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Abstract: In order to solve the problem of low safety and efficiency of underground mine vehicles, 
a path planning method for underground mine vehicles based on an improved A star (A*) and fuzzy 
control Dynamic Window Approach (DWA) is proposed. Firstly, the environmental information is 
analyzed, and the proportion of obstacles is introduced into the A* algorithm to optimize the heu-
ristic function to improve its search efficiency in different environments. Secondly, for the global 
path, the key node selection strategy is proposed, the node selection method is optimized, and the 
redundant nodes are deleted. The path is optimized by using a 3 times Clamped-B spline to improve 
the smoothness of the path. Then, based on the principle of fuzzy control, fuzzy rules are estab-
lished, and a DWA fuzzy controller is designed to improve the environmental adaptability of the 
DWA algorithm. Finally, on the basis of the global path, the key node is used as the local target point 
of the DWA, and the fusion of the improved A* and DWA algorithm is realized. Finally, experiments 
are conducted to verify the effectiveness and feasibility of the proposed path-planning method. The 
average deviation of the path is controlled at ±0.109 m, which basically meets the path planning 
needs of underground mine vehicles. 
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1. Introduction 
With the development of unmanned technology, it has been widely applied in the 

fields of unmanned vehicles and drones. The working environment underground is 
harsh, with frequent safety accidents, and mine areas usually operate 24 h a day. Drivers 
need to overcome their own fatigue, making driving work boring and posing certain 
safety hazards [1]. Underground scenes have advantages such as relatively simple, closed 
roads, low traffic volume, fewer people, and low-speed environments compared to urban 
road scenes. Therefore, the most urgent need for developing autonomous driving tech-
nology is in the underground scene. 

At present, some scholars have conducted theoretical research on unmanned driving 
technology for underground mine vehicles. In [2], the modeling and validation of the op-
eration process control of underground unmanned locomotives are researched. In [3], a 
feasibility study on the unmanned driving of underground explosion-proof vehicles in 
coal mines based on 4G communication technology has been carried out. In [4], the per-
ception, decision-making, and control of unmanned vehicles in tunnel environments are 
researched, and the safe and reliable control of underground unmanned trackless rubber-
wheeled vehicles is achieved. 

Autonomous driving technology provides an important means to achieve the safe, 
efficient, and intelligent transportation of mine vehicles. It can replace manual labor, im-
prove transportation efficiency, reduce costs, and minimize safety risks. However, the de-
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velopment bottleneck of underground unmanned driving technology is mainly mani-
fested in the following: (1) There is no global positioning system (GPS) signal on the un-
derground roadway, and vehicles cannot realize positioning. (2) The length of under-
ground tunnels is usually more than ten kilometers, and there are multiple corners and 
forks, so it is difficult to construct large-scale high-precision maps. (3) There are other ve-
hicles in the tunnels, which necessitates a highly accurate vehicle path planning and ob-
stacle avoidance ability. These issues have led to the slow development of underground 
unmanned vehicles. Therefore, this paper focuses on the path planning problem of under-
ground unmanned mine vehicles to achieve unmanned vehicle navigation, which has sig-
nificant application prospects and practical significance for liberating workers, reducing 
costs, and improving the efficiency of the entire transportation system [5]. 

At present, most scholars have conducted research on urban road vehicles, and there 
is relatively little research on path-planning methods for underground mine vehicles. In 
order to improve the transportation efficiency of underground unmanned mine vehicles, 
this paper proposes a path-planning method suitable for the structure of mine tunnels. 
The easily implementable A* algorithm is used as the global planning method and the 
efficient DWA algorithm is used as the local planning method. The reliability and adapt-
ability of the algorithm are improved through optimization and improvement to achieve 
path planning for underground unmanned mine vehicles. The main contributions are as 
follows: 
(1) The logarithmic function is introduced to improve the heuristic function coefficient. 

The adaptive adjustment of the A* algorithm is realized, and the key node selection 
strategy and 3 times Clamped-B spline are used to optimize and smooth the global 
path. 

(2) A DWA fuzzy controller based on the fuzzy control principle is proposed and de-
signed, which adjusts the coefficient weight of the DWA evaluation function in real-
time by judging the distance between the vehicle, obstacles, and target points. 

