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Abstract: Magnetic positioning is a promising technique for vehicles in Global Navigation Satellite
System (GNSS)-denied scenarios. Traditional magnetic positioning methods resolve the position
coordinates by calculating the similarity between the measured sequence and the sequence generated
from the magnetic database with criteria such as the Mean Absolute Difference (MAD), PRODuct
correlation (PROD), etc., which usually suffer from a high mismatch rate. To solve this problem, we
propose a novel magnetic localization method for vehicles based on Transformer. In this paper, we
cast the magnetic localization problem as a regression task, in which a neural network is trained
by equidistant sequences to predict the current position. In addition, by adopting Transformer to
perform magnetic localization of vehicles for the first time, magnetic features are extracted, and
positional relationships are explored to guarantee positioning accuracy. The experimental results
show that the proposed method can greatly improve the magnetic positioning accuracy, with an
average improvement of approximately 2 m.

Keywords: vehicle navigation; magnetic positioning; Transformer; neural network

1. Introduction

Vehicle navigation services are essential for drivers, regardless of time, weather, or
location conditions [1]. Currently, GNSS is spectacularly successful at generating accurate
positioning solutions in most outdoor environments [2], whose standard horizontal po-
sitioning accuracy is 1.0-3.9 m [3]. However, this approach cannot satisfy the accuracy
requirements of positioning tasks in GNSS-denied scenarios, due to the limited coverage
ranges of networks and channel-fading issues. To solve this problem, various positioning
systems [4], such as the Inertial Navigation System (INS), Wireless Fidelity (Wi-Fi), Blue-
tooth, and visual systems, have been studied. INS is capable of stand-alone positioning, but
it can provide only relative results, and its accuracy decreases dramatically (tens of kilome-
ters per hour at most [5]) as the operation time increases [6]. For Wi-Fi and Bluetooth, much
effort is required to install and maintain a large amount of infrastructure, which makes the
application of these technologies less attractive [7]. The accuracies that can typically be
obtained with Wi-Fi and Bluetooth are 1-10 m and 2-15 m, respectively [8]. In recent years,
visual positioning has become a popular approach due to its high precision (<5 m [9]). How-
ever, this method relies on complex image-matching algorithms, limiting its applicability
to resource-constrained terminals, and it is easily affected by lighting conditions.

Compared to the positioning methods mentioned above, methods based on magnetic
fields have been researched for a long time because of the following advantages. First,
magnetic field-based positioning does not require any infrastructure, making such systems
highly cost effective [10] because a magnetic field can be obtained anywhere on Earth [11].
Second, magnetic field signals are quite stable in the time domain, as opposed to radio fre-
quency signals or sound waves, which is very important for matching-based methods [12].
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Finally, magnetic fields offer all-weather availability in the sense that they are not affected
by weather-related factors, such as light, rain, and snow.

However, magnetic signals are less distinguishable than Wi-Fi and Bluetooth sig-
nals, i.e., different positions may have similar magnetic observations, leading to a high
probability of mismatch [13]. To improve the accuracy of magnetic localization, this paper
innovatively proposes a magnetic localization method based on Transformer. The following
contributions are made in this research.

e  We propose a novel magnetic localization framework that is specifically designed for
vehicles. On the one hand, assisted by mileage information, a magnetic sequence with
equal distance intervals is used as the input. This solves the problem of inconsistent
spatial scales due to speed and sampling frequency differences. On the other hand,
we regard the magnetic positioning problem as a regression task in which a neural
network serves as the regressor and directly outputs the desired position coordinates.
This strategy is feasible for vehicles and ensures the accuracy of the positioning results
because of the diversity of the input data.

e  For the first time, we incorporate Transformer into the field of magnetic localization
for vehicles. Transformer extracts magnetic features and explores the deep temporal
position information of the input sequence, thus improving the positioning accuracy.

The remainder of this paper is organized as follows. We review the related work
in Section 2. Section 3 introduces the proposed method in detail. Section 4 reports and
discusses the results of several localization experiments. Finally, in the last section, we
provide the main conclusions of this study and suggestions for future work.

2. Related Work

Many magnetic localization algorithms, such as Dynamic Time Warping (DTW),
Magnetic Contour Matching (MAGCOM)), filter-based approaches, machine learning and
neural networks, are available. This section divides these methods into two categories,
traditional methods and learning-based methods, and discusses their advantages and
disadvantages in detail.

2.1. Traditional Methods

Traditional methods, including DTW, MAGCOM, and filter-based approaches, are
fingerprinting methods that work by comparing a measured magnetic field sequence with
magnetic sequences stored in a constructed database. They then find the most similar
matching sequence to determine the current position [14]; this process is demonstrated
in Figure 1.
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Figure 1. Principle of fingerprinting methods.

Specifically, this process consists of two phases, the offline and online phases [15], as
shown in Figure 2. In the offline phase, a magnetic database with a certain granularity is
built in the region of interest through measurement and interpolation. During the online
phase, the collected magnetic sequences are manually extracted to features and matched
with the fingerprints in the database. One of the above algorithms is used to calculate the
most likely location.



