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Featured Application: This study explores the potential application of tomato fruit production
within the agrivoltaic system, aiming to evaluate its contribution to food security in the context of
climate change. Specifically, the study compares tomato cultivation under agrivoltaic conditions
with shaded areas created by PV panels to traditional cultivation under full sunlight conditions.
The experiments primarily focus on investigating the impact of different watering conditions in
both shaded areas and the full sunlight, in order to discern the differences in yield and tomato
fruit quality.

Abstract: Climate change, with rising temperatures, water crises, and an increased frequency of
climate disturbances, poses a threat to the ability of agroecosystems to ensure human access to
food by affecting both the quantity and quality of crop production. Currently, there is growing
knowledge about the fact that agrivoltaic systems may represent a direct strategy to cope with
climate change driven by carbon dioxide emissions for energy production, preserving the capacity
of agroecosystems to maintain food security. The aim of this work was to investigate the impact of
environmental conditions generated by photovoltaic (PV) panels for sustaining open-field tomato
(Solanum lycopersicum L.) fruit production under varying water supply regimes. Tomato plants were
grown beneath PV panels or in full sunlight. In each scenario, two plots with an equal number of
plants were subjected to different irrigation levels: high watering (HW) and low watering (LW).
The results showed a lower number of tomato fruit produced grown under the PV panels, with an
increased fruit size and water content under a normal water supply. The Brix degrees of the tomato
fruits grown under the panel were more comparable to the fruits commercially available on the
market than the Brix degree of the fruits grown in open-field sunlight. Thus, our data supported the
conclusion that the agrivoltaic system, in the context of climate change with the enduring drought and
long-term water scarcity, can be a good adaptation strategy to maintain favorable tomato production
compared to the full sunlight conditions. Furthermore, these results can be important for planning
breeding programs, since in many cases, the tomato fruits grown in full sunlight were seedless.

Keywords: agrivoltaic; agroecosystem; climate change; crop adaptation; food security; photovoltaic
panels; renewable energy; tomato production
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1. Introduction

The agroecosystem involves the dynamic interplay between natural resources and
human-derived capital, encompassing human efforts and technologies devoted to increase
our overall well-being [1–4]. It has a primary role to support food security, ensuring universal
access to a sufficient and safe supply of nutritious food that adheres to the quality parameters
promoting human health [5]. This perspective integrates crucial factors such as food availabil-
ity, quality, accessibility, and utilization, aiming to maintain stability over time [6,7], aligning
with the UN goals to alleviate hunger, malnutrition, and the related issues [5].

Farmers face challenges posed by changing meteorological events, including floods,
heatwaves, fires, drought, and shifts in soil conditions [4,8,9]. These events force agri-
cultural crop species to undergo adaptations, potentially influencing ecosystem services
crucial for food security. However, the implementation of adaptation measures, like
drought escape and dehydration avoidance, may have adverse consequences on crop
yields and the quality of edible products [4,10–13]. Despite these challenges, farmers have
the potential to mitigate the effects of climate change on crops by implementing specific
agricultural strategies. These include optimizing irrigation and fertilization practices, diver-
sifying crops and selecting resilient varieties, refining fertilization practices, and adopting
protective measures (e.g., greenhouses and tunnels) along with implementing precision
agriculture [4,14,15]. In this context, agrivoltaic systems emerge as a promising solution
for sustainable crop production and the efficient use of water resources in the face of
climate change. These systems integrate renewable energy production and crop cultivation
within the same space, using photovoltaic (PV) panels either elevated above the ground
or integrated into shade-like structures [16–19]. The agrivoltaic system can be defined as
a hybrid-based solution (H-bS) combining human infrastructure into the agroecosystem
with positive impacts on ecosystem services [20].