(3) A hybrid path planning method based on the improved A* algorithm and the fuzzy 
control DWA algorithm is proposed, and the global path key points are used as the 
local target points of the DWA to guide the vehicle and perform dynamic obstacle 
avoidance. 
The remaining sections of this paper are organized as follows. In the second section, 

the related works on the path-planning methods are briefly reviewed. In the third section, 
the details of the proposed hybrid method are introduced. In the fourth section, the ex-
perimental devices and experimental results are introduced. In the fifth section, the full 
text is summarized. 

2. Related Work 
The path planning of underground unmanned mine vehicles refers to the fact that, 

in the underground tunnel environment, the vehicle finds a collision-free path from the 
start point to the target point according to certain criteria [6]. Path planning methods are 
generally divided into global path planning and local path planning [7,8]. Global path 
planning is a process of quickly and accurately planning the optimal path on a known 
environmental map, taking into account the principles of shortest path length, lowest ve-
hicle energy consumption, and highest vehicle driving safety based on traffic tasks, using 
appropriate global path planning algorithms [9]. Local path planning is based on the 
global path, utilizing sensors to dynamically collect environmental information and gen-
erate real-time vehicle paths. [10,11]. At present, global path planning algorithms mainly 
include A* [12], Dijkstra [13], and rapidly-exploring random trees (RRTs) [14]. Local path 
planning algorithms include the artificial potential field algorithm (APF) [15], DWA [16], 
and deep learning method (DL) [17]. Dijkstra [18] uses a breadth-first search, which has 
the advantages of simple principles and a small amount of computation, but the compu-
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tational efficiency is low. RRT [19] is a sampling-based algorithm with probabilistic integ-
rity, but the algorithm search is blind, and the convergence speed is slow. The A* algo-
rithm, as a heuristic search algorithm, has the characteristics of simple and easy imple-
mentation, a small amount of required computation, and high efficiency. However, when 
the complexity of the environment increases, the amount of computation required in-
creases sharply, so it is difficult to find the optimal path. At the same time, the path 
planned by the A* algorithm has many inflection points, which is not conducive to vehicle 
tracking [20]. APF is an error control strategy with real-time obstacle avoidance, but, when 
multiple obstacles appear, zero potential energy points are prone to occur, resulting in 
vehicles being unable to reach the target point [21]. Path planning methods based on DL 
generally have feedback mechanisms, strong robustness, and good adaptability, but they 
have a slow convergence speed, high temporal and spatial complexity, and are prone to 
local convergence [22]. The DWA algorithm transforms the obstacle avoidance problem of 
the vehicle into the optimal speed execution problem by simulating the path of the vehicle 
at different speeds and scoring them [23]. The DWA algorithm has significant advantages 
in dynamic obstacle avoidance, but it is prone to local minima in complex environments, 
thereby reducing algorithm performance. In [24], an improved A* algorithm that uses dif-
ferent coefficient ratios to find the optimal path by changing the weight of the heuristic 
function in real-time and improving the smoothness of the path is proposed, and the path 
length is significantly reduced. In [25], a bidirectional A* algorithm is proposed by con-
sidering the factors affecting road escape. The experiment shows that fewer nodes are 
generated, and the planned path is shorter. In [26], a joint algorithm based on improved 
A * and APF is proposed. A* is improved by using exponential function weighting and 
spline interpolation methods. APF is improved by adding correction and escape factors, 
respectively, making the generated path smoother. In [27], the concepts of the relative ve-
locity potential field and acceleration potential field are proposed in the artificial potential 
field method to achieve optimal path selection. In [28], A* and DWA are used based on a 
grid diagram to achieve autonomous path planning for underground vehicles in coal 
mines. The above examples are all explorations and studies of autonomous path planning 
in underground mines, but most of the algorithms are still in the simulation and testing 
stage, and their adaptability to the auxiliary tunnel environment of coal mines needs to be 
verified. 

3. Methods 
3.1. Improved A* Algorithm 
3.1.1. Optimization Heuristic Function 

The A* algorithm obtains the child node with the smallest generation value around 
the parent node by calculating the cost function and continuously promotes the search as 
a new node until the target point is searched and the global path search is completed. The 
cost function can be expressed as 

)()()( nHnGnF +=  (1) 

where n represents the current node; )(nF  represents the total proxy value; )(nG  repre-
sents the actual value of n from the start point to the current node; and )(nH  is the heu-
ristic function, which is the estimated value from the current node n to the target point. 