Appl. Sci. 2024, 14, 3079

30f20

- : ~
/ Magnetic field Offline phase |
[ collection _I \
: - database :
\ Position J /
\ collection /
N _ 7
Online phase
A \ 4
Magnetic field Hand-crafted | | Feature o | Location | Position
collection features " | matching | querying coordinates

Figure 2. Framework of the traditional methods.

According to fingerprinting localization principles, it can be inferred that the errors in
positioning results are attributed to two factors. On the one hand, the utilized database is
usually quantized in a mesh grid form, and the magnetic field at each grid point comes
from a single measurement [16], or the average of multiple measurements [17], or the inter-
polation of adjacent points [18]. Such a database consists of many isolated points, so it is not
sufficient to fully describe the relationships between magnetic sequences and their positions.
In addition, the magnetic field at each grid point is fixed, so it is insufficient to describe
the noise distribution of the measurements because the measured magnetic field at a point
is not a constant. On the other hand, feature-matching criteria are manually designed
and cannot be used to precisely model the noise in measured data. Taking MAGCOM
as an example, many comparison criteria are available, such as the PROD criterion, the
Normalized PROD (NPROD) criterion, MAD criterion, and the Mean Standard Deviation
(MSD) criterion [15]. These criteria are not comprehensive; they focus either on errors in
a point-by-point manner or only on the overall trend, which easily causes mismatches. In
a typical magnetic positioning application involving vehicles, the fingerprinting method
can achieve an accuracy of 3.34 m (20).

2.2. Learning-Based Methods

Over the past ten years, learning-based methods have become a new trend [19,20],
in which deep learning is superior to traditional machine learning and has already been
applied to magnetic localization. Two aspects of deep learning-based methods compensate
for the defects of traditional methods. On the one hand, a database is not used in a
straightforward way but is instead used to generate training sets via random walking
and data augmentation. In this way, the grid-like database used in traditional methods
is replaced by a neural network, which emphasizes the relationships between magnetic
sequences and locations and learns the noise distribution of measured data. On the
other hand, benefiting from its data-driven design, a deep learning-based method can
autonomously extract useful features for localization tasks due to its deep cascaded layers
and strong fitting capabilities (rather than manually extracting features and designing
matching criteria to implement positioning via traditional methods).

Many types of network structures have been proposed by researchers in the field of
magnetic positioning, such as Convolutional Neural Networks (CNNs), Long Short-Term
Memory (LSTM), Recurrent Neural Networks (RNNs), and Transformer. The authors
of [21] used a standard CNN to classify extracted features in the spatial domain and
exceeded 80% accuracy in a two-dimensional environment. In [22], CNNs were used
to extract deep features, and correlations were utilized to obtain classification results.
The results of a numerical simulation indicated that the mean matching rate surpassed
98.6%. Abid trained a CNN to transform a Recurrence Plot (RP) and a magnetic map
into deep features. His method yielded location classification accuracy improvements
of 3.05% and 3.64% [7] compared with another CNN-based system treating fingerprints
relying on instantaneous magnetic field data [23]. In the same year, he proposed an
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improved CNN-based magnetic indoor positioning system using an attention mechanism,
which outperformed the initial RP-based CNN but resulted in a much higher level of
prediction latency [24]. The authors of [25] used an RNN to model magnetic time series, for
which the input was a 3-dimensional magnetic vector and the output was 2-dimensional
coordinates of the target location. This method provided average localization accuracy
improvements of 57.5% and 74.6% over the results of the basic RNN model for medium-
and large-scale testbeds, respectively. Wang introduced a LSTM-based recurrent RNN
to handle localization problems with smartphones. The maximum location errors of
this method are 8.2 m using the magnetic only [26]. Reference [27] attained improved
accuracy by better modeling the magnetic relationships present in the time domain with
a Bidirectional LSTM (Bi-LSTM) structure. This method achieved positioning errors that
were 88.6% and 76% less than those of the DTW method on two datasets. Wang leveraged
different scales to segment magnetic data and extracted magnetic sequence features at the
corresponding scales through Transformer [28]. Moreover, multiple scale features were
fused for positioning. Compared to typical magnetic field positioning methods, 90% of
the positioning errors of this approach decreased by 13.79-60.73%. Reference [29] built
Generative Adversarial Networks (GANs) to augment their training set, unburdening the
data collection process and leading to a mean localization accuracy improvement of 9.66%
over the conventional semi-supervised localization algorithm.

Although the accuracy of the positioning results has improved to a certain extent,
most of the abovementioned neural networks were designed for pedestrian positioning.
In general, training sets are generated by limited measured data to decrease the difficulty
of human collection, which inevitably introduces errors and limits the performance of the
network. In addition, the spatial inconsistency of magnetic data caused by different speeds
makes neural networks difficult to train; thus, the accuracy improvement achieved by the
results is relatively limited.

In summary, according to the magnetic localization algorithms mentioned above,
deep learning-based methods greatly improve upon the positioning accuracy of traditional
approaches by better extracting features and performing the matching process. However,
better neural network models that incorporate the characteristics of vehicle positioning to
achieve improved performance must be explored.

