hidden random
variables and mapped each phonological feature to the hidden random variables. The prob-
ability distribution of the random variables produced the various possible characters
for each Chinese character using a Markov chain Monte Carlo method. Finally, they used
the voice data as reference data to solve the actual value of the random variable in the gener-
ative model. This method can simultaneously use material from the middle-ancient rhyme
book and the possibly incomplete dialect phonetic data to explore the superlingual rhymes.
This research made three contributions: (1) in addition to the rhyme data, the dialect data
are very helpful for predicting the phonetics of another dialect; (2) this generative model is
more effective at predicting closely related dialect data; and (3) filling out the voice data
through the proposed model can improve accuracy in predicting new dialect voices.

Many previous studies have proposed adding missing speech [36] or constructing
the phonetic forms of ancestral language [37]. However, while the models constructed
by these methods can predict possible voice forms, they find it difficult to interpret and
explore phonetic evolution. The objective of this investigation is to simulate the linguistic
transformations within the Chaoshan region over the preceding century. This endeavor
utilizes two dictionaries, one published in 1883 and the other in 2015, to elucidate the con-
temporary pronunciation dynamics during these periods. Employing the pronunciation
data from 1883 as the source language and those from 2015 as the target language, the model
extrapolates predicted pronunciations based on the 1883 dataset. Subsequently, a com-
parative analysis is conducted between these projected pronunciations and the actual
phonetic changes observed in 2015, therefore simulating the linguistic evolution within
the Chaoshan area over the past 100 years. As such, the questions of interest in this study
were the following:

1. Do the vocalic and consonantal phones and tones generated by the three stated
models (attention-based seq2seq, DirecTL+, and Sequitur) have any relationship
to the patterns of vowel, consonant, and tone distribution observed in this study?

2. Do the vocalic and consonantal phones and tones generated by the three models
resemble the developmental patterns of language learning by infants and, thus, reflect
underlying universal constraints?

In the following parts, Section 3 introduces the methods used in this study, and
Section 4 presents the primary results. Section 5 compares the results for the distribution
of the data and the sequence of sound emergence in human beings. In the concluding
remarks, the major findings are summarized, and potential areas of further research are
noted.

3. Method
3.1. Dataset and Cleaning

We chose the dictionary edited by [38] to represent the 1883 Chaoshan dialect because
each character has a corresponding pronunciation and vocabulary explanation. In the 21st-
century Chaoshan dialect, we chose the Chaoshan dictionary, first edited by Zhang Xi-
aoshan in 2009 (with a second edition in 2015), as representative because it contains
the most complete vocabulary that can be found for the Chaoshan area. Pronunciations
of the same Chinese characters in each dictionary were selected. Because the literary and
colloquial readings were mixed in each word and labeled via a different system, manually
checking the two dictionaries was necessary. By guessing the similarities between word
combinations in relation to literary and colloquial language, the first author deleted any
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inconsistency between the same words with either literary or colloquial pronunciations
that were mismatched in the two dictionaries, i.e., if one word with one sound in one
dictionary corresponds to a word in the other dictionary, they will have only one sound. A
total of 5523 words made up the dataset. Five-fold cross-validation was used for evaluation.
Each dictionary was individually labeled with onset, rhyme, and tone.

3.2. Three Models
3.2.1. Attention-Based Sequence-to-Sequence Method

The sequence-to-sequence (seq2seq) model is a popular method for natural language
processing. The seq2seq model is based on an encoder-decoder architecture constructed
by two RNNs. One neural network is an encoder, which adopts the RNN to encode
the input sequence into a context vector. This context vector is then passed to the next
neural network to decode and generate an output sequence. For the RNN in the seq2qeq
model, long short-term memory (LSTM) is usually adopted to avoid the vanishing gradient
problem, which often happens in the training process of a general RNN. The objective
function of the seq2seq model can be defined as follows:

p(y1, . . . , yT′ |x1, . . . , xT) =
T′

∏
t = 1

p(yt|v, y1, . . . , yt−1) (1)

where x1, x2, . . . xT is the input sequence given time step T; v is the encoded context vector
generated by the encoder; y1, . . . , yT is the previously generated output sequence; and
the function is to maximize the probability of the output sequence with the next token, yT′ .

