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Featured Application: Industrial application of temperature control in coal-based exothermic reactions.

Abstract: The control of steam drums, used to remove heat from Fischer–Tropsch synthesis or di-
ethyl oxalate hydrogenation, is confronted with a challenge on controlling quality. The traditional
proportional–integral–differential (PID) controllers with fixed parameters are dissatisfying upon
deployment. The backward-propagation neural network (BPNN) self-tuning PID control algorithm was
thus developed and implemented via a Python and KINGVIEW software combination. Application
experiments showed that, in both setpoint control and step change control of the steam drum pressure,
static deviation and the maximum error were less with the BPNN self-tuning PID controller, in compar-
ison to the conventional PID controller. Moreover, it seemed that certain adaptations occurred to the
nonlinear change in the reaction system, revealing that it was superior to the traditional PID controller.
It is shown that the backward-propagation neural network will improve the control quality in boiling
water drum systems for exothermic reactions. It can be predicted that the backward-propagation neural
network is qualified for process condition control in the chemical industry.

Keywords: diethyl oxalate hydrogenation; pressure control of steam drum; backward-propagation
neural network

1. Introduction

Exothermic catalytic reactions, such as Fischer–Tropsch synthesis (FTS) [1–4] and di-
ethyl oxalate hydrogenation [5–8], have an important position in syngas conversion, which
is primary to the utilization of biomass or coal resources. Diethyl oxalate hydrogenation
and FTS are both strong exothermic reactions and the addition of hydrogen atoms to the
molecule usually leads to the release of heat during the process. According to the previous
study, the thermodynamic view reveals that FTS product deviation from ASF distribution
occurs because the industrial FTS process is not generally in equilibrium except for only a
few reactions, for example, the water–gas shift. However, according to thermodynamic
analysis, the increase in temperature favors the hydrocarbon formation of short-chain,
lower degree of unsaturation, or containing fewer oxygen atoms products, since the nega-
tive enthalpy change and Gibbs energy of all the FTS exothermic reactions in industrial
conditions has a linear relationship with temperature [9]. Hence, the reaction temperature
of FTS has a huge impact on the thermodynamically allowed products [10,11], which makes
temperature control so crucial in this kind of chemical process.

From a kinetic point of view, exothermic reaction heat is beneficial to accelerate the
reaction rate, though over-increasing the temperature may be detrimental to the exother-
mic reaction, namely the poor control of autogenous heat will lead to “T runaway” and
make a mess of the process. Given the complex reaction characteristics of diethyl oxalate
hydrogenation and FTS, the produced heats need to be removed promptly to avoid the
buildup of heat and runaway of temperature in reactors. Therefore, the optimization of
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the process and improvement in operating conditions in the technical route of diethyl
oxalate hydrogenation or FTS have been the focus of many researchers [5,7]. Moreover,
their product contribution is sensitive to reaction temperature [3,12], which means large
temperature fluctuations can negatively affect the yields of target products. To ensure
the catalyst durability, guarantee thermo-mechanical reliability of the entire process, and
dominate the product distribution, temperature fine control is particularly significant. No-
tably, some new materials have been tried to address the temperature control problem. For
example, Ademola and Tadhg et al. used encapsulated phase change material (PCM) to op-
timize the thermal transmission of FTS reactors, possessing a shift in the C5+ selectivity [13].
However, these new materials cannot be economically utilized in industrial devices due to
the difficulty of universal adaptation and the high cost. The intelligent control of coal-based
exothermic reactions, especially the artificial intelligent control of temperature, is of great
significance in scientific research and practical application.