3. Methods

Compared to magnetic pedestrian positioning, the use of magnetic fields for vehicles
has some beneficial characteristics. First, mileage information can be integrated based
on the speed obtained from the speed sensor with which every vehicle is equipped [15].
This information can be used to transform a magnetic time series into a spatial sequence,
which avoids the spatial inconsistency problem of magnetic data caused by the different
speeds of vehicles and the different sampling rates of magnetometers. Second, unlike
human data collection, which has a high cost, vehicle data collection is more efficient.
Therefore, it is easier to construct a training set from multiple actual measured data, which
is more realistic than obtaining pedestrian positioning data through random walks and
data augmentation. Third, three-axis magnetic fields can be directly used after eliminating
the carrier interference because of the repetitive nature of the postures of vehicles travelling
on the same path.

3.1. System Architecture

Based on the abovementioned vehicle characteristics, we design the architecture shown
in Figure 3, which consists of an offline phase and an online phase. During the offline phase,
the three-axis magnetic field vectors within a certain distance are collected and divided
into equal distance intervals based on their mileage, which ensures that the sequence is
independent of the vehicle’s speed and magnetometer’s sampling rates. Moreover, the
true positions are collected as the labels of the training set, which are normalized to 0~1
to easily train the Transformer model. Thus, using multiple collected data, a training set
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that includes numerous sequences consisting of the magnetic field and the corresponding
positions of a fixed number of points is generated. During the online phase, the trained
Transformer model predicts the position coordinates with equidistant magnetic sequences
obtained in the same way as those acquired in the offline phase. Notably, the mean magnetic
field within a sequence must be subtracted to prevent the influence of carrier interference.
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Figure 3. The architecture of our proposed magnetic localization method.

According to the above procedure, the input of the proposed method is a fixed-length
three-axis magnetic sequence whose size is W x 3, where W is the number of points in
the sequence, which is calculated by the whole length of the sequence L and the spatial
interval d:

W=L/d (1)

where L is related to the size of the target area. As a matter of experience, short sequences
(approximately ten meters) can achieve accurate results for a small area; conversely, a
larger area requires longer sequences (tens to thousands of meters) to distinguish different
positions. This is because the larger the area is, the greater the possibility of short sequences
with similar shapes, making it easier to cause mismatches. In addition, d represents the
spatial resolution, which is related to the fluctuation degree of the magnetic field in the
environment. For an indoor or a densely built environment, the magnetic field varies
greatly in the spatial domain, so d needs to be set to a small value (0.5 m to 1 m).

Regarding the output, the proposed method aims to estimate the 2-dimensional
coordinates of the current position (x,y), which is the last point in the sequence based on
the current and past magnetic field values.

3.2. Transformer Model Structure

Figure 4 shows the proposed model structure, which consists of two parts: an encoder
and a decoder. The encoder is responsible for extracting magnetic features from sequences.
The decoder aims to predict the current location by exploring the deep temporal position
features with the help of the features extracted from the encoder.

The magnetic field sequence has a size of [B,W,3], where B and W represent the num-
bers of batches and points contained in the input sequences, respectively, and 3 represents
the three axes of the magnetic field. After executing the encoder, deep magnetic features
with shapes of [B,W,D] are extracted, where D is the dimensionality of the deep features.

The decoder is calculated W times. At each step i, the previous positions, along with
the deep magnetic features extracted by the encoder, are fed into the decoder. In this way,
the final position is recursively predicted. Since we focus only on the current position,
which is the last point within the sequence, once i = W, the last position is pushed out as
the final result. Next, we describe the encoder and decoder in detail.
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Figure 4. The structure of the proposed Transformer model.

Decoder

3.2.1. Encoder

The structure of the encoder is shown in Figure 5a. First, shallow magnetic features
are extracted from the given magnetic sequence by passing through a convolutional layer
and a positional embedding layer [30]. Thus, the dimensionality of the original magnetic
sequence is expanded from 3 to D. Then, the shallow features are fed into Ny Transformer
encoder layers and become deep features with shapes of [B,W,D]. Each Transformer encoder
layer possesses the same structure as that of the standard Transformer [30], which is shown
in Figure 5b, including one self-attention layer, one FeedForwarD (FFD) layer, two layer
normalization operations, and several residual connections.

deep magnetic
features

s

Layer normalization

shallow magnetic
features

Layer normalization

Positioning Self-attention layer

embedding layer

N e e o o o o o o o o o o

Convolution layer

Magnetic sequence I:I Encoder - Data - Layer

Figure 5. The structures of the (a) encoder and (b) encoder layers.

Self-Attention Layer: The self-attention layer is the core component of the encoder
layer; it enables the encoder to extract useful temporal information. The self-attention layer
is based on a multihead attention mechanism, which is an advanced version of the attention
mechanism formulated in Equation (2):
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where Q € RU*d, K € RKixdk and V € RV*% are the query, key, and value matrices,
respectively. Qy, K¢, and V; are the numbers of queries, keys, and values, respectively, and
dy is the second dimension. Q, K, and V' can be easily computed by a combination of linear
transformation and concatenation for every timestamp.