The seq2seq model encodes the entire input sequence into a vector, but it is sometimes
difficult to capture enough information when the input sequence is long. Furthermore,
for some applications, such as machine translation, when we translate a word in a sentence
into another language, we usually focus on some important words around it rather than
the entire sentence. In order to give the seq2seq model the ability to focus on some important
portion of the input sequence while engaged in decoding, an “attention mechanism” is
introduced. Attention is a technique that allows the neural network to devote greater focus
to small but important parts of the input. In the network, each input token has its own
weight. The ith input token has an attention weight, wi. For each input token, i, the encoder
RNN has its hidden state, vi. The weighted average, ∑i wivi, is the output of the attention
mechanism. An overview of the attention-based seq2seq model is shown in Figure 1.

Figure 1. Attention-based sequence-to-sequence (seq2seq) model.
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3.2.2. DirecTL+

DirecTL+ is an online discriminative training model for string transduction problems.
It was initially developed for the grapheme-to-phoneme conversion problem by Jiampoja-
marn et al. in 2008. It has also been applied to name transliteration tasks. In order to train
the DirecTL+ model, a many-to-many (m2m) aligner is required to align the source and
target tokens. The m2m aligner, also proposed by Jiampojamarn, is adopted together
with DirecTL+.

The m2m aligner is based on an expectation-maximization (EM) algorithm. The
EM algorithm comprises two steps: expectation and maximization. These two steps are
performed alternatively until convergence is achieved. The expectation step estimates
the maximum likelihood value with the current hidden variables; the maximization step
aims to find the parameters that maximize the quantity.

After obtaining the many-to-many alignment results, the DirecTL+ online discrimi-
native training framework can be applied to train a model to convert the source sequence
x into the target sequence y. For each given pair, (x, y), we can define a feature vector,
Φ(x, y), representing evidence for the sequence y found in x, with α as a feature weight
vector providing a weight for each component of Φ(x, y). Algorithm 1 is the algorithm
for DirecTL+.

Algorithm 1 DirecTL+ algorithm pseudocode.

Require: Data (x1, y1), (x2, y2), . . . , (xm, ym)
Ensure: Learned weights ψ

ψ := 0
for k iterations do

for j = 1 . . . m do
Ŷj =

{
ˆyj1, . . . , ˆyjn

}
= argmax

y

[
ψ · Φ(xj, y)

]
update ψ according Ŷj and yj

end for
end for
return ψ

The algorithm consists of the following three main components: a scoring model, rep-
resented by a weighted linear combination of features (α · Φ(x, y)); a search for the highest
scoring phoneme sequence for a given input word; and an online update equation to move
the model away from incorrect outputs and towards the correct output.

For all the training data from the aligned pairs, the algorithm performs k iterations.
In each iteration for each input sequence, xj, the model generates the n-most possible
sequence, Ŷj. The parameters of the model are updated by the difference between Ŷj and
the correct answer in each iteration. The updated model is based on the margin-infused
relaxed algorithm (MIRA) (Crammer and Singer, 2003).

3.2.3. Sequitur

Sequitur is a data-driven translation tool originally developed for grapheme-to-
phoneme conversion by [39]. It is based on the joint source-channel model. The joint
source-channel model was first introduced by Li et al. (2004). When given paired sequences
X and Y, where x and y are representative of their segment units, the conversion process
seeks to find the alignment for the subsequences of the input string X and the output string
Y. This can be represented for an n-gram model as the following:

P(X, Y) = P(x1, x2, . . . , xk, y1, y2, . . . , yk)
= P(< x1, y1 >, . . . ,< xk, yk >)

=
k

∏
i = 1

P(< x, y >i | < x, y >i−1
i−n+1)

(2)
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where k is the number of alignment units, and P(X, Y) is the joint probability of the ith
alignment pair, which depends on n previous pairs in the sequence.

In this study, we applied three different models to learn changes in Chaoshan pro-
nunciation. Although these three models are machine learning-based, the design of their
architectures is different. For the DirecTL+ model, the alignments between the sources and
targets must be completed before training the string transduction model. Thus, the settings
of the m2m aligner, such as the maximum number of tokens that can be aligned, affect
the performance of the alignments and propagate to the DirecTL+ model. The Sequitur
model is different from many translation models, such as DirecTL+, as it is able to train
a joint n-gram model from unaligned data. Additionally, the model can be built up cu-
mulatively. The higher order n-grams are trained iteratively from the smaller ones—first,
a unigram model is trained, this is then used for a bi-gram model, and so on.

The seq2seq model takes another perspective to deal with this problem. Instead
of learning the alignment or correspondence between the subsequences of the input and
output strings, it adopts a neural network to encode all of the input strings into a vector,
which condenses and embeds all its information. Then, another neural network is used
to decode this vector to produce the output. This architecture can consider the whole input
string, which means that the seq2seq model can learn more constraints across the entire
input sequence, not just the adjacent tokens.

