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Abstract: Efficiently managing resource utilization is critical in manufacturing systems to optimize
production efficiency, especially in dynamic environments where jobs continually enter the system
and machine breakdowns are potential occurrences. In fully automated environments, co-ordinating
the transport system with other resources is paramount for smooth operations. Despite extensive
research exploring the impact of job characteristics, such as fixed or variable task-processing times
and job arrival rates, the role of the transport system has been relatively underexplored. This paper
specifically addresses the utilization of a conveyor belt as the primary mode of transportation among
a set of production machines. In this configuration, no input or output buffers exist at the machines,
and the transport times are contingent on machine availability. In order to tackle this challenge,
we introduce a randomized heuristic approach designed to swiftly identify a near-optimal joint
schedule for job processing and transfer. Our solution has undergone testing on both state-of-the-
art benchmarks and real-world instances, showcasing its ability to accurately predict the overall
processing time of a production line. With respect to our previous work, we specifically consider the
case of the arrival of a dynamic job, which requires a different design approach since there is a need to
keep track of partially processed jobs, jobs that are waiting, and newly arrived jobs. We adopt a total
rescheduling strategy and, in order to show its performance, we consider a clairvoyant scheduling
approach, in which job arrivals are known in advance. We show that the total rescheduling strategy
yields a scheduling solution that is close to optimal.

Keywords: scheduling; heuristic; makespan minimization

1. Introduction

Industry 4.0 has significantly reshaped manufacturing system paradigms, empha-
sizing the move toward the complete automation of the production process [1,2]. In this
transformative context, where the goal is to fully exploit the capabilities of machines, the
precise planning of all production tasks becomes imperative, aiming to minimize machine
idle time. Consequently, the scheduling problem has been the subject of extensive study in
recent decades [3–5]. In its simplest form, this scheduling challenge is commonly referred
to as the job shop scheduling (JSS) problem [6]. Given a set of machines and a set of jobs,
where each job comprises a set of tasks to be processed in a specific order by different
machines, the objective is to find a task assignment that minimizes an objective function,
such as the total completion time or makespan.

The above problem formulation assumes that the time is divided into slots (e.g., each
day is a time slot): the job requests are collected during a time slot and scheduled for
the next one. By relaxing this assumption, we can insert the jobs as they arrive into the
schedule. This scenario is usually referred to as dynamic JSS (DJSS). With the evolution of
manufacturing technology, in which a single machine may perform multiple task types,
we can further extend JSS to include this flexibility; in such a case, we have the flexible
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DJSS problem (FDJSS or simply FJSS). The FJSS problem has been particularly interesting in
recent years in the context of Industry 4.0 [7], in which the production lines include advanced
features that allow the machines to communicate and be reorganized and reconfigured to
meet the increasingly challenging production constraints.

A crucial aspect that is not fully explored in the existing literature is the automation of
job transfers between machines. While task execution on machines can be characterized by
processing times, the transfer process involves various settings, including (i) the means of
transportation, such as automatic guided vehicles (AGVs) or conveyor belts, and (ii) input
and output buffers at the machines, determining their ability to store jobs for processing
(e.g., while finishing another task). The store processed jobs (while awaiting the availability
of the transport system) (Our definition of transfer pertains to the time between the end of
one task and the start of the next for a given job).

Certain combinations of transport systems and buffers may be modeled using constant
time [8], as is the case when the transport facility is always available, and the machines
have sufficiently large input and output buffers. In such scenarios, incorporating transfer
time into the processing time is straightforward, and numerous solutions proposed in the
literature [4] can be applied. In other cases, transfer time depends on the availability of the
transport system and the destination machine [1,9,10]. Overall, no single model can cover
all alternatives, necessitating ad-hoc modeling for specific combinations.