The multihead attention mechanism can be expressed as shown in Equation (3):

Attention(Q, K, V) = softmax(

4 ()

MultiHead (Q, K, V) = concat(Attention(Q;, K;, V;)) WS, 3)
where Q; = QWSX(D/h)’ K = ngx(o/h)/ and V; = VWI‘D/X(D/h)' ng(D/h)’ ng(D/h)'
and Wg «(D/n) Tepresent the weight matrices for Q, K, and V, respectively, with shapes of
D x (D/h), where h is the number of heads, and concat(*) is the concatenation operation.
WS, p is the final output matrix with a shape of D x D.

Therefore, the self-attention mechanism can be written as shown in Equation (4):

SelfAtt(X) = MultiHead (Q, K, V)
Q = concat(WQ2X;) ie[l,W] n
K = concat(WKX;) ie[l,W] @)
V = concat(W"X;) ie[1,W]

where X is the input of the self-attention layer, which can be viewed as the magnetic features
extracted from the given sequence, and X; is the i-th magnetic feature in the sequence.

FFD Layer: Among the above-described layers, only the FFD layer is time-independent,
which means that M;, the i-th feature, is determined only by the i-th input. The other layers
evaluate all the inputs of the entire sequence to compute the layer outputs.

Layer Normalization: Layer normalization is a common type of normalization opera-
tion used in deep learning [31]; it is applied after implementing a simple addition operation
involving the current data stream and the data stream connected with a residual connection.

3.2.2. Decoder

As shown in Figure 6, the deep magnetic features extracted from the encoder, along
with the previous positions, are inputted into the decoder. Similar to the encoder, shallow
position features with sizes of [B,i,D] are extracted from the previous positions by a simple
convolutional layer and a positional embedding layer, where i € [1,W]. The attention mask
is a predefined tensor, which is described in detail below. Then, the position features pass
through N, Transformer decoder layers and are transformed into deep position features.
Finally, the position features are projected to the coordinates of the target position (x,y) in
2 dimensions.

Since the decoder relies on the previous positioning results, it is implemented in a
recurrent manner to obtain the final location. Specifically, given a new magnetic sequence,
the position of the first point in this sequence is predicted first by executing the decoder
once, where [—-1, —1] is chosen as the initialized input. Then, the position of the second
point can be computed by running the decoder again. This recursive procedure can be
applied to the entire sequence. Therefore, in the online phase, the decoder is operated W
times to obtain the final position.

The decoder layers have the same structure as those in [30] and are slightly different
from the encoder layers, as shown in Figure 7. The decoder layers replace the self-attention
layer with a masked self-attention layer and have an extra cross-attention layer.
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Figure 6. Structure of the decoder.
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Figure 7. The structure of a decoder layer.

Masked Self-Attention Layer: This layer is a variant of the self-attention layer. The
only difference is that an attention mask Mask,; with a size of [i, 7] is added to the attention
computation. Mask,; is an upper triangular matrix, and Equation (5) shows an example of
Maskg;s when i = 5.

0 —inf —inf —inf —in
0 0 —inf —inf —inf
Muskatt =10 0 0 —inf —inf (5)
0 0 0 0 —inf
0 0 0 0 0
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This mask is applied in the attention computation, as shown in Equation (6):

QK™
Vi

For point k in the input sequence, -inf means that the attention response is not activated
from a point with i > k, and the attention response from i < k remains. This design ensures
that only the previous input contributes to the output at the current moment and that
a future input does not influence past outputs.

Cross-Attention Layer: This layer differs from self-attention layers in terms of the
sources of Q, K, and V. In the self-attention layer, Q, K, and V come from the same sources as
those of the input. However, in the cross-attention layer, Q is generated by the input as well,
while K and V are generated by the deep magnetic features extracted from the encoder.

MaskAttention(Q, K, V, Mask,) = softmax( + Maska)V (6)

3.3. Training Strategy

Network training is performed during the offline phase. The neural network is fed
with paired training samples to update its weights via gradient backpropagation. Once the
training process is complete, the weights are fixed and can be used for the online phase.

Figure 8 shows a simple example with B = 1 and W = 4. Considering the speed and
stability of the training process, the data flow that occurs during network training is slightly
different from that in the inference phase, which can be summarized as follows. First, the
magnetic data are input altogether instead of in order, so the decoder runs only once instead
of W times. Second, the input of the decoder is a one-step right-shifted version of the true
position; [—1, —1] is padded to the first point in the sequence. Finally, during the online
phase, we only focus on the position of the last point within the sequence. In contrast,
every predicted position matters during training. The losses between the predicted and
true positions of every point in the sequence are computed via gradient backpropagation.

magnetic magnetic ~ magnetic magnetic [-1,-1] True True True
datal data2 data3 datad ! positionl  position2  position3

eaeasna] e féﬂ@f?%ﬂ \ Wl///l%ff,il\ L |

o e ’ = _I _____ l _____ __l__ .
»/ 7 r/ /,’// 7 1407/ ///,/// 7 /
7 7, 207/ 4 W/ 2/ 4

7

predicted  predicted predicted predicted
positionl position2  position3  position4

G410

True True True True
positionl position2 position3  position4

Loss

Figure 8. The data flow occurring during the training process.