Nevertheless, the heat generation rule is rather different and the enthalpy released
from the exothermic reaction is an exponential function of temperature (Arrhenius prin-
ciple), causing the temperature fluctuation in the reaction zone. It is urgent to improve
temperature control accuracy. Fixed beds and slurry beds are common reactors used in
the current industrial diethyl oxalate hydrogenation and FTS process; the temperature of
fixed-bed reactors is generally controlled in the pressurized circulating boiling water system
by adjusting the pressure of the steam drum. In essence, the steam generation of a reactor
is like a steam boiler in a power plant. In the current production and simulation system,
compared with the cooling method of cooling water heat transfer, the use of pressurized
water for heat transfer is more conducive to the temperature of the reactor reaching a
stable value and is conducive to improving the grade of energy utilization. Conventional
steam drum control is a three-element controller generally deployed with PID controllers:
feed-water flow, process level, and vapor flow [14]. PID control remains the majority of all
control loops over decades and in decades to come in industrial process control because of
its simple structure, easy implementation, and effective control of some industrial objects
or processes. However, there are some limitations of conventional PID control [15]: (1) it
is difficult to establish an accurate mathematical model when the controlled object has
complex nonlinear characteristics; (2) the parameters of the controlled system in the indus-
trial process control are unknown; and (3) the time-varying phenomenon of parameters or
the non-negligible existence of random disturbances led by the changes in raw materials,
environment, and working conditions raise considerable hardness for conventional PID
control to carry out online parameter tuning, which is studied under the premise that
the controlled object is linear. Hence, more sophisticated controlling strategies with error
detection and abnormal behavior are urgently required to solve the problems including
great inertia, long time delay, and strong nonlinearity in drum control.

Several advanced control strategies have been applied to steam generators in the
serial communication industry to realize system health monitoring. Based on the triumph
of intelligent control theory, the PID can be refined in various ways, like IMC (internal
model control), DMC (dynamic matrix control), MPC (model predictive control), and fuzzy
logic. Enrique Arriaga-de-Valle et al. [16] compared and discussed the performance of a
boiler evaporator system controlled by a traditional PID strategy and fuzzy logic block,
which brings some advantages to the previous three-element boiler feed–water controller;
likewise, Mehmet [17] and Min Xu [14] acquired an improvement over the boiler drum
level controller by embedding a cascade model predictive control scheme.

However, not all the prevalent smart control methods are suitable for drum pressure
control. Generally, for real-world control problems, phenomenological and empirical mod-
els, like the IMC and MPC mentioned above, are available and the selection of these two
categories is concerned mainly with the practical problems approached, available technol-
ogy, and the goal of the simulations. These two models are based on the fundamental theory
and simplification of a chemical process, which makes it difficult to develop an accurate
model quantifying the phenomenology of unknown or partially unknown parameters.
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Moreover, numerous experimental records desired for expertise database establishment
of expert control and rules determination of fuzzy control confines their implementation
in the chemical control system, in spite of the fact that modeling of the controlled object
is not demanded in these two control schemes. In this context, a neural network [18–22],
capable of learning and adapting and thus providing good models, is a recommended tool,
which is useful in the frequently encountered cases when researchers do not fully know
the laws that govern the systems. In neural network modeling, there is no need for a good
understanding of the process’s internal laws, like a “black box” [23]. Neural networks [24]
with good modeling capabilities have been widespread in chemical processes and the
applications will increase broadly and continuously, such as sensor data analysis, fault
detection, and nonlinear process identification. Three different types of neural networks
(MLP, recurrent, and probabilistic) are applied by Banjanovic [25] to solve the problem
of anomaly detection, confirming that neural network-based data-driven modeling has
the potential to be integrated into real-time health monitoring systems of thermal power
plants. Xiaocen Xue [26] utilized a radial basis function neural network (RBFNN) for the
FTS slurry reactor control and modeling, successfully predicting the reactor temperature.
Favorable control equality was reached by the introduction of a neural network and different
air–water loop configurations as well [27–29]. In addition, the neural network is an integral
part of predictive control, inverse-model-based control, and adaptive control methods [24].

The goal of the research is to build a backward-propagation neural network-based
PID controller that will be used to solve the control challenge of a coal-based exothermic
reaction, for instance, diethyl oxalate hydrogenation or FTS; on the basis of the status of
the steam drum control layout, the smart control theories were recommended to address
the drum control in diethyl oxalate hydrogenation. We make an attempt in this paper to
apply a neural network to the simulation of steam heat transition in a designed fixed-bed
reactor system. The control process is performed via the SIEMENS Module, KINGVIEW
6.6 SP2 and Python 3.7.0 software, and executive devices. Still, the PID controller and OPC
technique also settled the foundation of the theory of this paper.

2. The Pressure Control Configurations Design

This section is involved in the design of a fixed bed reactor experimental device with
pressurized circulating water. The device is based on the understanding of traditional PID
controllers and neural network self-tuning PID control algorithms.