The obstacles on the grid map are quantified and use w  to represent the complexity 
of the environment and to optimize the heuristic function coefficients, as shown in Figure 
1. 
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Figure 1. Quantifying obstacle information. 

The percentage of the number of obstacle grids w  can be expressed as 

( ) ( )gigi yyxx
Nw

−+×−+
=
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(2) 

where the coordinate of the green spot S at the start point of the vehicle is ( )ii yx , , the 
coordinate of the red spot G at the target point of the vehicle is ( )gg yx , , and N is the 
number of obstacle grids in the rectangular grid area composed of the start point to the 
target point (N is not zero). 

The Euclidean distance is selected as the heuristic function that can be expressed as 

22 )()()( gigi yyxxnH −+−=
 (3) 

The improved A* algorithm can be expressed as 

)()(1ln)()( nH
w
nHnGnF ）（ ++=

 
(4) 

Where w  is introduced into the evaluation function )(nH  and a logarithmic function is 
used to weigh. When w   decreases, the coefficient of the heuristic function slowly in-
creases. The search efficiency of A* is accelerated, and the sensitivity is improved. When 
w   increases, the coefficient of the heuristic function gradually decreases. The search 
range of A* is expanded, which prevents it from getting stuck in local optimal and com-
pleting the adaptive adjustment of the evaluation function. 

3.1.2. Key Node Selection Strategy 
This paper proposes a key node selection strategy, based on the following principles: 

It is assumed that the red nodes { }QPM ,,  are three contiguous nodes on the global path. 
If PQMP λλ =  is satisfied, that is, three points are collinear, it indicates that P is a redundant 
node, P can be deleted, and the path set becomes { }QM , , as shown in Figure 2. 
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Figure 2. Three-point collineation. 

If the red nodes { }QPM ,,  are not collinear, that is, PQMP λλ ≠ , then whether or not 
there are obstacles between M and Q is determined, if so, then P is the key node and needs 
to be retained, and the path set is { }QPM ,, . If there is no obstacle between M and Q, P is a 
redundant node, and P can be eliminated, and the path set is { }QM , . As shown in Figure 
3. 

 
Figure 3. Three-point non-colinear. 

3.1.3. Path Smoothing 
In order to meet the requirements of the smoothness of the vehicle driving path and 

the curvature of the vehicle turning, it is necessary to smooth the path to ensure the feasi-
bility of the path. In this paper, Clamped-B splines are compared with different degrees 
[29], as shown in Figure 4. The results show that the 3 times Clamped-B spline is closer to 
the original contour and meets the actual requirements, so the 3 times Clamped-B spline 
is used to smooth the path. 

 
Figure 4. Results of Clamped-B spline fitting with different number of times. 



Appl. Sci. 2024, 14, 3103 6 of 14 
 

3.1.4. Simulation Experiment 
In order to test the effectiveness of the improved A* algorithm, two scenarios (with a 

map size of 100 × 100) are set up to carry out simulation experiments via MATLAB. We 
compared traditional A*, extended A* [30], and improved A* in this paper. The results are 
shown in Figure 5, where the green rectangle indicates the start point and the red circle 
indicates the target point. 

  
(a) (b) 

Figure 5. Three algorithm simulation comparison experiments. (a) Comparison of experimental re-
sults in Scenario 1; (b) comparison of experimental results in Scenario 2. 

Table 1 shows the comparison of the number of nodes, planning time, and path length 
results of the three algorithms in the two experimental environments. 

Table 1. Comparison of simulation results for three environments. 