4. Evaluation
4.1. Settings

In the seq2seq model, both the input and output consist of characters from ortho-
graphic sequences represented in dictionaries. In the encoder, the maximum length of input
was set to 10. The output dimension of the Embedding layer was fixed at 100, and the hid-
den layer was constructed using LSTM cells, where the latent dimension of each cell is set
to 256. During the training of the seq2seq model, the Adam optimizer was employed, with
the loss function being categorical entropy. The number of epochs was set to 100, and an
early stopping mechanism was utilized.

In the DirecTL+ approach, within the m2m aligner, the maximum limit for the corre-
spondence between the input and output sequences was set to 2. This is because, in the or-
thography of both Chaoshan dictionaries, a single phoneme is represented by, at most, two
characters. Regarding the configuration for training the DirecTL+ model, the context size
was set to 3, the number of training iterations was established at 10, and the n-Best setting
was also fixed at 10.

For the Sequitur model, we utilized the implementation provided in its official GitHub
repository (https://github.com/sequitur-g2p/sequitur-g2p, accessed on 22 June 2023).
The training of the Sequitur model is incremental; we employed a training procedure that
progresses from Uni-gram to 4-gram, resulting in the final model.

4.2. Experimental Results

In this section, the results of the attention-based sequence-to-sequence method, Di-
recTL+, and Sequitur are reported. In order to further analyze the results, we separated
the predicted accuracy of the sounds into three categories: onset, rhyme, and tone.

After manually deleting inconsistencies, we adopted the attention-based sequence-
to-sequence method, DirecTL+, and Sequitur to train the model. We employed a dataset
consisting of 5523 of the same words with known pronunciations in both dictionaries.
The pronunciations from 1883 instances were utilized as input, and the three models were
trained accordingly. Subsequently, the predicted words from the models were compared
with those also present in the 2005 dataset to assess the accuracy of the models. The accuracy
rates of the three models, the attention-based sequence-to-sequence method, DirecTL+,
and Sequitur, are presented in Table 1. Additionally, the results for the evaluation were
categorized into three groups: accuracy with tones, accuracy without tones, and F1-score.

https://github.com/sequitur-g2p/sequitur-g2p
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In the evaluation, we employed the commonly used metrics in machine transliteration:
Accuracy, Recall, Precision, and F1-score. The definition of accuracy is as follows:

Accuracy =
1
N

N

∑
i = 1

{
1 if ri = ci
0 otherwise

}
(3)

where N represents the number of data in the test dataset, ri is the phoneme string predicted
by the model, and ci is the correct phoneme string. An Accuracy = 1 indicates that all
model predictions match the actual dictionary answers perfectly, whereas Accuracy = 0
indicates that none of the predictions match the dictionary answers. The definitions
of Recall, Precision, and F1-score are estimated based on the longest common subsequence
(LCS) of string comparisons. The definition of LCS is as follows:

LCS(c, r) =
1
2
(|c|+ |r| − ED(c, r)) (4)

where ED is the “string edit distance”, which measures how many insertions, deletions,
or substitutions are required to transform one string into another. It is a common method
for estimating the similarity between two strings. The definitions of Precision, Recall, and
F1-score are as follows:

Precision =
LCS(ci, ri)

|ci|
(5)

Recall =
LCS(ci, ri)

|ri|
(6)

F1-score =
2 × Recall × Precision

Recall + Precision
(7)

Five-fold cross-validation was used for evaluation, and the accuracy of our model was up
to 68%.

Table 1. Results for the evaluation of the three models in relation to the Chaoshan dataset.

Method seq2seq DirecTL+ Sequitur

Fold Accuracy
(with Tone)

Accuracy
(w/o Tone) F1-Score Accuracy

(with Tone)
Accuracy
(w/o Tone) F1-Score Accuracy

(with Tone)
Accuracy
(w/o Tone) F1-Score

0 0.6742 0.819 0.9362 0.6471 0.8072 0.9307 0.6778 0.8118 0.9377

1 0.7023 0.8344 0.9473 0.6624 0.8072 0.9394 0.6950 0.8190 0.9450

2 0.6561 0.8235 0.9362 0.5891 0.7575 0.9237 0.6579 0.8145 0.9370

3 0.7032 0.8244 0.9404 0.6326 0.7846 0.9270 0.6959 0.8190 0.9392

4 0.6706 0.8199 0.9389 0.6308 0.7864 0.9314 0.6715 0.8145 0.9393

Average 0.6813 0.8242 0.9398 0.6324 0.7886 0.9304 0.6796 0.8157 0.9396

Generally speaking, speech flow can be dissected into several syllables, with the seg-
ments constituting the fundamental elements. Apart from segments, supra-segmentals
provide another perspective on the analysis of speech flow. Upon further examination
of the segments, they can be subdivided into vowels and consonants, and supra-segmentals
encompass aspects such as tone, duration, stress, and intonation. Consequently, our dataset
was scrutinized in terms of syllables, vowels, consonants, and tones.