2.1. The PID Control Mechanism with a Backward-Propagation Neural Network

The principle of traditional PID controllers, especially the control principle of digital
PID, is deeply studied and analyzed. The digital PID is divided into position PID and
incremental PID. It can be seen that the control output of position PID is related to the
calculation results of each step and the previous results need to be accumulated. However,
it has a great influence on the subsequent calculation results and the calculation amount is
large when the previous calculation results have errors. However, the control output of
each step for incremental PID is only related to the calculation results of the previous step.
The previous disoperation has little effect on the subsequent calculation results and the
calculation amount is smaller than that of the position PID control. The incremental PID is
picked in this paper.

The incremental ubiquitous PID algorithm (shown in Figure 1) we adopted is as Equa-
tions (1) and (2), whereas the ysp(t) = process value of the controlled variable,
y(t) = setting value of the controlled variable, e(t) = real-time error, u0 = initial output,
kc = the proportional coefficient, τI = integral time constant, and τd = derivative time con-
stant. As a kind of sampling control, sampling and processing of computer control proceeds
at short intervals; thus, continuous PID algorithms cannot be applied in actual control
system before discretization. Incremental digital PID algorithms focus on the augmentation
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of the last controlled variable, which reduces negative effects of the past maloperation. The
incremental PID algorithms are depicted as in Equation (3), where k = the sampling instant.

u(t) = u0 + kc

[
e(t) + 1/τI

∫ t

0
e
(
t′
)
dt′ + τDde(t)/dt

]
(1)

e(t) = ysp(t)− y(t) (2)

u(k)
= u(k − 1) + Kp[e(k)− e(k − 1)] + Ki(k)
+Kd[e(k)− 2e(k − 1) + e(k − 2)]

(3)
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At the same time, aiming at the tuning method of PID parameters, we analyze the
structure and principle of neural network control algorithm and take the BP neural network
control algorithm as the PID parameter tuning method in this paper, in order to improve
the control quality of PID to drum pressure, so as to improve the temperature control
accuracy of the Fischer–Tropsch synthesis reactor.

The backward-propagation neural network (BPNN) has excellent capacity of self-
learning, self-tuning, self-adaptation, and paralleled distributed processing, robustness,
and fault tolerance, which can deal with complicated nonlinear control systems. There
are three-layer (or more) neurons in the backward-propagation neural network (BPNN,
as is Figure 2), including the inter-connected but inner-unconnected input layer, hidden
layers, and output layers. The neuron activation values of the input layer are transmitted
from the input layer to the output layer through hidden layers, the neurons of output
layer capturing the input response; this procedure is referred to as forward information
transmitting. If the actual output of the network does not fall within the expected error
range, the error in the output is used as feedback sent from the output layer to the input
layer in the reverse direction to adjust the connection weights at the neurons/nodes in
each layer; this procedure is referred to as backward error correction transmission or
backward propagation. With this kind of backward error correction transmission ongoing,
the precision of network response to input information continuously rises [30,31].

The detail of the BPNN self-tuning PID controller is described in Figure 3. After
setpoint Psp(k), process value P(k) and control deviation e(k) are entered and BPNN control
algorithms are used to self-adjust Kp, Ki, and Kd online. Self-tuned parameters are assigned
to input incremental PID algorithms; hence, drum pressure control with the PID controller
is realized.
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2.2. Practical Impletion of the PID Controller with BPNN Self-Tuning

In order to realize the traditional PID and BP neural network self-tuning PID controller
to control things, it is necessary to complete the traditional PID and BP neural network
self-tuning PID program in Python; through the data exchange between Python and
KINGVIEW, the data exchange between the two software is realized. At the same time, the
communication between the host computer and other hardware in the control system is
realized by means of KINGVIEW.

Hardware connection and software communication came first in controller impletion.
The pressure sensors were connected physically to the PC via the SIEMENS gathering
module, which is packed with Python. Then, the SIEMENS output module linked up the
PC and pneumatic valve, delivering an actuating signal from Python.

Communication between Python and KINGVIEW is faced with a tough challenge,
some other data exchange agreements have been employed, for example, the dynamic data
exchange (DDE) method. The object linking and embedding (OLE) for process control
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(OPC) technology brings a broad communication opportunity among industrial devices,
control systems, and management software and it acts as the common interface for mutual
communication of the various types of data from technological processes [32–35]. OPC
technology consists of servers and clients and clients are able to take real-time information
from servers and respond in time, which is convenient and simple.