In this study, we consider a scenario inspired by a fully automated production line,
incorporating a conveyor belt as a means of transportation and no buffer at the machines.
In this setup, once a task is completed, the job is immediately placed on the belt to free the
machine. If the next machine is occupied, the job remains on the belt until the destination
machine becomes available. The JSS problem is well-known to be NP-hard [11], and the
variant considered here is at least as challenging [12]. In order to address this complexity,
we propose a heuristic named SCHED-T, which falls under the stochastic local search (SLS)
approach [13]. SLS encompasses well-known algorithms such as simulated annealing and
tabu search.

A primary challenge is evaluating potential moves when exploring the solution space.
A slight change in the scheduling sequence has a cascading effect on the remaining tasks,
as the sequence depends on transfer times, which, in turn, depend on the execution se-
quence. While existing solutions rely on an approximate evaluation of each move (e.g., the
computation of the critical path), we adopted a randomized approach, accurately assessing
a few random neighbors. Given SCHED-T’s ability to quickly compute complex schedules,
especially in the case of dynamic job arrivals, we employed the “total rescheduling” strat-
egy [14]. This strategy considers newly arrived jobs alongside those not yet scheduled,
resulting in a new schedule that integrates with the current one. This approach is versatile,
accommodating events beyond job arrivals, such as scheduled machine maintenance [15].

Here, we evaluate SCHED-T on a set of instances publicly available without transfer
times [16]. In such cases, our heuristic achieves results comparable to those of the previously
proposed versions. Subsequently, we analyze instances generated from a production line
where the transfer times are available. Although the problem can be modeled using mixed
linear integer programming (MILP) approaches, standard MILP solvers fail to find a solution
in a reasonable time. Consequently, SCHED-T emerges as the only viable approach. Our
results demonstrate that when applying the schedule found by SCHED-T to a real-world
production line, the predicted makespan closely aligns with the actual outcome. Conversely,
using a schedule derived without considering the transport system, as seen in the literature,
results in a makespan that is up to 30% larger than that achieved using SCHED-T’s schedule.

In our approach, we consider dynamic arrivals and compare the total rescheduling
strategy using clairvoyant scheduling, i.e., a scheduling type wherby future job arrivals
are known in advance, and show that the total rescheduling strategy produces close-to-
optimal scheduling.

This article builds upon the findings presented in [17] in several ways. Specifically,
we delve into the scenario of dynamic arrivals, where the schedule must be recalculated,
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which is in contrast to the static case examined in [17], where all jobs were available at the
onset of the scheduling period. This necessitated a redesign of the scheduler to manage
partially processed, waiting, and newly arrived jobs. Consequently, this updated definition
encompasses the static case as a special instance, thus representing a generalization of
the problem. Furthermore, we present a clear system model and problem formulation,
along with an expanded comparison of our heuristics. This comparison includes additional
instances, additional performance metrics, such as the running time of our scheduler,
and diverse layouts for real-world experiments.

In summary, the contributions of our work are the following. We provide a heuristic
for the JSS problem that takes into account the transport system based on a conveyor belt
and no buffers at the stations. We consider a dynamic scenario where jobs continuously
arrive while we managed the partially processed jobs and the newly arrived jobs, making
for a total rescheduling strategy. We tested our solution in a real-world production line to
show that if transport times are not considered, the scheduler produces results that may
contain large errors.

In summary, the contributions of our work are as follows:

• We propose a heuristic for the Job Shop Scheduling (JSS) problem that incorporates a
transport system based on a conveyor belt and no buffers at the stations.

• We address a dynamic scenario where jobs continuously arrive while we effectively
manage partially processed jobs and newly arrived jobs by adopting a total reschedul-
ing strategy.

• We validated our solution through experimentation on a real-world production line,
demonstrating that neglecting transport times can lead to substantial errors in the
scheduler’s results.