Positioning PV panels above specific crops provides benefits such as reduced leaf
evapotranspiration, enhanced water use efficiency, and temperature regulation. Addition-
ally, their shade helps maintain soil moisture balance, promoting optimal conditions for
plant growth [16,20–23]. However, the extent of these advantages and the adaptability of
crops to thrive and be productive beneath the PV panels vary among species. Indeed, there
is substantial documentation indicating that when plants are exposed to shade, the net pho-
tosynthetic rate of leaves increases substantially, leading to a rapid closure of stomata [24].
This shading-induced decline in photosynthetically active radiation (PAR), encompassing
light in the 400–700 nm range, can trigger the adaptive response known as the shade
avoidance syndrome (SAS) [25,26]. SAS signifies the vegetation’s proactive response to
low light availability, often a prodromal sign of imminent resource-dependent competition,
and triggers physiological mechanisms that enhance plant capability to thrive in a com-
petitive environment, including increased stem elongation, reduced branching, and early
seed production. The consequences of SAS for crop production can vary depending on
environmental conditions, natural resources, and the topography of vegetation [20,27,28].
Understanding these factors is crucial for optimizing the benefits of agrivoltaic systems in
terms of their impact on plant growth and overall agricultural productivity.

The impact of shading in agrivoltaic systems depends on several factors, including
plant species, environmental conditions, and crop management practices. Shading may
result in increased production in certain cases, but its effects can be negative or negligible
under different conditions [29,30]. In terms of food production, SAS could offer advantages
for certain crops harvested for leaves, stems, or roots [28]. For example, studies have
confirmed that the shade cast by PV panels can increase edible biomass production in
chicory and lettuce [20,21,31].

The growth patterns of crops cultivated in agrivoltaic systems exhibit variability,
necessitating comprehensive studies to understand the implications for food security in
relation to specific locations, crop types, and employed technologies. Certain agronomic
crops may prove more suitable for integration with PV panels than others. Therefore, it
is crucial to assess the impact of shade generated by PV panels on different crops and
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locations, particularly in areas where climate change leads to diminished water availability
and an increasing frequency of heatwaves.

The aim of this paper is to explore the potential of agrivoltaic systems in optimiz-
ing land use efficiency, concurrently addressing energy production, food security, water
resource utilization, and human capital investment in the context of climate change.

Our research specifically delves into the influence of shade generated by PV panels on
tomato. This crop was selected due to its global prevalence and commercial significance, as
well as its vital role in human diets. Tomatoes are widely cultivated and consumed across
the world, both fresh and in various cooked dishes, sauces, and salads. In Italy, the yellow
datterino cultivar has gained widespread popularity in gastronomy due to its sweeter
flavor profile compared to traditional red tomatoes. Italy is a major producer and consumer
of tomato fruit, which holds significant economic value in the food market, surpassing
other fruit-bearing vegetable crops in demand and market appeal. Therefore, integrating
tomatoes into agrivoltaic systems presents a compelling area of interest and potential. This
study seeks to assess the potential impact of shade provided by agrivoltaic systems on
maintaining food security under different water availability conditions, comparing the
outcomes with tomatoes grown in open fields within the same areas.

Our analysis primarily focuses on evaluating food security by measuring crop produc-
tivity, particularly the biomass and the quality of tomato fruits produced under varying
conditions of sunlight exposure (whether under full sunlight or PV panels) with different
water supplies.

2. Materials and Methods
2.1. Conditions of Plant Growth

The present study took place in the Apulia region, southern Italy, specifically on a
PV farm situated in the province of Lecce at coordinates Y: 40.306792◦ and X: 18.021823◦

(WGS84). The experimental area comprised an open-field cultivation space, allowing us to
expose the crop to two distinct lighting exposures: one under full sunlight and the other in
the shadow of the PV panels.

The PV panels were oriented with solar exposure toward the South–North and did not
present the typical height from the ground commonly associated with agrivoltaic systems
designed for machine-assisted cultivation. However, such an unconventional setup was
chosen for an initial assessment of the diverse sun exposures that tomato plants undergo
during their growth beneath the PV panels.