 Algorithm Number of Nodes Planning Time (ms) Path Length 

Scenario 1 
A* 172 213.915 159.682 

Extended A* 166 193.178 154.424 
Improved A* 143 186.308 149.731 

Scenario 2 
A* 227 562.713 231.812 

Extended A* 209 540.341 228.453 
Improved A* 189 494.104 217.036 

Table 1 shows that, in Scenario 1, the improved A* algorithm, compared to the A* and 
the extended A*, resulted in a decrease of 16.86% and 13.85% in the number of path nodes, 
a decrease of 12.91% and 3.56% in the algorithm planning time, and a decrease of 6.23% 
and 3.04% in the path length, respectively. In Scenario 2, the improved A* algorithm 
showed decreases of 16.74% and 9.57% in the number of nodes, 12.19% and 8.55% in the 
algorithm planning time, and 6.37% and 4.98% in the path length, respectively, when com-
pared to the A* and the expanded A*. These results indicate that in different obstacle en-
vironments, compared to the A* and the extended A*, the improved A* algorithm signifi-
cantly reduces the number of nodes and path length and has superior performance in path 
search. 

3.2. Improved DWA Algorithm 
3.2.1. DWA Algorithm 

The DWA algorithm predicts the trajectory of a vehicle within a given time interval 
through a velocity window, evaluates these trajectories using an evaluation function, and 
selects the optimal trajectory and corresponding speed to achieve local dynamic obstacle 
avoidance [1]. The trajectory evaluation function can be shown as 

)),(),(),((),( ωγωβωασω vvelvdistvheadvG ++=  (5) 
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where ),( ωvG   represents the position of the vehicle; ),( ωvhead   represents the azi-
muthal deviation of the end of the simulated path from the target point; ),( ωvdist  repre-
sents the distance of the end of the simulated path from the nearest obstacle; ),( ωvvel  
represents the linear velocity of the simulated path; γβα ，，  are the weighting coeffi-
cient of each subfunction; and σ  is a normalisation parameter. 

3.2.2. DWA Fuzzy Controller Design 
Based on the principle of fuzzy control [31], a DWA fuzzy controller is designed 

which adjusts the weight coefficients in real-time according to environmental information 
variables to enhance the environmental adaptability of the algorithm. 
• Fuzzification 

Inputs: The distance of the vehicle from the target point G-dist (G), the distance of 
the vehicle from the nearest obstacle O-dist (O). The fuzzy definition of input quantities: 
The fuzzy set of G is defined as {S,M,L}, that is, the distance between the corresponding 
vehicle and the target point is near (the red line), medium (the green line), and far (the 
purple line), and the domain is [0, 2]. The definition of the O fuzzy set is also {S,M,L}, 
where the distance of the vehicle from the nearest obstacle is near (the red line), medium 
(the green line), and far (the purple line), and the domain is [0, 3]. The membership func-
tions of the fuzzy sets G and O are shown in Figure 6. 

  
(a) (b) 

Figure 6. Membership functions for fuzzy sets G and O. (a) G’s membership function; (b) O’s mem-
bership function. 

The output quantities are α, β, and γ, and the fuzzy sets of α, β, and γ are defined as 
{S,M,L}, that is, the corresponding weights are small (the red line), medium (the green 
line), and large (the purple line), and the domains are all [0, 1]. The membership function 
is shown in Figure 7. 

   
(a) (b) (c) 

Figure 7. The membership function of α, β, and γ. (a) α’s membership function. (b) β’s membership 
function. (c) γ’s membership function. 
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• Establish fuzzy rules. 
The table of fuzzy control rules designed in this paper is shown in Table 2. 

Table 2. Table of fuzzy rules. 

Rule Number 
Input Output 

G O α β γ 
1 S S M M S 
2 S M L M S 
3 S L L S S 
4 M S M M S 
5 M M M M M 
6 M L M S M 
7 L S S L M 
8 L M S L M 
9 L L L M L 

3.2.3. Simulation Experiment 
In order to compare the environmental adaptability of the DWA algorithm and the 

improved DWA algorithm, 50 path planning simulation experiments are conducted in 
three experimental scenarios. The relevant parameter configuration is shown in Table 3, 
and the simulation experiment data are shown in Table 4. 

Table 3. Parameter configuration of simulation experiment. 

Parameter Value Parameter Value 
α 0.15 Maximum angular rate 60 rad/s 
β 0.4 Maximum linear acceleration 0.1 m/s2 
γ 0.3 Trajectory prediction time 2 s 

Maximum linear speed 1 m/s   

Table 4. Simulation experiment data results of three experimental environments. 