Syllables, the basic units of speech, typically consist of consonants (C) and vowels
(V), with common constructions being CV, CVC, and so forth, though specifics vary across
languages. Vowels are characterized by tongue height, tongue backness, and lip round-
ing. Additionally, consonants exhibit features such as POA, MOA, and voicing (or not).
In Chinese, aspiration (or not) can serve as a distinctive feature.

Tones, which are fundamental components of speech in tonal languages such as Chi-
nese, include level tones and contour tones. Elements such as tonal register and contour
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are analyzed to understand tone patterns. The interaction between tone and consonants
in final positions can lead to checked tones characterized by shorter duration. Accordingly,
the subsequent analysis of the results will be conducted based on these delineated ele-
ments, encompassing syllables, vowels, consonants, and tones, to provide a comprehensive
understanding of the dataset.

Table 2 shows the sounds predicted by the model compared to those found in the 2015
Chaoshan dictionary, using the same characters as the 1883 Chaoshan dictionary as inputs.
In terms of accuracy, the following syllable structures were predicted (going from high
to low): CVE > CV > CṼ > CṼṼ, with the nature of the vowels playing a role. This means
that if the vowel is nasalized, a simple syllable structure, CṼ, is more accurately predicted
than a complex one, such as CṼṼ. However, if the vowel is plain, the accuracy of CVE—
where E could be either a consonant or vowel—is greater than that of CV. The syllabified
consonants [m] and [N] are the least accurate. Thus, we can further examine the distribution
of different vowels when following the sonorant sequence of CGVE, where V stands
for the peak of the syllable. The results showed that regardless of the vowel’s nature,
the prediction of nasalized vowels was less accurate than for oral vowels. More specifically,
the front vowels were easier to correctly predict than the back vowels. One should also
note the performance of ê[W] and ên[ẽ], with approximately the same accuracy of 54%, and
[õ], with no accuracy.

Table 2. Accuracy of the three models compared to the 2015 Chaoshan dictionary.

Category Subcategories/Description Tendency

Syllable structure CVE > CV > CṼ > CṼṼ
VS (64%) > VN (61%) > VV(58%) >

V(55%) > Ṽ (25%) > ṼṼ(21%) >
syllabified consonants (5%)

Vowel/ Nucleus V > Ṽ; front V > back V

i[i] (65%) > ê[e](64%) > a[a] (61%) >
u[u](57%) > e[W] (55%) > o [o] (49%)

ên[ẽ] (54%) > in[̃i] (20%) > an[ã] (17%) >
un[ũ] (15%) > syllable consonants (8%) >

on[õ](0%)

Consonants

Onset manner of articulation
(MOA)

lateral (61%) > fricatives (59%),
affricates(59%), nasals (59%) > zero

onset (57%) > stops (56%)

Onset place of articulation (POA) glottal (60%) > velar (59%) > bi-labial
(58%) > zero onset (58%) > coronal (57%)

Onset voiced feature Voiced (60%) > voiceless (57%)

Onset aspirated feature unaspirated (58%) > aspirated (54%)

Tones

Tone tonal contour 1 level tone (T1, T5, T7) (57%) > contour
tone (T2, T3, T6) (55%)

Tone initial tonal register 2 H initial T value (T2, T5, T8) (65%) > L
initial T value (T3, T4, T7) (49%)

Tone duration checked tone (T4, T8) (64%) > unchecked
tone (T1, T2,T3,T5,T6,T7) (57%)

1 Checked tones are not included. 2 T1 /33/ and T6 /35/ are not included.

The consonants were analyzed based on their MOA and POA, whether they were
voiced or not, and whether they were aspirated or not. Overall, we found no significant
difference in terms of accuracy in these four different aspects. Regarding the MOA, the ac-
curacy varied from 61% to 56%. One should note that stops, which are usually considered
to be acquired first in children, showed the lowest accuracy. As for the POA, the accuracy
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rates varied from 60% to 57%. One should note that coronal unmarked features are consid-
ered to be acquired first or with the least restriction on their combination with the lowest
rate of accuracy. Voiced consonants were easier to predict correctly compared to voiceless
ones; in contrast, the aspirated consonants were harder to predict correctly. The difference
between the voiced/voiceless and aspirated/unaspirated consonants was the smallest,
with a value of 3–4%.