The loss function consists of two parts: a location loss and a movement loss. The
location loss is a simple Mean Squared Error (MSE) loss, and the movement loss can be
written as Equation (7):

] 1
0SSmovement = 17
W—1;

=

MSE(P;y1 — P;, TP 11 — TP) @)

Il
—_
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where P; and TP; represent the predicted position and true position at i, respectively. The
final loss is the sum of the location and movement losses.

To improve the convergence of the model, a warm-up strategy is introduced during
training. The learning rate starts at 1.2 x 10~ and gradually increases to 1 x 10~* after
5000 steps. Then, the learning rate decreases linearly to almost 0 when the training process
is finished.

4. Experiments and Discussions

In this section, we report experiments conducted to evaluate the proposed magnetic
localization method.

4.1. Experimental Setup

Dataset: Considering that the existing publicly available magnetic datasets [32-36] are
not suitable for our application, we collected a dataset ourselves to evaluate the proposed
method. Magnetic field data were collected from a Huawei Mate 20 Pro smartphone fixed
on a vehicle, as shown in Figure 9a, and mileages were integrated by the velocities obtained
from the On-Board Diagnostic (OBD) system of the vehicle. A self-developed module
accessed the interface of the OBD system and transmitted the velocity to the smartphone, as
shown in Figure 9b. The statistical results showed that the error of the integrated mileage
was approximately 1% after calibration. Additionally, a differential GNSS/INS system
called SPAN-ISA-100C (NovAtel Inc., Calgary, Canada) with a horizontal positioning
accuracy better than 0.04 m/60 s [37] was used to evaluate the positioning accuracy of the
magnetic localization results, as shown in Figure 9c.

Figure 9. Equipment used in the experiment: (a) smartphone, (b) OBD system interface and self-
developed module, (c) SPAN-ISA-100C.

The test environment was a parking garage at the Beijing New Technology Base of the
Chinese Academy of Sciences, which has an area of approximately 80 x 110 m?, as shown
in Figure 10. We collected 35 tracks, with a total length of 8094 m, as shown by the green
lines in Figure 10; each track was divided into numerous sequences with diverse sequence
lengths. In this section, we set the sequence length L from 5 m to 15 m, with a spatial
interval d of 0.5 m, so W ranged from 10 to 30, as calculated by Equation (1). Taking a W
of 14 as an example, the total number of sequences was 15,733, and 27 tracks containing
12,130 samples were selected for training (accounting for approximately 77%), while the
remaining 8 tracks containing 3603 samples were used for evaluation purposes.

Model: We set the feature dimensionality D to 256, and the numbers of encoder layers
Nj and decoder layers N, were both 4. In addition, the training batch size was set to 1, and
the number of training epochs was set to 30. The weighted Adaptive Moment Estimation
(AdamW) optimizer was used with parameters of [0.9, 0.999]. Our model was implemented
with the PyTorch library, and the detailed configuration is shown in Table 1.
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Figure 10. The data were collected from the test environment.
Table 1. Experimental configuration.
Category Machine/Tools
CPU Intel(R) Core(TM) i9-12900H CPU (Intel Corporation, Santa Clara, CA, USA)
GPU NVIDIA GeForce RTX 2050 GPU (NVIDIA, Santa Clara, CA, USA)
Operating System Windows 11
Language Python 3.8
Library PyTorch 1.13

4.2. Positioning Performance

Several experiments were conducted to prove the superiority of our method over the
traditional approaches.

Tables 2 and 3 show the mean and maximum positioning errors, respectively, induced
for sequences with different lengths concerning 8 tracks, which were obtained on the
evaluation dataset by our method and three other methods, including the method in [12,27]
and the traditional MAGCOM method. Considering that the dataset used in this work is
different from the datasets used in [12,27], we reconstructed the same network structure
as that in [12,27], respectively. For MAGCOM, we used an MAD metric, which has high
accuracy and a simple calculation process as shown in Equation (8):

MADyp = SLWékiH (A;( - mean(Ai)) — (B}( — mean(Bi)) H (8)

where A is the measured sequence, B is a possible matching sequence of length W in the
constructed database, i is an index representing each axis of a magnetic field vector, and k
is an index representing the k-th point in the sequence.
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As shown in Table 2, the mean positioning accuracies of our method were greater than
those of traditional MAGCOM methods and the method in [12] with the same sequence
length for all the evaluation data, and an average improvement of 2.67 m (70.08%) and
2.26 m (70.73%) were observed. In addition, we compared our method with the method
in [27]. In most cases, the results indicated that the mean errors are less than those of the
method in [27], with an average reduction of 2.09 m (49.96%).

Table 2. The mean errors (m) induced by sequences of different lengths when executing the proposed
method and other methods on various evaluation data.