Experiment Algorithm Planning Time (s) Path Length Success Rate 

Scenario 1 
DWA 235.172 196.342 90% 

improved DWA 246.374 184.751 96% 

Scenario 2 
DWA 219.532 174.285 94% 

improved DWA 224.784 170.764 98% 

Scenario 3 
DWA 220.429 175.479 86% 

improved DWA 226.425 169.427 96% 

In the Scenario 1 experiment, as shown in Figure 8, where the red rectangle represents 
the start point, and the yellow circle represents the target point. From the curve of change, 
the vehicle moves towards the obstacle and is far from the target point, the fuzzy control-
ler prioritizes obstacle avoidance and outputs a larger β, a smaller α, and a moderate γ. 
As the vehicle gradually approaches the target point, around the number of iterations 360, 
the vehicle begins to approach the target point and moves away from obstacles. Finally, 
the fuzzy controller outputs a larger α, a moderate β, and a smaller γ to ensure that the 
vehicle slowly approaches the target point. 
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(a) (b) 

Figure 8. Simulation experiment results of Scenario 1. (a) The resulting graph of the path comparison 
experiment; (b) output variation chart. 

In the Scenario 2 comparison experiment, as shown in Figure 9, where the red rec-
tangle represents the start point, and the yellow circle represents the target point. The 
distance between the initial vehicle and the obstacle and the target point is large, and the 
output of the fuzzy controller is a larger α and γ, and a moderate β, accelerating towards 
the target point. As the vehicle approaches the obstacle, priority is given to obstacle avoid-
ance (the number of iterations is about 150), the β gradually increases, and the α and γ 
gradually decrease. As the vehicle gradually approaches the target point and moves away 
from the obstacle (about 375 iterations), the distance between the vehicle and the obstacle 
and the distance to the target point are both moderate and, at this time, the output is a 
moderate α and β, and a smaller γ. 

  
(a) (b) 

Figure 9. Simulation experiment results of Scenario 2. (a) The resulting graph of the path comparison 
experiment; (b) output variation chart. 

In the Scenario 3 comparison experiment, as shown in Figure 10, where the red rec-
tangle represents the start point, and the yellow circle represents the target point. Firstly, 
the distance between the vehicle and the obstacle and the target point is relatively large, 
resulting in a larger α and γ, and a moderate β, and the vehicle quickly moves towards 
the target point. As the obstacle slowly approaches, the output is a larger β, a moderate γ, 
and a smaller α, giving priority to ensuring the obstacle avoidance needs of the vehicle. 
Finally, when the distance between the vehicle and the target point and the obstacle is 
small (about 370 iterations), the fuzzy controller outputs a moderate α and β, and a smaller 
γ, to ensure the safety of the vehicle while approaching the target point. 
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(a) (b) 

Figure 10. Simulation experiment results of Scenario 3. (a) The resulting graph of the path compar-
ison experiment; (b) output variation chart. 

From Table 4, the average planning time of the DWA algorithm is 225.044 s, and the 
average planning time of the improved DWA algorithm is 232.528 s. In the three experi-
mental environments, the average path length of the improved DWA is shortened by 
5.90%, 2.02%, and 3.45% compared to the DWA, respectively. From the above analysis, it 
can be seen that, although the improved DWA algorithm sacrifices a certain amount of 
time, the environmental adaptability of the algorithm is enhanced, and its success rate in 
the three environments is very high. 

3.3. Fusion of Path Planning Method 
The combination of the global path planning method and local path planning method 

is used to realize the path planning of the vehicle. The specific steps are as follows: 
Step 1: The initial environment map is obtained. 
Step 2: The coordinate sequence of the global critical path nodes of the improved A* 

is recorded, and the global key nodes are regarded as local target points. 
Step 3: The distance between the current position of the vehicle and the local target 

point is determined, if the distance is less than the threshold, it is considered that the local 
target point has been reached, and the local target point is updated to continue local plan-
ning. 

Step 4: When the local target point is not the last node in the global target point se-
quence, the next local target point is updated, and Step 3 will be repeated. 

Step 5: When the local target point is the last node of the global sequence, the entire 
path planning is completed. 

As shown in Figure 11, when the vehicle moves along the global path from the start 
point S, the key nodes { }4321 ,,, nnnn  guide the vehicle separately to perform local plan-
ning and move towards the target point T. 