The paper is structured as follows. In Section 2, we present the case study that serves
as the motivation for our work. Specifically, we examine a production line where machines
are interconnected through a conveyor belt. We then delve into the existing body of related
work and highlight their limitations. Section 3 is dedicated to formalizing the problem,
introducing a model that defines the key variables. This formalization enables us to cast
the problem as a minimization challenge. Given the impracticality of finding an exact
solution within a reasonable timeframe, Section 4 outlines our proposed heuristic, SCHED-
T. This heuristic belongs to the class of randomized iterated improvement algorithms tailored
to address the nuances of the specific problem. In Section 5, we conduct a comparative
analysis of the solutions obtained with SCHED-T against those generated by state-of-the-
art heuristics. We explore scenarios involving the transport system that were previously
unsolvable with tools available in the literature. Finally, Section 6 encapsulates the key
findings and draws conclusions from our study.

2. Background and Related Work

Production line with a conveyor belt: The manufacturing system, taken as a reference,
consists of a set of machines dedicated to specific tasks disposed in a general layout. Each
machine is connected with the others through a transport system that moves the materials
between the machines circularly. Both raw and finished materials are stored in a vertical
warehouse. The production line available at our research facility, the ICE Laboratory [18],
follows the same layout. Figure 1 shows the plant configuration. It is composed of a set of
“production cells”, specifically tailored to a specific manufacturing process. Starting from
the right, the laboratory includes a multi-tool milling machine, a robotic assembly station,
a quality control cell, and a vertical warehouse. The conveyor belt moves materials on top
of 10 pallets across various belt segments. Each pallet is identified by an RFID tag, which is
detected by RFID sensors located near the switching mechanisms (blue squares in Figure 1).
In particular, the belt segments can be differentiated into the following:

• The four machine segments: These are in charge of loading and unloading materials from
the machines (i.e., moving pallets toward and away from the processing area). Since
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these segments are the only access route to the machines, they can contain only one
pallet at a certain time instance;

• The main belt segments: These are in charge of moving a pallet near the machine when
it is ready to process a new task. The pallets waiting for a machine to become free
must loop near the destination machine, implementing a circular buffer, while free
pallets loop along the long main segments. The main belt is composed of two long
belts running in opposite directions. Along these main segments, it is possible to
traverse from one to the other by exploiting the switching mechanisms placed in
certain positions.

The two types of belt segments differ in terms of their control policy. Machine segments
are activated in the desired direction to perform loading or unloading pallet operations,
and the main belt segments are always active, pushing in the same direction. A switching
mechanism can move a pallet by choosing one of the following directions: (1) forward,
following the direction of the actual belt; (2) backward, changing direction by switching
onto the opposite conveyor; and (3) towards a machine working area. If two pallets must
move in the same direction at the same time, the pallet exiting from an unloading segment
or moving forward along the main belt has precedence.

Literature review: In the last decades, the JSS problem has been extensively analyzed
by the research community, along with the different variants, such as DJSS and FJSS.
The solutions that have been proposed over the years are summarized in [4,5] and [19].
Our work differs from the standard problem because it specifically addresses the transport
time between machines and the impact of this on the schedule. Therefore, we concentrated
our analysis of the related works on this specific topic.

LOAD/
UNLOAD

QUALITY 
CONTROL

ROBOTIC 
CELL

MILLING 
MACHINE

Figure 1. The layout of the production line used as a case study.

The transfer time between two machines is a variable delay that depends on the dis-
tance between the two machines and the availability of the destination machine. A solution
proposed in [20] handles variable delays as sequence-dependent setup times. However,
this solution considers the machines busy during the setup time, whereas, in our case,
the destination machine can process other tasks while the materials of the next task are
moving toward the machine.

The authors in [10,21–23] proposed a solution for the problem of job scheduling
combined with transport time, but they consider only automated guided vehicles (AGVs)
as a means of transportation. The limit of considering AGVs is that until a vehicle picks
up a task from a machine, the machine itself cannot execute other activities. Similarly,
when an AGV is waiting to perform a pick operation from a machine, it wastes transport
resources. Moreover, if the machine is completing the previous task when the AGV reaches
the destination, it must wait until the machine completes the task, freeing its working area.
This is not a valid scenario in our case study, in which the machine immediately unloads
the task to the conveyor belt once the task is completed. Another difference is that the
jobs waiting to be processed by a machine do not impact on the unloading and loading
capabilities of the tasks of other machines.