KINGVIEW software, the OPC client, serves as monitoring information for reactors
and heat exchange systems. As shown in Figure 4, we set variables in KINGVIEW corre-
sponding to different status parameters, such as the pressure and liquid level of the steam
drum, several control factors of the PID algorithm, and buttons sending instructions to
the valve. Circumstances on the other end of OPC communication are much harder due
to the flexibility of Python, which reversely accounts for the fact that we use Python for
related programming and PID calculation rather than KINGVIEW. In Python, the OPC
server, connection to KINGVIEW, can be accomplished through the program codes. The
algorithm programs of conventional PID and BPNN self-tuning PID are also completed in
Python (see the Supplementary Materials).
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2.3. Pressure Control System

Because the existing fixed bed reactor in the laboratory has a small amount of catalyst
loading and limited reaction heat production, it is difficult to meet the needs of this
experiment, so it is necessary to design a reactor close to practical production. A water
jacket encircled the fixed-bed reactor, which is extensively applied in chemical catalytic
reactions conduction [14,15,24,36], especially the diethyl oxalate hydrogenation and FTS, is
designed and constructed (Figure 5), with pressurized circulating water with a steam drum
serving as the heat exchange medium. A stainless-steel tube for the thermocouple is put in
the middle of the fixed bed reactor and the determination of the temperature at different
positions of the reactor can be realized by adjusting the height of the thermocouple in
the reactor. Thermocouples are also installed at the inlet and outlet of the electric heating
furnace, steam drum, and reactor to monitor the temperature at the corresponding position.
The circulating steam–water mixture is pressurized into the jacket by entering a drum
with an inner diameter of 300 mm and a height of 500 mm. Thermal insulation cotton is
wrapped around the electric heating furnace, water circulation pipeline, and steam drum
to reduce heat loss. An electric heating wire with a power of 2000 W is installed on the
periphery of the water jacket.
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Having analyzed the heat transfer characteristics of FTS, we employed an electrically
heated furnace of the fixed-bed reactor as a simulation of reaction exotherm, inspecting the
control equality of the PID controller with fixed and BPNN auto-tuning parameters. Our
control configuration consists of a PC and basic controllers, such as a pressure sensor (PS),
PLC, and pneumatic valve with electrical regulators. By the programmed PLC-data reading
function, Python captures the real-time steam-drum pressure signal from the sensor via
the SIEMENS PLC analog-input module. The pressure data is reported and displayed in
KINGVIEW by the OPC technology between Python and KINGVIEW. Next, Python carries
out PID calculations based on the setting parameters of KINGVIEW and delivers control
signals to the SIEMENS PLC analog-output module successively and the pneumatic valve
lastly, which is turned up when the measured pressure of the drum is above the setpoint.
Thereupon, drum pressure remains stable, as well as the temperature of the drum and reactor.

3. Result and Discussion of the Simulation Study

To test the control quality of the BPNN self-tuning PID controller, we conducted a
series of experiments, including setpoint tracking for drum pressure and the response to
large variations in setpoint. Otherwise, the wattage of the electrically heated furnace was
altered to promote system disturbance, aimed at examining the performance of constant
value control. All the experiments above are for the purpose of accumulating profound
basic applications.

Distinguished from traditional PID controllers with empirical fixed arguments, the
biggest advantage of BPNN lies in the correction of PID parameters without delay. The initial
value of the PID control algorithm is not important because the goal of the PID controller is to
maintain stability between a given input and a set value. To increase experimental significance,
at the beginning of experiments by the attenuation curve method, we adjusted the coefficients
to the appropriate level (Kp = 10, Ki = 100, Kd = 50) according to the previous setting value in
our lab, which are usually determined by a trial-and-error method and can also be adjusted
by experience of informed experts and PID tuning software.