 
Figure 11. Global path information guides local planning. 
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4. Experiments 
4.1. Experimental Settings 

In order to verify the effectiveness of the path planning method, this experiment is 
carried out through the intelligent car experimental platform. The structure of the indoor 
long corridor is similar to that of underground tunnels, so it is chosen as the experimental 
scene, as shown in Figure 12. 

 
Figure 12. Simulated experimental scene. 

The relevant parameters of the experimental vehicle are shown in Table 5, and the 
experimental device information is shown in Table 6. 

Table 5. Structural parameters of the vehicle. 

Name Parameters 
Shape 2490 × 1550 × 616 mm 

Bearing spacing 1900 mm 
Wheel spacing 1355 mm 

Maximum speed 40 km/h 
Steering type Four-wheel steering 
Braking type Four-wheel disc brake 

Table 6. Information on experimental devices. 

Equipment Model 

Computer 
CPU i7-9700 

Graphics card 
RTX3060 

LIDAR Velodyne VLP-16 
IMU LPMS-IG1 

4.2. Analysis of Experimental Results 
• Unknown environment 

Experiment 1 is a path planning experiment conducted in an unknown environment 
with obstacles. Two sets of unknown obstacles are added to the known global map to form 
an unknown environment map, which is used to test the effectiveness of local path plan-
ning. The results are shown in Figure 13, A is defined as the start point and B is defined 
as the target point. 
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(a) (b) (c) 

Figure 13. Comparison of experiments on three path planning algorithms in an unknown environ-
ment. (a) The results of the A*+DWA path planning experiment; (b) the results of the A*+APF path 
planning experiment; (c) the results of the fusion method path planning experiment. 

It can be seen from Figure 13 that the three algorithms can avoid obstacles and suc-
cessfully reach the target point. However, the deviation between the path planned by the 
other two algorithms and the central axis of the tunnel excavation area is relatively large, 
which does not meet the requirements of underground mine vehicles. The deviation be-
tween the path planned by the fusion algorithm and the central axis of the simulated tun-
nel excavation area is generally small, with an average deviation controlled at m109.0±
, and the maximum deviation is m214.0±  at the corner. The path planned by the hybrid 
algorithm is smoother and more reasonable when the vehicle avoids obstacles. 
• Dynamic environment 

This is a dynamic obstacle path planning experiment for the three algorithms men-
tioned above. The yellow dot represents the obstacle moving at a constant speed. A is 
defined as the start point. B is defined as the target point. The result is shown in Figure 14. 

   
(a) (b) (c) 

Figure 14. Comparison of experiments of three path planning algorithms in a dynamic environment. 
(a) The results of the A*+DWA path planning experiment; (b) the results of the A*+APF path plan-
ning experiment; (c) the results of the fusion method path planning experiment. 

In Figure 14, it can be seen that the paths planned by the A*+DWA and A*+APF algo-
rithms cannot smoothly bypass dynamic obstacles, and the generated paths are not 
smooth enough. Before encountering dynamic obstacles, the fusion algorithm can predict 
the current path and choose a safer path to bypass the obstacles. The path security is better, 
and the path basically conforms to the global path, with a smoother path, ensuring the 
global optimum of the path. 

5. Conclusions 
In this paper, the heuristic function of the A* algorithm is logarithmically weighted 

by introducing the proportion of environmental obstacles. The key node selection strategy 
and the 3 times Clamped-B spline are adopted to optimize and smooth the path. A DWA 
fuzzy controller is designed based on the principle of fuzzy control. Through simulation 
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experiments, the improved hybrid path planning method is validated. The average devi-
ation is controlled at m109.0± , and the maximum deviation, which occurred at the cor-
ner, is m214.0± . The results showed that, compared to other methods, the path planned 
by the proposed method is safer, more reasonable, and more in line with the global path, 
which is beneficial for vehicle tracking and driving. 

Due to limitations in experimental conditions, it is currently not possible to achieve 
experimental verification of a real underground mine environment. At present, the appli-
cation of underground mine drones has become a trend, so subsequent research will ex-
pand from path planning in 2D scenes to path planning in 3D scenes. 
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