The aim of the different heuristics proposed in the literature is to find the best schedule
that optimizes an objective function [12,20,24]. These state-of-the-art solutions are based on
graph-based representations of the execution sequence. By evaluating the graph properties,
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such as dependencies and the critical path, it is possible to infer the feasibility of a solution
by also approximating the objective function. In our case, these approaches cannot be
applied due to the inter-dependency between transfer time and the execution sequence.
There are also solutions, such as [16], based on MILP optimization models, which minimize
the objective function. A major drawback of these approaches consists of the execution time.
In fact, by modeling the constraints of our transport system, solving even small instances
cannot be carried out in a reasonable amount of time.

In summary, none of the existing works take into account the influence of a transport
system on comprehensive scheduling when machines lack input and output buffers. In this
specific setup, the sequence of jobs affects the transport times, and conversely, the transport
times impact the job sequence. This intricate circular dependency necessitates specialized
tools that are currently absent in the literature.

3. Problem Description
3.1. Model

The flexible job shop problem concerning no buffers and a transportation system can
be described as follows. The facility has a set of m machines (M = {1, 2, . . . , m}) that are
used to process a set of n jobs (J = {1, 2, . . . , n}). Since we consider a dynamic environment
in which jobs continuously arrive, the set of jobs (J(t)) depends on the time (t), i.e., we have
n(t). Such a dynamic set is composed of (i) the jobs that have arrived but have not been
started yet and (ii) the newly arrived jobs.

Each job (i) comprises hi operations or tasks (τij, where i denotes the job, and
j = 1, 2, . . . , hi), and each task can be executed on a subset of machines. The process-
ing time (pijk) for a given task (j) of a job (i) on a machine (k) is considered known. If a task
(τij) cannot be performed on machine (k), we set pijk = ∞. The tasks within a job may have
precedence constraints, meaning that a task cannot start until its preceding tasks (if any) are
completed. For each job (i), the precedence constraints are summarized by a square matrix
(Ui). An element (Uijj′ ) is set to 1 if task τij precedes task τij′ , and this is 0 otherwise.

Each machine (k) is associated with a set of available times (Ak(t)), representing
intervals during which tasks can be executed on that machine. Outside these intervals,
the machine is unavailable either because it is busy with other tasks (e.g., a previous
schedule is still being executed) or because it is undergoing maintenance. Each machine
performs, at most, one task of any job at a time. With each new arrival, the availability sets
for all machines are recomputed, considering the currently running jobs.

The time required to move a job from machine k to machine l, denoted by tkl , is a key
aspect of our work, particularly as we assume that machines lack input or output buffers
and a conveyor belt serves as the means of transportation. More specifically,

tkl = t0
kl + tc

kl · n
c (1)

Here, t0
kl represents the minimum time to travel from machine k to machine l, tc

kl is the
cycle time in case machine l is unavailable, and nc is the number of cycles the job needs to
complete until the machine becomes available. These values are contingent on the layout
of the production line (machines and conveyor belts) and can be readily measured once
such a layout is defined. It is worth noting that by appropriately setting these values, we
can encompass scenarios commonly explored in the literature: if tc

kl = 0 ∀k, l, the transport
time remains constant; if tkl = 0 ∀k, l, the model excludes the transport system. Hence, our
model is versatile, covering various layouts and accounting for cases where transport time
is not considered.

Table 1 summarizes the notation used for the model and the formulation of the problem.
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Table 1. Notation summary.