3.1. Setpoint Tracking of the PID Pressure Control

In general, only constant setpoint control tests are performed to inspect system stability.
However, the FTS reactor system is nonlinear and time-varying, thus the pressure setpoint
is supposed to be shifted in a wide range to verify the response power of the control system.
The initial pressure value of the setpoint tracking tests was 1.55 MPa, reset to 2.32 MPa a
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while after the pressure settled out; corresponding water boiling points of 200 ◦C and 220 ◦C
are eligible for heterogeneous reaction, such as FTS and diethyl oxalate hydrogenation. The
two-kind-PID-controlled drum pressure, drum temperature, and reactor temperature were
recorded in real-time in KINGVIEW as Figures 6 and 7. Both dynamic and steady-state controls
were researched in this study.
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As Figure 6 represents, the static misalignment of conventional PID is−0.1 MPa~+0.01 MPa
as we set 1.55 MPa, much more than that of BPNN self-tuned PID, −0.03 MPa~+0.01 MPa.
Having adjusted the pressure set value to 2.32 MPa later, the former static error of PID grew
between −0.15 MPa and +0.01 MPa, BPNN self-tuning PID remaining unchanged though.
Consequently, the fixed value control performance of BPNN self-tuned PID controllers is signifi-
cantly superior to traditional ones. The step change from 1.55 MPa to 2.32 MPa, embodiment
of strong nonlinearity and time-varying nature, enabled BPNN self-tuning PID controllers to
display the control power well, which has shown better robust ability.

Simultaneously, we also observed the real-time temperature alteration of the steam
drum as shown in Figure 7. The BPNN self-tuning drum temperature held a steady and
final short swing of less than 1 ◦C (as opposed to more than 3 ◦C in conventional PID
control) due to the powerful pressure control; the temperature with altered pressure stayed
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constant and had no residuals, which proved a stronger control quality of BPNN. During
the control process of BPNN, continual readjustment of the PID parameters allowed greater
adaptability to the system instability. Along with tended stable pressure, the PID factors
converged to the actual definite value through end-to-end adaptive tuning.

3.2. The Resistance to System Disturbance of BPNN Self-Tuning PID Controller

Lots of process conditions can upset the diethyl oxalate hydrogenation and FTS reactor
system [37,38], including fluctuation in flow rate, the feed ratio, and the failure of recycling.
Those will lead to hotspot shifts and heat rises and falls. In this study, the heat power
was regulated from time to time as a simulation of system disturbance; the control quality
and adaptive ability remain to be further seen in Figure 8, which demonstrated a tracking
response to furnace power of BPNN self-tuned controller when the drum pressure setpoint
was 1.55 MPa. Obvious deviations could be observed between the measured and setting
pressures of the drum each time system turbulence arose. BPNN self-tuning parameters
led to smooth control, short response time in the transient process, and little error, which
moreover highlighted great adaptability. A case of FTS product distribution of TOS (time
on stream) = 667–908 h over an iron-based catalyst is shown in Figure 9 when the BPNN
self-tuning PID controller is employed in the fixed-bed reactor of this paper. It can be
observed that the catalyst activity and product selectivity are particularly stable after the
reaction lasts for a long time. Other than this case, the BPNN self-tuning PID controller
is also effectively applied to several research works of colleagues, such as the evaluation
of the Mn-Fe/ZrO2 FTS catalyst [39] and Ni catalysts for the hydrogenation of diethyl
oxalate [40].
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4. Conclusions

A steam boiler pressure controller is designed on the basis of BPNN-PID strategy using
Python and KINGVIEW software in order to tackle the notorious exothermic reactions
like FTS or oxalate hydrogenation. We carried out a series of control experiments of the
steam drum in a fixed-bed reactor, employing two kinds of PID controllers, showing great
improvement in control quality with the BPNN self-tuning controller.

Firstly, when pressure setpoints were shifted in a wide range from 1.55 MPa to 2.32 MPa,
upon the emulation of large time-varying nonlinearity in practical reaction processes, such as
diethyl oxalate hydrogenation and FTS, better control results were attained within BPNN by
adjusting PID parameters online to match up the system uncertainty, which the conventional
PID controller failed to do so. Varying with pressure, the BPNN-controlled drum temperature
also responded instantly and was more stable and this could herald the quick stabilization of
reactor temperature in future applications.

Next, considering the presence of disturbance in the practical temperature-control
process, simulated adaptive experiments of system fluctuation were performed by changing
the power of generating heat. BPNN self-tuning controller showed short disorder time,
little static error, and effective control. The desired product distribution of diethyl oxalate
hydrogenation and FTS can also be predictably obtained.