Finally, tonal accuracy was analyzed in terms of tone contour, register, and duration.
The accuracy of the prediction of level tones was found to be higher than for contour tones,
indicating no significant difference. However, the predicted value for the H initial tone,
at 3 on the five-point Chao scale, was higher than that of the L initial tonal value (65%
vs. 49%). The checked tone accuracy (64%) was higher than the unchecked tone accuracy
(57%); the former is always acquired later by children.

To sum up, the predicted sounds made by the machine learning models displayed
very different phenomena compared to human language learning. The differences between
the model-generated sounds and the human-acquired sounds were, thus, compared.

In machine learning tasks, training a complicated neural network model such as seq2seq
requires a substantial amount of data to establish an effective model. However, due
to the limited number of entries in the two Chaoshan dictionaries currently available,
only 5523 data items were available for training and testing. Although this quantity may
seem somewhat insufficient for training a seq2seq model, it is quite adequate for traditional
machine learning models such as DirecTL+ and Sequitur, especially for machine translitera-
tion tasks. The experimental results indicate that the performance of seq2seq models still
surpasses that of DirecTL+ and Sequitur. Therefore, the issue of having fewer data should
be considered negligible.

5. Discussion
5.1. The Sounds Generated by the Models Are Governed by the Sequence

We found that the accuracy of the Chaoshan dictionary, as generated by the three
models—attention-based seq2seq, DirecTL+, and Sequitur—highlights, to some degree,
what machine learning can achieve. However, their performance was not found to be at the
same level as the process of human language learning, i.e., proceeding from unmarked
features to marked ones.

More specifically, strong consonants are defined as more obstruent when airflow
passes the oral cavity, i.e., they are more consonant-like. In this definition, aspirated, stop,
and voiceless consonants are strong compared to their unaspirated, lateral, and voiced
counterparts. According to this definition, the consonants generated by the models are
weak consonants rather than being more consonant-like.

Table 3 shows the accuracy of the model-generated sounds and the distribution of the vow-
els following different consonants with respect to the MOA. For example, the distribution
of vowels occurring after the stops was about 39% among the 5523 items, ranking first.
As such, because there was a greater chance for different vowels to follow stops, the prediction
made by the three models offered the lowest accuracy, with a value of 56%, ranking sixth. On
the contrary, if the MOA was lateral, the prediction made by the three models achieved its
highest value at 61%. However, the possibility of candidate vowels following a lateral gave
the lowest value at 7%. Even though the ranking order varies according to the model accuracy
and the distribution of vowels following each subcategory’s consonants, the tendency is clear:
the more following candidate vowels, the lower the chance that the three models can predict
the consonants according to their MOA.
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Table 3. Comparison between the model-generated speech and consonants with respect to the MOA
and their following vowel distribution.

Subcategory Model_acc Rank Distribution Rank

Stops 56% 6 39% 1
Fricatives 59% 2 20% 2
Affricates 59% 2 16% 3

Nasals 59% 2 8% 5
Lateral 61% 1 7% 6

Zero onset 57% 5 10% 4

Table 4 shows the accuracy of the model-generated speech and the distribution
of the vowels following different consonants with respect to the POA. For example, the dis-
tribution of vowels occurring after a coronal is about 47% (5523 items), ranking first.
As such, because there was a greater chance of different vowels following the coronal,
the prediction of the three models gave the lowest value at 56%, ranking fifth. On the con-
trary, if the POA was glottal, the prediction made by the three models achieved its highest
value at 60%. However, the prediction of the possible candidate vowels following a glottal
gave the lowest value at 10%. Even though the ranking order varies between the model
accuracy and the distribution of the vowels following each subcategory’s consonants,
the tendency is not particularly clear. For zero onset, both the prediction of the three
models (57%) and the distribution of the following vowels (10%) ranked last. The argument
that the more following vowel candidates there are, the less chance the three models can
predict the consonants when divided with respect to their place of articulation only holds
for the first subcategory.

Table 4. Comparison between the model-generated speech and consonants with respect to the POA
and their following vowel distribution.