Inputs

M Set of machines, {1, 2, . . . , m}
J(t) Set of jobs {1, 2, . . . , n(t)}
hi Number of tasks of job i
τij jth task of job i, j ∈ [1, hi]

pijk Processing time for τij on machine k
Ui Precedence matrix for job i: 1 if τij precedes τij′ ; otherwise, it is 0
Ak(t) Availability intervals for machine k
tkl Transfer time between machines k and l

Auxiliary Variables

Eijk 1 if τij is executed on machine k; otherwise, it is 0
sijk Execution start time of τij on machine k
Cij Completion time of τij

3.2. Problem Formulation

We consider a dynamic environment in which jobs continuously arrive. We adopt a
total rescheduling strategy, i.e., we recompute the schedule at every job arrival; we discuss
such a choice in detail in Section 4.4. The aim of the scheduling is to minimize the makespan,
i.e., the total execution time required to process all the tasks of the current set of jobs J(t).
Formally, we have

minimize
i∈[1,n(t)]

max Cij (2)

s.t.

sijk + pijk = Cij (3)

sijk + pijk + tkl ≤ sij′ l ∀τij, τij′ |Uijj′ = 1 (4)

∑
k

Eijk = 1 ∀τij (5)

sijk + pijk < si′ j′k ∀τij, τi′ j′ , k ∈ [1, m] (6)[
sijk, sijk + pijk

]
∈ Ak(t) ∀τij, ∀k (7)

Equation (3) specifies that the end time of each task must be equal to its start time plus
its processing time. Here, we omit the necessary time to store the material produced by the
last task of each job. Equation (4) models the dependencies between tasks within the same
job. If a task (j) is assigned to a machine (k), it has precedence over another task (j′) assigned
to the machine (l); the starting time of the task (j′) must be greater or equal to the end time
of the task (j) plus the transport time between the two machines. Equation (5) imposes
the maximum number of machines to which a task can be assigned, i.e., one. Equation (6)
limits the number of tasks a machine can process in parallel. Finally, Equation (7) indicates
that tasks can be executed on the machines only during their availability intervals.

The provided equations can be utilized to formulate and solve the constraints of a
mixed linear integer programming (MILP) model. However, conventional MILP solvers,
such as IBM CPLEX, face challenges in finding a solution within a reasonable time frame;
more specifically, even with a modest number of jobs, they are unable to converge within
a 12 h timeframe on standard hardware. This computational inefficiency arises due to
the incorporation of transport time in Equation (4), where tkl is contingent on the values
derived from Equation (1), significantly escalating the computational complexity of the
model. Consequently, we must turn to alternative methodologies that involve exploring
the solution space.



Appl. Sci. 2024, 14, 3026 7 of 19

4. Exploring the Solution Space
4.1. Overview

The general framework for any heuristic based on stochastic local search comprises
the following steps [13]:

1. Construct a solution and compute the objective function;
2. Explore the neighborhood, assessing the objective function for each neighbor;
3. Choose the neighbor based on a specified criterion;
4. Repeat all steps starting from step 2 until a stop condition is satisfied.

In addition, given a solution, we must define (i) how we can explore its neighbor-
hood (i.e., new solutions); (ii) how the objective function is computed (i.e., what are the
parameters that we want to optimize); (iii) the policy used to choose the next solution;
and (iv) when the exploration should terminate (i.e., stop conditions). The computational
complexity of these approaches depends on the neighborhood size. For instance, given a
task sequence (si) containing n elements, we may define (as a neighbor) any sequence (sj)
that differs from si for the position of two tasks (the minimum possible change). This would
imply that the number of elements in the neighborhood is at least equal to n(n− 1)/2.

Given the high number of neighbors used to explore each solution, a common proce-
dure consists of limiting the exploration to the subset of the most significant neighbors. This
set is composed of all the neighbors except those that are less likely to improve the current
solution, e.g., all the neighbors that swap two tasks belonging to the same job since they
have dependencies that limit the time interval in which they can be allocated.

The cost function must be computed for each explored neighbor. Therefore, its com-
plexity heavily impacts the execution time. A cost function should be a trade-off between
precision and complexity, exploring a wide range of neighbors in a certain time slot and
choosing the most promising one. In our case, the complexity of the cost function is given
by two main factors. The first one consists of the inner dependencies between tasks of
the same job. This implies that small changes in one task can cause cascading effects on
the subsequent portion of the schedule. The second factor is related to the transfer time
between two machines. This transfer time is strictly dependent on both the availability
of the destination machine (see Equation (1)) and the task execution order. While the
first problem can be addressed by exploiting graph-based representations, the circular
dependency between execution order and transport time makes it difficult to precisely or
approximately compute the objective function.