For the purpose of precise control of fixed-bed reactors, we developed the BPNN self-
tuning controller, which showed excellent control performance. BPNN algorithms can make
online adjustments to compensate for time-varying research variables, revealing better
adaptivity to nonlinear chemical reactions; further application of BPNN can be predicted
in the industrial process of diethyl oxalate hydrogenation process and FTS. However,
BPNN also carries deficiency in itself (noticeably less theoretical support on selecting
hidden layer numbers) and forecasting reactions is also strained for BPNN. In addition to
BPNN, a prediction mechanism can be brought in modeling the reactors for diethyl oxalate
hydrogenation and FTS, boosting the control accuracy of exothermic reactions.
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Author Contributions: Conceptualization, J.C.; Methodology, J.L.; Software, Z.Z.; Formal analysis,
J.L.; Investigation, J.L.; Data curation, J.L.; Writing—original draft, J.L.; Supervision, J.C. and J.Z.;
Project administration, J.C.; Funding acquisition, J.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the National Key Research and Development Program of
China (No. 2023YFB4103304), with special thanks to the Chinese Academy of Sciences Strategic
Pioneer Special Fund for a grant to support in situ experiments (XDA29030402).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors upon request.

Acknowledgments: All of the authors would like to thank Liang Wen and Zhikui Jiang for the
cooperation between the Institute of Coal Chemistry and the China Shenhua Coal to Liquid Chemical
Co., Ltd. (Beijing, China).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Stamenic, M.; Dikic, V.; Mandic, M.; Todic, B.; Bukur, D.B.; Nikacevic, N.M. Multiscale and Multiphase Model of Fixed-Bed

Reactors for Fischer-Tropsch Synthesis: Optimization Study. Ind. Eng. Chem. Res. 2018, 57, 3149–3162. [CrossRef]
2. Todic, B.; Ma, W.P.; Jacobs, G.; Davis, B.H.; Bukur, D.B. Effect of process conditions on the product distribution of Fischer-Tropsch

synthesis over a Re-promoted cobalt-alumina catalyst using a stirred tank slurry reactor. J. Catal. 2014, 311, 325–338. [CrossRef]

https://www.mdpi.com/article/10.3390/app14073052/s1
https://www.mdpi.com/article/10.3390/app14073052/s1
https://doi.org/10.1021/acs.iecr.7b04914
https://doi.org/10.1016/j.jcat.2013.12.009


Appl. Sci. 2024, 14, 3052 11 of 12

3. Van der Laan, G.P.; Beenackers, A. Kinetics and selectivity of the Fischer-Tropsch synthesis: A literature review. Catal. Rev.-Sci.
Eng. 1999, 41, 255–318. [CrossRef]

4. Okeson, T.J.; Keyvanloo, K.; Lawson, J.S.; Argyle, M.D.; Hecker, W.C. On the kinetics and mechanism of Fischer Tropsch synthesis
on a highly active iron catalyst supported on silica-stabilized alumina. Catal. Today 2016, 261, 67–74. [CrossRef]

5. Rohman, F.S.; Muhammad, D.; Zahan, K.A.; Aziz, N.; Murat, M.N. Differential Evolution-Based Optimization in Dimethyl
Oxalate Hydrogenation. Chem. Eng. Technol. 2023, 46, 2487–2496. [CrossRef]

6. Yin, S.; Zhu, L.J.; Wang, X.L.; Liu, Y.Y.; Wang, S.R. The influence mechanism of solvent on the hydrogenation of dimethyl oxalate.
Chin. J. Chem. Eng. 2019, 27, 386–390. [CrossRef]

7. Li, S.M.; Wang, Y.; Zhang, J.; Wang, S.P.; Xu, Y.; Zhao, Y.J.; Ma, X.B. Kinetics Study of Hydrogenation of Dimethyl Oxalate over
Cu/SiO2 Catalyst. Ind. Eng. Chem. Res. 2015, 54, 1243–1250. [CrossRef]

8. Rohman, F.S.; Sulaiman, S.H.S.; Aziz, N. Modelling and simulation of hydrogenation of dimethyl oxalate in ethylene glycol
production. In Proceedings of the 5th International Conference of Chemical Engineering and Industrial Biotechnology (ICCEIB),
City Univ Hong Kong, ELECTR NETWORK, Kuala Lumpur, Malaysia, 9–11 August 2020.