Subcategory Model_acc Rank Distribution Rank

Labial 58% 3 13% 3
Coronal 56% 5 47% 1

Velar 60% 1 19% 2
Glottal 60% 1 10% 4

Zero onset 57% 4 10% 4

Table 5 shows the accuracy of the model-generated speech and the distribution of vow-
els following different consonants with respect to being voiced. For example, the distribu-
tion of vowels occurring after a voiceless consonant was about 71% (5523 items), ranking
first. As such, because there is a greater chance for different vowels to follow voiceless
consonants, the prediction made by the three models gave the lowest value at 57%, ranking
second. In contrast, if the consonant was specified as being voiced, the prediction made
by the three models achieved its highest value at 60%. However, the prediction of possible
vowel candidates following a voiced consonant gave the lowest value at 19%. Even though
the ranking order varied between the model accuracy and the distribution of vowels follow-
ing each subcategory’s consonant, the tendency is clear. For zero onset, the prediction made
by the three models (57%) and the distribution of following vowels (10%) both ranked last.
The argument that the more following vowel candidates there are, the smaller the chance
the three models can predict the consonant when divided with respect to their voiced
feature still holds.
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Table 5. Comparison between the model-generated speech and consonants with respect to the voiced
feature and their following vowel distribution.

Subcategory Model_acc Rank Distribution Rank

Voiceless 57% 2 71% 1
Voiced 60% 1 19% 2

Zero onset 57% 2 10% 3

Table 6 shows the accuracy of the model-generated speech and the distribution of vow-
els following different consonants with respect to the aspired feature. For example, the dis-
tribution of vowels occurring after an unaspirated consonant was about 30% (5523 items),
ranking first. In contrast to the MOA, POA, and voiced feature, the greater the chance
of different vowels following an unaspirated consonant, the higher the prediction value
made by the three models, with 58%, also ranking first. This means the same pattern was
found both for the model accuracy and the following vowel distributions.

Table 6. Comparison between the model-generated speech and consonants with respect to the
aspirated feature and their following vowel distribution.

Subcategory Model_acc Rank Distribution Rank

Unaspirated 58% 1 30% 1
Aspirated 54% 2 21% 2

To sum up, a similar pattern was revealed both in the prediction made by the three
models and the distribution of the following vowels, showing that the behaviors of the ma-
jor features—the MOA, POA, and voicing—differ from those of the minor and aspirated
features.

One may speculate that the onset prediction of the three models and the distribution
of the following vowels may be related to the sonority sequence. If we postulate that
the sonority hierarchy is essentially uniform across languages, once a word has a legal
syllable structure in one particular language, meaning that its minimal sonority distance
in this language is met, it partially fulfills the phonotactic constraint. If so, the reason why
some syllable combinations are less common is probably due to a preference for making
the sonority distance as large as possible. Thus, when selecting the onset in Chaoshan,
for example, a stop is preferred to a nasal and then a liquid because the following component
is either a glide or a vowel, which are always ranked as the most sonorant. This regulation
of phonotactic constraint in Chaoshan determines the word combination.

Concerning feature geometry, if the aspirated consonant is described as [+/− spread
glottis] under the supervision of the laryngeal and [+/− consonant; +/− sonorant], we may
wonder about how the behaviors of consonants with aspirated features fit with the MOA,
POA, and voicing. This brings us to the next question: Why are aspirated consonants
synchronized with the distribution of the following? However, only MOA, POA, and
voiced features manifest a similar pattern. One might postulate that POA, MOA, and
voicing are major features with which to describe consonants, whereas aspirated features
are not. Of course, more research is needed to investigate this issue more fully.

Table 7 shows the accuracy of the model-generated speech and the distribution
of the consonants preceding different types of vowels. We may take VN as an exam-
ple. The consonants preceding the VN type constitute about 34% (5523 items), ranking first,
whereas the accuracy of VN is 59%, ranking second. In contrast, in relation to the accuracy
of consonants and the distribution of the following vowels, consonants (the left-to-right
sequence) indicate sufficient prediction accuracy; vowels (the right-to-left sequence) do not
have such prediction. The sequence determines the accuracy of the models and the one
(consonants in this study) on the left-hand side with fewer possible following sounds,
where we can see the higher accuracy of this consonant (L → R). However, if the vowel is
the pivot, no such phenomenon can be observed.
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Table 7. Comparison between the model-generated speech and different types of vowels and their
preceding consonant distribution.

Subcategory Model_acc Rank Distribution Rank

V 52% 4 21% 3
Ṽ 24% 5 1.5% 6

syllable
consonants 0% 7 0.2% 7

VV 57% 3 25% 2
ṼṼ 19% 6 2.8% 5
VS 66% 1 16% 4
VN 59% 2 34% 1

Table 8 shows the accuracy of the model-generated speech and the distribution
of the consonants preceding vowels of different natures. For example, the consonants
preceding the V-i type account for about 35% (5523 items), ranking first, whereas the accu-
racy of V-i is 62%, ranking third. If the vowel is the pivot, the prediction is insufficiently
accurate. This means that consonants (the left-to-right sequence) work, but this is not
the case for vowels (the right-to-left sequence).