As such, we are forced to compute the objective function for each neighbor explored
from scratch, making the selection of the most promising neighbors to explore a critical step.

4.2. Randomized Approach

Given a set of jobs to schedule, the number of possible solutions increases exponentially
as the number of jobs increases. Therefore, an entire exploration of the solution state space
could require hours or could be unfeasible in a reasonable amount of time. For this
reason, the exploration is always guided by heuristics that reduce the number of evaluated
solutions. An idea inspired by the results proposed in [25–27] is to explore a set of neighbors
chosen randomly. This is indeed a variant of the stochastic local search approach called
probabilistic random improvement.

A random neighbor (i.e., solution) is described by the sequence of jobs. For each
neighbor, we compute the allocation of tasks on the machines and evaluate the objective
function. Given a solution, we consider its set of randomly selected neighbors. Then, we
choose the best neighbor that improves the current solution. This process is repeated to
increase the exploration’s precision. Thus, we can also tune the precision of the exploration
by increasing or decreasing the total number of random neighbors to explore.

During the exploration, we must avoid being stuck in a local minimum. We can do
that by adopting known techniques used in tabu search or simulated annealing, in which a
new solution is accepted with a certain probability and without considering the optimality
degree of the solution. Instead, we adopt another methodology based on sampling, which
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is inspired by the fisheye view [28] and fisheye routing [29]. These techniques sample
solutions at different distances to check if there are other valleys that exist to explore. In our
context, a distant neighbor is obtained with more complex changes in the task execution
order. In addition, for each remote neighbor, we perform a limited local exploration to test
if such a remote neighbor could indeed improve the current solution. Figure 2 shows an
example of the exploration process.

Current solution
Evaluated neighbors
Other neighbors

Figure 2. Example of the randomized exploration approach. We start from the current solution and
evaluate some random close neighbors, along with remote neighbors (chosen randomly).

4.3. Detailed Solution

Our scheme for the exploration of the neighborhood uses a two-level hierarchical
approach. At a higher level, we have jobs, while at the lower level, we have tasks.

Initialization: In the case of a cold start, in which the system is completely unloaded,
and a set of jobs has been collected and are ready to be executed (e.g., during the night, the
production line does not work and arriving orders are collected), we initialize the order of
the jobs according to the longest processing first policy since it has been shown to improve the
makespan compared other policies [30]. We define the processing time of a job as the sum
of the processing time of its tasks. If a task (τij) can be processed by more than one machine,
then we consider the minimum (pijk) (see Algorithm 1, procedure INITTASKORDER, and
parameter BySize set to TRUE). In the case of a running system, the order is given by the
output of the previous schedule (considering only the jobs not yet launched), with the
newly arrived job placed at the end.

We then establish the order of tasks within each job by grouping tasks with the same
precedence and randomly arranging the tasks within each group. The final output is an
ordered sequence of tasks, denoted as sl . The makespan value is computed based on this
sequence (refer to Algorithm 1 and procedure EVALSOLUTION). We allocate each task to a
machine, considering machine availability and dependencies for previous tasks. If multiple
machines can perform a task, we choose the machine where the task terminates earlier,
including the transportation time.

Neighborhood: For a given sequence (sl) of tasks, we define a close neighbor as the
feasible solution where we work at a low level. In other words, we switch tasks to obtain a
new sequence (sl′ ) for evaluation. A random neighbor is obtained by (i) uniformly selecting
a task (τij in sl) and (ii) uniformly selecting another task (τi′ j′ ). The latter must belong to
the same job (i′ = i) or to a job that comes before or after job i in the ordered set J. If the
tasks belong to the same job, our choice is limited to tasks with no dependencies on task τij
(such a subset can be pre-computed upon job arrival).
We define a remote neighbor as a new solution in which jobs are swapped in the ordered set
J (i.e., higher-level permutations). Thus, remote neighbors allow for the exploration of new
solution areas, and close neighbors can be used to fine-tune the current solution.
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Algorithm 1: Initialization and Evaluation