Evaluation Data

Method Sequence Length

1 2 3 4 5 6 7 8
5m 231 466 158 215 260 280 405 1.93
6m 1.08 148 071 085 087 110 154 086
7m 0.98 129 058 071 0.71 1.00 134 072
8m 0.95 104 056 074 072 0.89 115 061
9m 0.92 104 050 060 056 086 121  0.68
Proposed method 10m 090 098 052 063 058  0.83 112 0.68
11m 087 102 047 063 060 079 107 051
12m 0.93 106 051 060 058 087 113 06l
13m 085 099 039 055 051 075 106 056
14m 084 098 042 063 057 077 102 054
15m 082 093 040 060 055 070 106 062
5m 970 639 965 854 942 764 818  10.80
6m 715 477 804 710 627 584 562 889
7m 485 401 612 532 481 443 528  7.13
8m 348 329 448 425 407 374 470 528
. 9m 287 290 316 284 311 299 408  3.68
metﬁgzdi?;galtxﬁgclaofemc 10m 200 252 205 250 238 223 346 225
11m 190 212 187 221 192 181 297 201
12m 178 215 174  1.88 1.83 181 210 193
13m 177 1.99 174 187 183 181 212 192
14m 177 191 174 187 183 181 212 192
15m 1.76 1.89 1.75 187 183 181 212 190
5m 564 622 469 508 488 507 646 459
6m 403 506 356 422 414 438 569 406
7m 380 420 291 380 358 364 435 329
8m 297 380 275 342 298 317 410 294
9m 279 331 249 292 274 298 363 258
Method in [12] 10m 276 357 248 299 259 274 342 254
11m 223 341 187 260 244 259 298 207
12m 250 328 196 260 240 253 317 199
13 m 258 306 214 263 241 262 319 230
14m 244 318 197 240 231 249 272 215
15m 235 323 192 225 218 231 285 1.94
5m 265 280 122 235 1.70 174 402 182
6m 188 267 122 202 1.71 176 316 154
7m 188 264 118 206  1.69 176 312 154
8m 183 266 119 206 167 173 304 153
9m 185  2.63 115 2.09 166 179  3.05 1.51
Method in [27] 10m 186  2.69 116 213 1.65 179  3.01 1.51
11m 184 270 116 213 167 174 299 1.50
12m 185 264 121 215 166 175  3.08 1.49
13m 187 263 122 212 165 181 304 150
14m 191 263 114 210 166 174 307 151

15m 1.89 274 1.26 2.23 1.78 1.98 3.15 1.49
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Table 3. The maximum errors (m) induced by sequences of different lengths when using the proposed
method and other methods on various evaluation data.

Evaluation Data

Method Sequence Length
2 3 4 5 6 7 8

5m 3791 5729 1805 3095 4433 9194 3327  19.74

Proposed method 6m 5.00 6.53 2.10 8.72 6.51 6.29 9.09 2.16
7m 2.69 4.20 1.84 3.50 3.28 3.22 4.63 1.82

5m 91.07 8157 9100 90.67 9039 9117 8608  91.04

6m 9117 6292 9100 9036 9053 91.17 7336 91.14

7m 9117 6240 9070  90.02 9053  90.86 7392  90.83

8m 7291 4575 7267 7404  89.88  72.85 6461  90.49

. 9m 7694 4472 7282 7193 8371 7277 6461 7297
metﬁ;di?;galtﬁgﬁgclaorﬁmc 10m 1537 4335 1549 5245 8386 5197 6236 1541
11m 1537 2634 1501 5289  14.62 306 6236 1537

12m 266 2634 233 2.67 2.54 296 1569  2.84

13 m 266 2634 233 2.60 2.54 299 1524 284

14 m 2.46 7.18 2.33 2.60 2.54 283 1524 284

15m 2.66 7.29 2.33 2.60 2.54 262 1477 289
5m 4859 2755 1806 2734 2559 2499  33.02 2247

6m 2480 2484 957 2440 2026 2464 2304 1643

7m 2766 17.72 953 3654 1772 1633 2408  13.00

8m 1047 2250 978 2301 1049 11.89 2550  10.02

9m 11.07 1469 1025 15.84 13.00 1377 1629 1091

Method in [12] 10m 1042 1324 988 3235 1165 1075 2050  9.54
11 m 923 1553 496 1705 1483 1179 1284  6.60

12m 11.83 1377 745 1776  9.56 970 1131 781

13m 15.60 1366 871 1550 1392 1121  9.87 9.82

14 m 1550 1185 626 1120 1206 1029  9.49 6.67
15 m 1119 1735 1314 1475 12.00 947 1331  14.07

5m 8406 1393 139 5021 295 228  122.87 3826

. 6m 307 1393 152 2.82 2.81 233 1403 158

Method in [27] 7m 3.19 3.51 1.61 3.02 2.77 260 1311 1.49
8 m 2.44 3.51 1.39 3.02 2.69 2.33 3.52 1.70

Table 3 shows the maximum errors induced with sequences of different lengths when
using the proposed method and three other methods on various evaluation data. To
satisfy the main requirement of vehicle positioning—guiding the use of vacant parking
spaces—the maximum positioning error needed to be approximately 5 m [38], which is
approximately twice the width of a parking space. Therefore, we focused on the shortest
sequence length needed to obtain the maximum error, which was less than 5 m. Our
method, with a sequence length of 7 m, maintained its maximum errors under 5 m for all
the evaluation data, while the traditional MAGCOM method with a 7-m-long sequence
had maximum errors exceeding at least 62 m. When the length of the sequence increased,
the maximum errors of the traditional method gradually decreased, and most data with
12-m-long sequences were qualified for the traditional method, yielding equal precision to
that of our method with 7-m-long sequences. However, for evaluation data 2 and 7, until
the sequence length increased to 15 m, the maximum errors were greater than 5 m. For the
method in [12], the maximum errors in most cases were greater than 5 m, which results in a
poor experience for users. In the method in [27], the maximum errors can be reduced to
less than 5 m with 8-m-long sequences, which is slightly longer than that of our method.