Tomato (Solanum lycopersicum L.) certified seeds of the yellow date cultivar Dolly, used
in this study, were sourced from the Botanical Garden of the University of Salento in Lecce,
Italy. After soaking in running tap water for 2–3 h, the seeds were planted individually in
5 L plastic pots, all filled with the same commercial soil to ensure similar initial soil moisture
and nutrient levels. The germination process took place in a controlled growth chamber,
maintaining conditions at 22 ◦C temperature, 60% humidity, 25 µE light intensity, and a
photoperiod of 16 h light and 8 h darkness. Following germination, a total of 24 tomato
seedlings were transplanted into pots at the end of June 2023. Out of these, 12 seedlings
were placed in plots exposed to full sun, while the remaining 12 were grown in shaded
plots beneath the PV panels.

In each plot, the plants were further divided into two groups, each consisting of
6 tomato plants. These groups were subjected to different watering regimes. The watering
process involved manually pouring 1000 mL of water every 2 days for each plant, using a
graduated cylinder (Table 1).

This equated to a total of 35 L for the high-water group, supplied either in the light
(HW-control) or in the shade (HW-PV panel). Similarly, the low-water group received
500 mL of water applied to each plant every 2 days using a graduated cylinder, resulting
in a total of 17.5 L for plants in the light (LW-control) or shade (LW-PV panel) (Figure 1).
After 75 days from sowing, tomato fruits within the full ripening stage, identified by
their bright and uniformly yellow-orange color upon visual assessment, were harvested
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from the 6 plants within each different water supply group for yield determination and
subsequent analyses.

Table 1. Summary of the experimental design. For each treatment, six tomato plants were used. High
and low watering regimes correspond to 1000 mL and 500 mL of water every 2 days, respectively.

Treatment Group (Light Conditions) Plot (Watering Regime)

HW-Control Full Sunlight High

HW-PV Panel PV Panel High

LW-Control Full Sunlight Low

LW-PV Panel PV Panel Low
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Figure 1. Layout of tomato plots exposed to both open-field sunlight and shade beneath the panels
in the same area: (a) Tomato plants positioned beneath PV panels. The dotted red line shows the
two groups of plants with different water availabilities ((a1): HW-PV panel; (a2): LW-PV panel).
(b) Tomato plants grown in the control (open-field sunlight) plots under high water supply (HW-
Control) conditions. (c) Tomato plants of the control plots with a low water supply (LW-Control).

2.2. Yield, Morphometric, and Quality Analyses

The yield of ripe tomatoes under different experimental conditions was assessed by
measuring the fresh weight (fw) of the sampled fruits immediately after harvesting using
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an analytical balance. Additionally, morphometric parameters, specifically the mean of the
major and minor axes, were measured with a caliper.

The quality of each sampled tomato fruit was analyzed by measuring the soluble
solids content (including sugars, carbohydrates, and organic acids, also known as Brix de-
grees) [32,33] by using an NR151 digital refractometer (Auxilab, Beriáin, Navarra, Spain). The
water content and dry weight (dw) of tomatoes were measured gravimetrically using 1.0 g
homogenized aliquots (three independent replicates) for each sample. The samples were
dried at 105 ◦C until a constant weight was achieved, employing a Büchi TO-50 infrared dryer
(Büchi Labortechnik AG, Postfach, Switzerland). The morphology, Brix degrees (◦Bx), and
average water content were compared to those of the same variety of tomato fruits available
in a local supermarket to identify any differences with commercial standards.

The diverse environmental conditions among the plant plots were identified by regu-
larly measuring the air temperature and humidity in the immediate vicinity of the plants,
as well as the soil moisture and temperature within the pot of each plant.

2.3. Statistical Analysis

Statistical analysis was carried out by using PAST software. (Version 2.17) The mean
and standard deviation (SD) were calculated for each analyzed parameter. The normality
of data distribution was assessed using the Shapiro–Wilk test [34–36]. Statistical differences
among the means of the four groups (HW-Control, LW-Control, HW-PV panel, LW-PV
panel) were determined by conducting pairwise comparisons using Student’s t-test.