Table 8. Comparison between the model-generated speech and different natures of vowels and their
preceding consonant distribution.

Subcategory Model_acc Rank Distribution Rank

V-a 73% 1 17% 3
V-e 55% 4 4% 6
V-ê 64% 2 9% 5
V-i 62% 3 35% 1
V-o 47% 6 13% 4
V-u 55% 4 22% 2

Syllabified
consonants 8% 7 0.2% 7

To sum up, the accuracy of the prediction of consonants is negatively correlated with
the distribution of the following vowels, whereas that of vowels is not.

As for tones, Table 9 shows the tone accuracy of the models and the distribution
of each tone (5523 items). Taking T5 (55) as an example, the tone distribution was about
20%, ranking first, whereas the accuracy of T5 (55) was 67%, ranking first as well. We
generalize this by saying that there is a partially positive correlation between the tones and
their distribution, meaning the greater the distribution of the tone, the better chance it can
be correctly predicted. The odd one out is T8 (4), for which the distribution was pretty low,
ranking seventh, but the accuracy of which was high, ranking second.

Table 9. Comparison between the accuracy of each tone generated by the models and tone distribution.

Subcategory Model_acc Rank Distribution Rank

T1 (33) 59% 5 20% 1
T2 (52) 63% 3 16% 3
T3 (213) 50% 7 13% 4

T4 (2) 63% 3 10% 5
T5 (55) 67% 1 20% 1
T6 (35) 51% 6 10% 5
T7 (11) 20% 8 4% 8
T8 (4) 66% 2 6% 7

Table 10 shows the accuracy of the tones generated by the models in terms of tone
contour, register, duration, and their distributions (5523 items). When looking at the level



Appl. Sci. 2024, 14, 3104 17 of 20

tones, including T1 (33), T5 (55), and T7 (11), the distribution of this type of tone was about
45%, ranking first, and the accuracy of its prediction was 57%, ranking first as well. We can
generalize that there is a partially positive correlation between the prediction of the tones
and their distribution, meaning the greater the distribution of the tone, the better the chance
of it being correctly predicted. In relation to different tonal durations for unchecked
vs. checked tones, even though the checked tones have far smaller distributions than
the unchecked versions (16% vs. 84%), the accuracy of tone prediction for the checked
tones was greater at 64%.

Table 10. Comparison between tone accuracy for tone contour, register, and duration, generated
by the models and tone distribution.

Tone Contour Model_acc Rank Distribution Rank

Level tone (T1 (33)+ T5 (55)+ T7 (11)) 57% 1 45% 1

Contour tone (T2 (52)+ T3 (213)+ T6 (35)) 55% 2 38% 2

Tone register

H initial T value (T2 (52)+ T5 (55)+T8 (4)) 65% 1 42% 1

L initial T value (T3 (213)+ T7 (11)+T4 (2)) 50% 2 27% 2

Tone duration

Unchecked tone (T1 (33)+ T2 (52)+ T3 (213)+T5 (55)+ T6 (35)+ T7 (11)) 57% 2 84% 1

Checked tone (T4 (2)+ T8 (4)) 64% 1 16% 2

5.2. Different Mechanism for the Sounds Generated by the Models and for Those Acquired
by Human Beings

[15] claims that “the relative chronological order of development remains everywhere
and at all times the same”. This means that the pace of development in children may
vary, but the order in which the sounds are acquired seems universal. Our study reveals
a general pattern for the order in which sounds emerge in children: stops are acquired
before affricates, and velars are acquired later, while level tones are acquired earlier than
contour tones. However, the sounds correctly generated by the three models display ap-
proximately the opposite relationship. Ref. [15] also claims that “only those sounds which
are common to all the languages of the world, while those phonemes which distinguish
the mother tongue from the other languages of the world appear only later”. He also sug-
gests that identical laws operate in the phonological development of language in children
and the synchronic structure of the world’s languages. As such, unmarked sounds are
acquired earlier than marked sounds since unmarked sounds appear in most languages
of the world, and the acquisition of some sounds presupposes the acquisition of other
sounds. Ref. [15] also provides evidence to show the mirror image of the developmental se-
quence of language acquisition in the study of aphasia, which is, to some degree, in line with
our model-generated sounds. In this sense, we would further argue that model-generated
sounds are determined by the sequence of word combinations from left to right. Only
the onsets generated by the models present a mirror image of the sequence of children’s
language acquisition because the phonotactic constraints of word combinations restrict
their appearance. The more common this onset is, the more variety is found in its following
unit, which is either a glide or a vowel. This means that the more unmarked the onset,
the better the chance/probability that it can be preceded by other units. If this is the case,
it shows why the prediction achieved by our model is less accurate, resulting in lower
accuracy in relation to onset production.