9. Marques, F.H.; Guirardello, R. Gibbs energy minimization with cubic equation of state and Henry’s law to calculate thermody-
namic equilibrium of Fischer-Tropsch synthesis. Fluid. Phase Equilibr. 2019, 502, 112290. [CrossRef]

10. Zhu, H.-K.; Song, G.-L.; Li, Z.-H. Computational study on thermodynamic properties of Fischer-Tropsch synthesis process. Chin.
J. Chem. Phys. 2019, 32, 586–596. [CrossRef]

11. Lu, X.J.; Hildebrandt, D.; Liu, X.Y.; Glasser, D. A Thermodynamic Approach to Olefin Product Distribution in Fischer-Tropsch
Synthesis. Ind. Eng. Chem. Res. 2012, 51, 16544–16551. [CrossRef]

12. Todic, B.; Nowicki, L.; Nikacevic, N.; Bukur, D.B. Fischer-Tropsch synthesis product selectivity over an industrial iron-based
catalyst: Effect of process conditions. Catal. Today 2016, 261, 28–39. [CrossRef]

13. Odunsi, A.O.; O’Donovan, T.S.; Reay, D.A. Temperature stabilisation in Fischer–Tropsch reactors using phase change material
(PCM). Appl. Therm. Eng. 2016, 93, 1377–1393. [CrossRef]

14. Xu, M.; Li, S.; Cai, W. Cascade generalized predictive control strategy for boiler drum level. ISA Trans. 2005, 44, 399–411.
[CrossRef] [PubMed]

15. Bequette, B.W. Nonlinear control of chemical process—A review. Ind. Eng. Chem. Res. 1991, 30, 1391–1413. [CrossRef]
16. Arriaga de Valle, E.D.A. Modeling and Simulation of a Fuzzy Supervisory Controller for an Industrial Boiler. Simulation 2016, 82,

841–850. [CrossRef]
17. Mercangöz, M.; Doyle, F.J., III. Distributed model predictive control of an experimental four-tank system. J. Process Contr. 2007,

17, 297–308. [CrossRef]
18. Wang, T.; Gao, H.; Qiu, J. A Combined Adaptive Neural Network and Nonlinear Model Predictive Control for Multirate

Networked Industrial Process Control. IEEE Trans. Neur. Net. Lear. 2016, 27, 416–425. [CrossRef] [PubMed]
19. Hosen, M.A.; Hussain, M.A.; Mjalli, F.S. Control of polystyrene batch reactors using neural network based model predictive

control (NNMPC): An experimental investigation. Control. Eng. Pract. 2011, 19, 454–467. [CrossRef]
20. Guo, X.L.; Wang, T.; Fu, H.; Guo, Y.X.; Li, J.Z. Ice-Jam Forecasting during River Breakup Based on Neural Network Theory. J. Cold

Reg. Eng. 2018, 32, 04018010. [CrossRef]
21. Surendran, S.; Kumar, V. Neural Network Based PI Controller Parameter Calculation on a Boiler Drum Level System. Procedia

Technol. 2016, 24, 1616–1622. [CrossRef]
22. Kamesh, R.; Rani, K.Y. Nonlinear control strategies based on Adaptive ANN models: Multi-product semi-batch polymerization

reactor case study. Chem. Eng. Res. Des. 2017, 121, 255–274. [CrossRef]
23. Pirdashti, M.; Curteanu, S.; Kamangar, M.H.; Hassim, M.H.; Khatami, M.A. Artificial neural networks: Applications in chemical

engineering. Rev. Chem. Eng. 2013, 29, 205–239. [CrossRef]
24. Hussain, M.A. Review of the applications of neural networks in chemical process control–simulation and online implementation.

Artif. Intell. Eng. 1999, 13, 55–68. [CrossRef]
25. Banjanovic-Mehmedovic, L.; Hajdarevic, A.; Kantardzic, M.; Mehmedovic, F.; Dzananovic, I. Neural network-based data-driven

modelling of anomaly detection in thermal power plant. Automatika 2017, 58, 69–79. [CrossRef]
26. Xue, X.; Xiang, W.; Lu, J. Modeling and Control of Industrial Fischer-Tropsch Synthesis Slurry Reactor Using Artificial Neural