3. Results
3.1. Tomato Fruit Yield Grown under Different Light Exposures and Watering Regimes

The total number of fruits harvested from each of the four tomato plant groups was
consistently higher in the control samples than in the PV panel plots, regardless of the water
supply levels. Specifically, we harvested a total of 248 fully ripe fruits from the HW-Control,
158 from the LW-Control, 111 from the HW-PV panel, and 107 from the LW-PV panel plots.
The calculated yield per plant stood at 0.283 ± 0.032 kg for the HW-Control group and
0.157 ± 0.012 kg for the LW-Control group. Similarly, the HW- and LW-PV panel groups
achieved yields of 0.201 ± 0.044 kg and 0.148 ± 0.023 kg, respectively (Figure 2).
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the colorless boxes represent non-significant differences. HW-Control: tomato fruits grown under
control conditions with a high water supply; LW-Control: tomato fruits grown under control con-
ditions with a low water supply; HW-PV panel: tomato fruits grown under PV panels with a high
water supply; LW-PV panel: tomato fruits grown under PV panels with a low water supply.

Remarkably, we observed that tomato plants cultivated under the PV panels exhibited
a faster rate of fruit development compared to their counterparts in the control plots.
Indeed, around 20 days after the seedlings’ transplantation, all plants beneath the shadow
of the panels initiated fruit production, whereas only half of the plants grown in the control
plots had started bearing fruit by that date.

3.2. Morphometric Features and Tomato Fruit Quality Assessment

Tomato fruit fw and size were higher in the plants grown under the PV panels
than in the control plots, regardless of the water supply. Specifically, the average fw
of the tomato fruits from plants under the PV panels reached 10.9 ± 2.5 g with high
watering (HW-PV panel), while it was 8.3 ± 1.9 g with reduced watering (LW-PV panel).
In contrast, HW- and LW-Control tomato fruits had an average fw of 6.9 ± 1.7 g and
6.0 ± 1.4 g, respectively (Figure 3).
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The most visually apparent impact of treatments in the morphology of tomato fruits
was linked to their diameter (Figure 4a). Indeed, statistically significant differences were
observed in the short axis values, with the HW-PV panel group exhibiting the highest values,
followed by the LW-PV panel group (Figure 4b). Conversely, no statistical differences were
detected in the long axis among groups, except for the HW-PV panel group showing a
significantly greater long axis dimension (Figure 4c).
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panel) or reduced watering (LW-PV panel), and ripened in full sunlight with a high (HW-Control) or low
(LW-Control) water supply (a). Graphical representation and statistical analysis of the average length
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denote statistically significant differences (yellow, p < 0.05; light orange, p < 0.01; dark orange, p < 0.001).
Colorless boxes indicate the absence of statistically significant differences. Scale bar = 1 cm.

In terms of fruit quality, tomatoes grown in the control plots showed higher ◦Bx levels
than those cultivated under the PV panels, irrespective of the water supply. Significant vari-
ations in the ◦Bx levels were observed among the four groups, with an average of 10.6 ± 1.1
for LW-Control, 9.7 ± 1.5 for HW-Control, 7.4 ± 1.1 for LW-PV panel, and 6.4 ± 0.8 for the
HW-PV panel group (Figure 5a). Alongside that, the water content showed higher levels
of tomato fruits grown under shadow conditions under the PV panels compared to the
control ones (Figure 5b). The average water content was 93.1 ± 1% for the HW-PV panel
group, 91.4 ± 1% for the LW-PV panel group, 88.2% ± 2 for the HW-Control group, and
87.9 ± 3% for LW-Control group. Consequently, the average dw of tomatoes was 0.77 g for
HW-Control, 0.70 g for both HW panel and LW panel, and 0.64 for LW-Control, with no
significant difference observed among them.

Furthermore, we noticed that roughly 50% of the tomato fruits grown in the control
plots, under both watering conditions, had underdeveloped or absent seeds, in contrast
to the fruits grown under the PV panels, which showed consistent and regular seed
development (Figure 6).
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3.3. Morphometric Features and Quality Assessment of Commercial Tomato Fruits

The commercial tomato fruits, used as the standard of reference, presented an average
weight value of 12.1 ± 2.3 g, a short axis length averaging 2.1 ± 0.2 cm, and a long axis
average of 2.8 ± 0.7 cm. The average ◦Bx value was 7.8 ± 0.5, and the water content
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constituted 92 ± 1% of the total tomato fruit fw, with an average dw of 0.96 ± 0.1 g. These
analyses were performed on a sample of 60 commercial tomato fruits.