It can be concluded that a 7-m sequence length is sufficient for performing localization
using our method, representing a reduction relative to other methods.

We selected 7-m-long sequences from two evaluation data to illustrate the effect of
our method, whose positioning results are shown in Figure 11. The results suggest that
in comparison with the traditional MAD-based matching method and the method in [12],
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whose matching results were chaotic and disorganized, the method in [27] and our method
significantly reduced the degree of mismatching, producing results that closely fit the

true positions.

40.0705 T T

40.0704
40.0703
40.0702
~40.0701

40.07

latitude

40.0699

40.0698

40.0697

40.0696

40.0695

ue position
sultt

116.2738 116.274 116.2742

longitude(®)

116.2734 116.2736

40.0705

116.2744

40.0704
40.0703
40.0702
~ 40.0701

40.07

atitude(

~ 40.0699

40.0698

40.0697

40.0696

40,

longitude(°®)

40.0705 T T T

.0695
116.2734 116.2736 116.2738  116.274 1162742 116.2744 116.2746

true position
——result

40.0704
40.0703
40.0702
~ 40.0701

40.07

latitude(

40.0699

40.0698

40.0697

40.0696

40.0695

116.2734 116.2736 116.2738 116.274

longitude(®)

116.2742

40.0705 T T

116.2744

40.0704 -
40.0703
40.0702 [
~ 400701 |-

40.07

latitude

~ 40.0699

40.0698

40.0697

40.0696

true position | -
esultt

40.0695

116.2734 116.2738 116.274 116.2742

longitude(®)

116.2736

116.2744

40.0704

40.0703

40.0702

40.0701

latitude(°)

40.07

40.0699

40.0698

0.0697
116.2734

(@)
40.0704
40.0703
40.0702
40.0701

40.07

latitude(°®)

40.0699

40.0698

40.0697

40.0696
116.2734

(b)
40.0704
40.0703
40.0702
. 40.0701

40.07

latitude("

40.0699

40.0698

40.0697

40.0696

116.2734

(c)
40.0704
40.0703
40.0702

40.0701

latitude(°)

40.07

40.0699

40.0698

40.0697

116.2734

(d)

ue position
result2

116.2736

116.2738 116.274 116.2742
longitude(®)

116.2744

rue position
——result2

116.2736

116.2738 116.274
longitude(®)

116.2742 116.2744

ue position
esult2

116.2736

116.2738 116.274
longitude(®)

116.2742 116.2744

ue position
esult2

116.2736

116.2738 116.274
longitude(®)

116.2742 116.2744

Figure 11. Comparison of the positioning results obtained with (a) the proposed method, (b) the
traditional MAGCOM method using the MAD metric, (c) the method in [12], and (d) the method
in [27] when using a 7-m-long sequence for various tracks.
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Finally, we calculated the testing time of our method and compared it to that of other
methods with a 7-m-long sequence. As shown in Table 4, the traditional method was
superior to the learning-based methods in terms of time complexity, and our method took
the longest calculation time due to the large size of the network. Considering that the
speed of vehicles in the garage is usually less than 20 km /h, the average calculation time of
52.63 ms almost meets real-time positioning needs.

Table 4. The average testing time (ms) induced by different methods.

Methods
Traditional MAGCOM method . .
Proposed method using the MAD metric Method in [12] Method in [27]
52.63 ms 0.52 ms 27.03 ms 6.85 ms

4.3. Ablation Study

To further illustrate the importance of each module in the proposed method, we
conducted ablation experiments in this section.

First, to verify the role of Transformer, it was replaced with an LSTM module [39] that
has achieved success in magnetic localization tasks. The first and second columns in Table 5
demonstrate the maximum errors achieved with Transformer and LSTM, respectively, with
a 7-m-long sequence as the input. It can be seen that their results were sometimes similar.
However, for some tracks, the maximum errors of LSTM were larger than 10 m, which
significantly influenced its positioning performance, such as that attained for tracks 1, 2,
and 4. Figure 12a shows the positioning results yielded by LSTM for track 1. According to
the comparison shown in the first plot of Figure 11a, our method yielded more accurate
and more stable results.

Table 5. The maximum errors (m) induced by different methods.