1 Procedure INITTASKORDER(J, BySize):
2 if BySize then
3 foreach job i do
4 i(size)←∑

j
min

k
pijk ;

5 J ← ORDERBYSIZE(J);

6 sl ← ∅;
7 foreach job i ∈ J do
8 Gi ← GROUPBYPRECEDENCE(i);
9 foreach group g ∈ Gi do

10 g← RANDOMORDER(g);
11 ADDTASKS(sl , g));

12 return sl

13 Procedure EVALSOLUTION(s, {A}):
14 foreach task τij ∈ s do
15 q← arg mink(tlk + pijk);
16 UPDATE(A, q, τij);

17 return max Cij;

Exploration: The number of close and remote neighbors (solutions) explored during
an iteration is governed by the budget, B. At each iteration, we update the current solution
with a new one if it improves the current one (see Algorithm 2). The exploration starts
by considering the current solution si and αB as close neighbors, chosen uniformly at
random among the feasible close neighbors (lines 6–12). The parameter α is given as input,
with 0 < α < 1. The exploration continues by evaluating R remote neighbors (lines 13–14),
selected uniformly at random. For each of them, it explores its neighbors locally uniformly
at random with a budget (1− α)B/R (lines 15–21).

The exploration stops when one of the following conditions is reached: (i) the max-
imum number of iterations Tmax; (ii) no improvements are found for tidle iterations (not
shown in Algorithm 2).

Figure 3 shows a high-level view of the processing flow.

si-1

s’

MIN

…PERM(si-1) PERM(si-1) PERM(si-1)

MIN

Local exploration

…PERM(s’) PERM(s’) PERM(s’)

MIN

Local exploration of a remote solution

…PERM(s’’) PERM(s’’) PERM(s’’)

MIN

Local exploration of a remote solution

s’’

si

Figure 3. Exploration flow: starting from a solution at time t− 1, we explore the local neighbors,
along with a set of distant neighbors. If we find a better solution, we update the current solution.
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Algorithm 2: SCHED-T
input : J, set of jobs to be scheduled
input : M, set of machines
input : {A0}, availability intervals
input : BySize, True if jobs need to be ordered by size
input : B, α, R, parameters for exploration

1 s0 ← INITTASKORDER(J, BySize);
2 O ← EVALSOLUTION(s0, {A0});
3 i = 1;
4 while i ≤ Tmax do
5 si ← si−1;
6 for αB times do
7 s′i ← RANDLOCALPERM(si−1);
8 O′ ← EVALSOLUTION(s′i , {Ai−1});
9 if O′ < O then

10 si ← s′i ;
11 O = O′;
12 {Ai} ← UPDATEAVAL(si);

13 for R times do
14 s′i−1 ← RANDREMOTEPERM(si−1);
15 for (1− α)B/R times do
16 s′i ← RANDLOCALPERM(s′i−1);
17 O′ ← EVALSOLUTION(s′i , {Ai−1});
18 if O′ < O then
19 si ← s′i ;
20 O = O′;
21 {Ai} ← UPDATEAVAL(si);

22 i++;

Complexity: When evaluating a single solution, since we build it from scratch, we
run through the ordered list of tasks and assign the task to the available machine. Each
task may be executed in more than one machine, but we assume that the number of
alternative machines is bounded. The complexity of each evaluation, therefore, is O(H),
with H = ∑i hi total number of tasks considering all the jobs to be scheduled. We perform
Tmax iterations, and we evaluate B possible solutions; therefore, the complexity of SCHED-T
is O(HBTmax). In Section 5, we show the running time for different instances.

4.4. Discussion

When considering dynamic job arrivals, there are different approaches for integrating
the new job into the existing scheduling. For instance, one can exploit the gaps in the current
schedule and run the newly arrived job during such gaps, with little or no impact on the
other jobs. When we take into account the transport system, it is not easy to understand if
the gaps can be fully exploited. In fact, even a small change in the current scheduling, such
as shifting a task to accommodate the new one, results in a cascading effect that disrupts
the whole scheduling.