3.4. Environmental Conditions

Figure 7 reports the daily air temperatures recorded throughout the growing season
in this study. The maximum temperature registered in the control plots (48 ◦C) exceeded
that observed beneath the PV panels (42 ◦C), with a maximum absolute difference of 8 ◦C.
The temperature profile in both plots showed four distinct phases: an increase until 24 July,
a subsequent decrease until 18 August, another increase from 19 August to 28 August, and
a final decrease in the last 4 days of observation.
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Figure 7. The maximum temperature reached in the open-field sunlight control plots (HW Control
and LW Control groups) and under the PV panel (HW-PV panel and LW-PV panel groups). The
dashed line represents the moving average with a 10-day time window.

The maximum air temperature differences were also reflected in the soil temper-
ature measured in each pot for both control and PV panel plots. The control plots
showed higher soil temperatures, averaging 36.8 ± 4.7 ◦C in the LW-Control pots and
35.7 ± 3.7 ◦C in the HW-Control pots. In contrast, the average soil temperature under the
PV panels was 29.2 ± 2.5 ◦C and 29.2 ± 3.1 ◦C for both the HW- and LW-PV panel plots.
In particular, the difference was not significant between the LW- and the HW-Control
plots, nor between the HW-PV panel and the LW-PV panel. However, it was significant
between the two light conditions (control plots vs. PV panel plots) the regardless of
irrigation regime (Figure 8a).

Soil humidity showed a lower average value in the pots located in the control
plots (HW-Control and LW-Control) than the average humidity recorded under the pots
beneath the PV panel (HW-PV panel and LW-PV panel groups). However, a significant
difference was observed between the HW-Control and both the LW-Control and HW-PV
panel conditions. No significant difference was noted between the HW-Control and
LW-PV panel (Figure 8b).

The illuminance values recorded during the maximum shadow expansion beneath
the panel were around 3999.00 ± 573.38 lx, while those measured in full sunlight reached
approximately 125,125.00 ± 2904.05 lx.
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4. Discussion

The study area is situated in a Mediterranean climate zone, primarily falling into
the Warm Mediterranean Climate ‘Csa’ classification. In this region, the seasons are
marked by hot and dry summers followed by mild and wet winters. Precipitation is
concentrated during the winter season, while it remains relatively low throughout the
summer months [37]. Our investigation was carried out during summer 2023, characterized
by persistent and unusually hot climate conditions. This summer ranked among the hottest
recorded in recent years, deviating significantly from the typical climate patterns of this
geographic area [38–40]. Against this backdrop, the total tomato production was greater
for plants grown in full sunlight exposure and under both watering regimes, compared
to that obtained from plants grown under the PV panels. Specifically, a 55.3% and a 32%
increase in the number of tomatoes was observed between HW-Control and HW-PV panel
groups, and between the LW-Control and LW-PV panel plots, respectively.

The size of tomato fruits was greater in plants cultivated under shaded conditions
compared to those grown in the open field under full sunlight. Specifically, the tomato fruit
size in the HW-PV panel group was 37% larger than those produced in the HW-Control
group, while the tomato fruit size in the LW-PV panel group was 28% higher than in the
LW-Control group. Anyway, the weight of LW-PV panel tomatoes surpassed that of the
HW-Control fruits by more than 17%. Thus, the higher quantity of tomato fruits produced
in the control plot, characterized by sunlight exposure, is partially compensated by the
reduced size of the fruits. This aligns with the SAS adaptation of the plant in the shade, as
previous studies have demonstrated that under shaded conditions, plants tend to develop
fewer flowers [27,41]. Indeed, similar findings regarding tomato fruit production have
been reported in other studies [42,43]. However, this study highlights the importance of
shade to guarantee tomato production, particularly in situations of water scarcity. Notably,
the difference in tomato size was substantial. Thus, the difference in the total fruit fw
harvested in the LW-PV panel group was only 6% lower than in the LW-Control group. On
the other hand, in the case of higher watering, the difference was more pronounced at 29%
(HW-Control vs. HW-PV panel).