At first glance, hearing-impaired children seem to be affected by their physiological
disorder, for example, with reduced ability to hear high-frequency sounds such as stops.
However, Ref. [40] found that the English allophone [z] may have three different meanings
when combined with other morphemes. Take the word “cook” as an example, where
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(a) ‘cooks’ is the plural form, (b) ‘cook’s hat’ is the possessive case, and (c) ‘mummy
cooks’ is the inflectional form of the verb, ‘cook’. The acquisition sequence in children
goes from (a) to (c). In the case of a patient with aphasia, the sequence of loss was
as follows: first, the suffix of the verb, (c), then the suffix of the possessive, (b), and finally,
the suffix of the plural noun, (a). The order of aphasic loss went from the sentence level
(c) to the phrasal level (b) and then the word level (a), i.e., from the most complex form
to a simple form. The results generated by the three models, to some degree, reveal a similar
phenomenon.

Therefore, this means that, under the legal syllable structure/word condition, the more
specific the feature the onset contains, the more easily the models can predict it. This is
the same as the ability of the aphasia patient. By considering the constraints on marked-
ness, the sounds that are acquired last by humans (because of their markedness) parallel
the accuracy of the predictions made by the models, i.e., these are also predicted last due
to the large number of potential follow-up units.

To sum up, while the acquisition process in children is determined by frequency, we
did find some parallels between the machine learning models and the human acquisition
process regarding minor features, such as aspiration. However, the major features MOA
and POA, demonstrate the opposite. When taken together, the machine-generated sounds,
governed by the distribution of following units from left to right, are applied to onsets
only. In addition, part of the results parallel the human acquisition of sounds, primarily
determined by the input frequency as a holistic lexicon learning process.

Notably, not all the sounds generated by the models reveal the same marked hypoth-
esis. The nasalized vowels provide an example. They are rarer than oral vowels, and
their presence within a system presupposes that of oral vowels. According to [17], the set
of nasal vowels is never larger than the set of oral vowels, fulfilling the definition of the
markedness category.

6. Conclusions and Further Research

We compared the sounds predicted by the models and found that the accuracy rate
(from high to low) regarding the model-generated sounds and the process of learning
sounds in human beings is very different. The accuracy of the model-generated sounds is
based on the amount of input, i.e., the greater the input, the better the performance. The suc-
cessive emergence of sounds reported by different scholars is quite different across lan-
guages. In language acquisition, the process of moving from unmarked sounds to marked
sounds in terms of their features, POA, MOA, and level tones is not some descriptive
linguistic phenomenon. This reflects the real-world functions of this mechanism, where
frequency is the key to acquiring a language. However, the opposite phenomenon related
to the sounds generated by the models when moving from the highest to the lowest accu-
racy is clear. This means the mechanism used by the models is totally different from the one
used by human beings. The distribution or input frequency really plays a role in the models.
However, this distribution may not be the primary key to language acquisition in human
beings. People present another set of mechanisms: learning by unmarked vs. marked
incidence of a single tone (slot), so it will be the opposite.

More specifically, the left-to-right sequence (consonants) indicates sufficient prediction
accuracy, whereas the right-to-left sequence (vowels) will not yield such accurate predic-
tions. The accuracy is partially related to the distribution, and only consonants can indicate
what follows. Vowels manifest such a pattern, whereas the sequence of the words has
nothing to do with children’s language acquisition. As such, there are significant differences
between the machine-generated sounds and the human-acquired sounds.

This pilot study of adapting computational methods to sound model generation and
human acquisition did not successfully demonstrate a positive correlation. Certainly,
advancing our comprehension of speech models remains a significant endeavor worthy
of continued pursuit. The simulation of speech models may not always align perfectly
with the process of language acquisition in humans. Therefore, striving for a more ef-
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fective interpretation of the speech models in production remains a crucial objective for
future efforts.

On the other hand, we are aware that the literary and colloquial readings are not
inevitable, especially in the Min languages. The stratum between the two readings is not
clear-cut, and understanding how to label a one-to-one correspondence for literary and
colloquial readings of the same character is the key to this study. Uncovering the use
of the super-stratum and the substratum is the goal of further research.
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