Evaluation Data

Method Sequence Length
1 2 3 4 5 6 7 8
Proposed method 7m 269 420 184 350 328 322 463 182
LSTM 7m 289 1182 145 1202 359 170 855  1.62
Without the equal distance ~7m(2s) 3283 3119 7506 3167 2999 3075 5349 7498
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Figure 12. Comparison between the positioning results obtained with (a) LSTM and (b) the method
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removing the equal distance interval division module when using a 7-m-long sequence for track 1.
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On the other hand, to indicate the effectiveness of the equal distance interval division
strategy, it was removed before obtaining the positioning results. To conduct a fair compar-
ison, the number of input points was set to 20 to ensure a sequence length of approximately
7 m when the average speed of the vehicle was 3.5 m/s and the magnetic data were sampled
at 10 Hz. As shown in Figure 12b and the last column in Table 5, without the equal distance
interval division module, the performance of the model drastically decreased.

In summary, the use of Transformer and the equal distance interval division strategy
are both essential for our method.

4.4. Generalization Analysis

Many factors may affect the robustness of the positioning methods, including changes
of the surroundings and the size of the positioning area. In this section, we conducted
several additional experiments under different testing conditions to evaluate the influence
of these factors on our method. The information concerning every validation dataset is
shown in Table 6.

Table 6. Information concerning the three evaluation data.

Evaluation Data Surroundings The Size of Area
1 Full of cars
A small area as shown in Figure 10
2 Nearly no cars
3 / A large area

First, we estimated the impact of different surroundings. The validation data 1 were
collected on a weekday morning, when the parking garage was full of cars, while the
validation data 2 were collected on a weekend night, when almost no vehicles were in the

parking garage, as shown in Figure 13a. The track is the same as the 7th evaluation data in
Section 4.2.

% The magnetic field strength of the X-axis

full of cars

———nearly no car

magnetic strength(uT)

0 200 400 600 800 1000 1200
distance(m)

The magnetic field strength of the Y-axis

full of cars
nearly no car

magnetic strength(uT)

0 200 400 600 800 1000 1200
distance(m)

(b)

Figure 13. (a) Different surroundings; (b) measured magnetic fields in different surroundings.
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The mean and maximum errors of our method with 7-m-long sequences are shown in
Table 7. Compared to the results for the same track and sequences of the same length, the
mean and maximum errors are very close to those in Tables 2 and 3. In other words, the
positioning results were almost unaffected by environmental changes.

Table 7. The mean and maximum errors (m) in different surroundings.

Evaluation Data

Method Type of Error
1 2
Proposed method mean 1.31 1.51
max 4.02 498

This may be attributed to two reasons. On the one hand, the data we used during
the training process were collected in different surroundings, so the network is suitable
for different surroundings. On the other hand, as seen from the plots in Figure 13b,
although the measured magnetic fields are slightly different at the same position in different
surroundings, the shapes of the magnetic field signal sequences are very similar for the same
driving route, which has less impact on the sequence-based magnetic field positioning.

Second, we tested the ability of our method in a larger area. In validation data 3, the
magnetic fields were collected in a large ground parking garage in urban canyon areas with
dense buildings at the Beijing New Technology Base of the Chinese Academy of Sciences,
which has an area of approximately 170 x 310 m?, as shown in Figure 14a. The red lines in
Figure 14b are the driving routes in this area.

Figure 14. (a) A large ground parking garage in an urban canyon area with dense buildings;
(b) driving routes.

The mean and maximum errors of our method for sequences of different lengths are
shown in Table 8. Compared to a small area, a longer distance was needed to distinguish
the shape of the magnetic field sequence at different locations in a larger area. In addition,
we also compared our method with other methods shown in Section 4.2., except for the
method in [12] because the network did not converge during the training phase. As shown
in Table 8, the positioning errors and required sequence length were both less than those of
the other two methods.

Figure 15 represents the positioning results of three methods with 35-m-long sequences
in a large area. Although the above methods all have incorrect positioning points, our
method has the least number of errors.
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Table 8. The mean and maximum errors (m) induced by different methods in a larger area.
Sequence Length
Method Type of Error
35m 40 m 45m
mean 0.65 0.60 0.52
Proposed method
max 84.68 4.76 4.39
Traditional MAGCOM method mean 16.61 1.40 0.74
using the MAD metric max 313.27 95.80 3.10
mean 447 3.52 4.06
Method in [27]
max 97.39 100.65 88.49
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Figure 15. Comparison of the positioning results obtained with (a) the proposed method, (b) the tradi-
tional MAGCOM method using the MAD metric, and (c) the method in [27] using a 35-m-long sequence.

5. Conclusions and Future Work

This paper presents a magnetic localization method for vehicles in which a neural
network based on Transformer is established to extract magnetic features and learn the
relationships among points within a sequence. This process is performed after implement-
ing equal distance interval division based on the given mileage. The experimental results
illustrate the importance of each module in the proposed method, which achieves greatly
improved magnetic positioning accuracy and reduces the required sequence length.

In the future, we plan to further develop this localization method in two ways. First,
an adaptive sequence length should be developed according to the feature distribution of
the magnetic field, as such a paradigm is more flexible than the use of a fixed sequence
length. Second, considering that vehicles usually travel along existing paths, we expect to
achieve a more accurate and reliable positioning performance by limiting the positioning
results to paths.
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