Several studies have suggested a potential correlation between high productivity under
PV panels and elevated soil humidity compared to the soil humidity under full sunlight
conditions [42,43]. However, our study did not find a consistent correlation. Under the



Appl. Sci. 2024, 14, 3095 11 of 14

HW-Control conditions, characterized by lower soil humidity, we harvested a higher number
of fruits. Moreover, there were no significant differences in soil humidity between LW-Control,
HW-PV panel and LW-PV panel plots, despite variations in the total fruit weight harvested.
Hence, we may infer that higher soil humidity under PV panels could affect the size of tomato
fruits, which was greater in the shaded plots. Furthermore, our study revealed substantial
differences in the soil temperature. There was a difference of up to 7.7 ◦C between the soil
temperature under PV panels and the soil temperature in the control plots. Such discrepancy,
also recorded in the air temperature, could have influenced the stress responses of the plants
in terms of survival, flowering, and fruit setting [44]. Delayed flowering in plants exposed
to full sunlight plots might be linked to the higher maximum air temperature recorded in
the first part of the air temperature profile, potentially inducing stress in tomato plants. The
impact of air temperature on flowering may have been mitigated by the shade in the PV
panel plot. Furthermore, difference in sunlight and air temperature could have influenced the
number and size of tomatoes produced.

It is worth of noting that the features of tomato fruits grown under HW-PV panel
conditions closely resembled those of tomatoes of the same variety available on the market.

Light and air temperature can influence tomato quality, as evidenced by a higher
water content under shade conditions (both HW- and LW-PV panel) compared to tomatoes
from the control plot (HW- and LW-Control). Additionally, the Brix degrees were higher
in the tomatoes grown in the control plots. However, the dimensions and Brix values
observed in shade-grown tomato fruits were overall comparable to those recorded for
commercially selected tomatoes. This comparison suggests a fruit quality that aligns better
with commercial purposes and market demands. Typically, optimal ◦Brix falls within the
range of 3.5 to 8.0, depending on the tomato variety [45–49].

Finally, another aspect revealed in this study was the occurrence of parthenocarpy in
almost 50% of the fruits grown in the control plots exposed to full sunlight. This phenomenon
indicates an ongoing stress condition inhibiting the normal plant reproduction, with potential
implications for genetic preservation and future cultivation and breeding programs.

5. Conclusions

Under the conditions of high temperature stress, it is worth noting that all the features of
tomato fruits grown in both HW- and LW-PV panel groups closely resembled those of tomatoes
from the same variety available on the market. Therefore, in our specific experimental context,
it became evident that in the face of climate change, agrivoltaic systems can play a significant
role in sustaining crop production while meeting the market’s demand for high-quality fruits.
Particularly, in scenarios of water scarcity, employing PV panels emerges as a valuable crop
management strategy to alleviate drought stress in tomato fruits, enabling acceptable yield
and production compared to plants grown in full sunlight.

Although agrivoltaics cannot be universally considered as a comprehensive strategy
for agroecosystems to face climate change, their positive impact is contingent on factors
such as the type of crop and field geographical location.

It is important to note that the results obtained were influenced by the relatively low
height of the PV panels from the ground, aligning with national agricultural guidelines in
Italy. In this study, the PV panel plot ensured only 3% of the sunlight intensity compared to
full sunlight at zenith. Enhancing sunlight intensity to a minimum of 6% could potentially
improve production quantity, as suggested by our previous study [20]. Therefore, future
experiments should explore tomato production under conditions where PV panels are
placed at different heights, providing valuable insights for optimizing agrivoltaic systems.

However, a limitation of this experiment was the height of the PV panel from the
ground, which was lower than the minimum height recommended for agrivoltaic systems
according to Italian guidelines, set at 2.10 m. This difference could result in a higher
light flux underneath the PV panel compared to the experimental conditions in this study,
potentially impacting fruit production. In future research, tomato crop will be tested under
conditions more closely aligned with the specifications of agrivoltaic systems.
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