Networks. J. Chem. Eng. Jpn. 2014, 47, 887–892. [CrossRef]
27. Bagul, R.K.; Pilkhwal, D.S.; Vijayan, P.K.; Joshi, J.B. Air Water Loop for investigation of flow dynamics in a steam drum: Carryover

experiments and CFD simulation. Nucl. Eng. Des. 2018, 333, 145–160. [CrossRef]
28. Gaikwad, A.J.; Vijayan, P.K.; Iyer, K.; Bhartiya, S.; Kumar, R.; Lele, H.G.; Ghosh, A.K.; Kushwaha, H.S.; Sinha, R.K. Effect of

Loop Configuration on Steam Drum Level Control for a Multiple Drum Interconnected Loops Pressure Tube Type Boiling Water
Reactor. IEEE Trans. Nucl. Sci. 2009, 56, 3712–3725. [CrossRef]

29. Gaikwad, A.J.; Vijayan, P.K.; Bhartiya, S.; Kumar, R.; Lele, H.G.; Vaze, K.K. Selection of Steam Drum Level Control Method for
Multiple Drum Interacting Loops Pressure Tube-Type BWR. IEEE Trans. Nucl. Sci. 2011, 58, 479–489. [CrossRef]

30. Sadeghi, B.H.M. A BP-neural network predictor model for plastic injection molding process. J. Mater. Process. Technol. 2000, 103,
411–416. [CrossRef]

31. Xia, D.Z.; Kong, L.; Hu, Y.W.; Ni, P.Z. Silicon microgyroscope temperature prediction and control system based on BP neural
network and Fuzzy-PID control method. Meas. Sci. Technol. 2015, 26, 025101. [CrossRef]

https://doi.org/10.1081/CR-100101170
https://doi.org/10.1016/j.cattod.2015.08.054
https://doi.org/10.1002/ceat.202200558
https://doi.org/10.1016/j.cjche.2018.04.029
https://doi.org/10.1021/ie5043038
https://doi.org/10.1016/j.fluid.2019.112290
https://doi.org/10.1063/1674-0068/cjcp1903048
https://doi.org/10.1021/ie3000453
https://doi.org/10.1016/j.cattod.2015.09.005
https://doi.org/10.1016/j.applthermaleng.2015.08.084
https://doi.org/10.1016/S0019-0578(07)60212-2
https://www.ncbi.nlm.nih.gov/pubmed/16082788
https://doi.org/10.1021/ie00055a001
https://doi.org/10.1177/0037549707076910
https://doi.org/10.1016/j.jprocont.2006.11.003
https://doi.org/10.1109/TNNLS.2015.2411671
https://www.ncbi.nlm.nih.gov/pubmed/25898246
https://doi.org/10.1016/j.conengprac.2011.01.007
https://doi.org/10.1061/(ASCE)CR.1943-5495.0000168
https://doi.org/10.1016/j.protcy.2016.05.164
https://doi.org/10.1016/j.cherd.2017.03.019
https://doi.org/10.1515/revce-2013-0013
https://doi.org/10.1016/S0954-1810(98)00011-9
https://doi.org/10.1080/00051144.2017.1343328
https://doi.org/10.1252/jcej.14we095
https://doi.org/10.1016/j.nucengdes.2018.04.012
https://doi.org/10.1109/TNS.2009.2033682
https://doi.org/10.1109/TNS.2011.2108666
https://doi.org/10.1016/S0924-0136(00)00498-2
https://doi.org/10.1088/0957-0233/26/2/025101


Appl. Sci. 2024, 14, 3052 12 of 12

32. Mahmoud, M.S.; Sabih, M.; Elshafei, M. Using OPC technology to support the study of advanced process control. ISA Trans. 2015,
55, 155–167. [CrossRef] [PubMed]

33. Aydogmus, O. A web-based educational tool using programmable logic controller-connected MATLAB-OPC server. Int. J. Electr.
Eng. Educ. 2015, 52, 71–80. [CrossRef]

34. Persin, S.; Tovornik, B.; Muskinja, N. OPC-driven data exchange between MATLAB and PLC-controlled system. Int. J. Electr. Eng.
Educ. 2003, 19, 586–592.

35. Cao, J.; Ye, Q.; Li, P. Resistance Furnace Temperature Control System Based on OPC and MATLAB. Meas. Control 2015, 48, 60–64.
[CrossRef]

36. Rafalimanana, A.; Cabassud, M.; Le Lann, M.V.; Casamatta, G. Adaptive control of a multipurpose and flexible semi-batch and
pilot plant reactor. Comput. Chem. Eng. 1992, 16, 837–848. [CrossRef]
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