Such interdependence between the job execution and the transport system is the reason
behind our randomized approach to the exploration of the solution space. Every time we
evaluate a possible solution, we need to compute the schedule from scratch. The solutions
in the literature that adapt the current schedule to accommodate the new arrivals can not
be easily extended when we consider the transport system, and the only available option is
to recompute the whole schedule.

The use of a heuristic allows us to trade accuracy with speed, i.e., we accept sub-
optimal solutions (with an error of less than 5%) that are obtained in a few seconds;
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in Section 5, we show the running time for different instance sizes. Compared to the
job processing time (e.g., tens of minutes), the scheduling processing time is very small,
and therefore, the approach based on total rescheduling is justified. In case of high job
arrival rates, rather than recomputing the scheduling at every arrival, it is possible to
collect some new jobs before running SCHED-T. As a rule of thumb, if the scheduling
processing time is Pproc seconds, and the average arrival rate (estimated considering the
last arrivals) is Varr jobs/s, then the new scheduling can be computed once

⌈
β ·Varr · Pproc

⌉
jobs have arrived, with the parameter β ≥ 1 that controls the trade-off between the delay
and processing load.

Alternatively, at every job arrival, it is possible to consider only a subset of jobs waiting
to be processed (e.g., the last W jobs in line) as part of the set of jobs that are included in the
new schedule computation so that the other subset can be used to feed the production line
during the computation.

5. Experimental Results

In this section, we demonstrate the validity of our proposed heuristic SCHED-T. First,
we compare our heuristic with state-of-the-art approaches for solving the FJSS problem,
using public benchmarks without the transport system. Then, we apply our heuristic to
both a real-world scenario and a simulated scenario to evaluate its performance when the
transport system is present.

5.1. Experimental Methodology and Settings

In order to compare SCHED-T with other heuristics, we consider the set of publicly
available instances described in [12,16]. These instances have been created using the
instance generator available at [31]. The generated instances contain information regarding
the jobs, assuming that transportation is part of the task-processing time. We use these
instances to evaluate the performance of our proposed scheduling heuristic with respect to
the state-of-the-art. In all the comparisons, we use a cost function based on the makespan,
i.e., the latest completion time of the entire set of scheduled tasks. The built-in parameters
that guide our heuristics are (i) the number of iterations and (ii) the available budget
at each iteration, divided between the budget dedicated to the exploration of local and
remote neighbors. We analyzed the impact of these parameters on the makespan with a
sensitivity analysis.

As for the transport system, unfortunately, public instances that include this aspect,
such as the one used in [32], consider different means of transport (AGVs rather than
conveyor belts). Therefore, they cannot be used in our comparison. Therefore, we consider
a real-world use case related to our ICE lab, in which we were able to create a set of
instances that include a transport system.

Finally, we consider the case of a sequence of arrivals. We assume, as is carried out in
the literature [14], that a set of jobs is present at time zero and that another set randomly
arrives. We evaluate the makespan in such a dynamic case (updated at every arrival),
and we compare it with the makespan computed by an ideal clairvoyant scheduler, i.e., a
scheduler that knows all the future arriving jobs and provides a single, optimized schedule.

SCHED-T is implemented in Python, and the experiments are carried out on a 3.3 GHz
Intel Core i7 (Intel, Santa Clara, CA, USA) with 16 Gb of RAM (Microchip Technology Inc.,
Chandler, AZ, USA).

5.2. Instances with No Transport System

We compared SCHED-T with a set of heuristics that were presented in [12], in which
authors applied iterated local search, genetic algorithms, differential evolution, and tabu
search on a set of 50 large instances defined in the same paper, along with another set of
50 large instances proposed by the same authors in [16]. Each instance differs in the number
of available machines (up to 97) on which tasks can be allocated, the number of jobs (up to
200), and the number of total tasks (up to 2000). None of these heuristics outperformed
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the others in all the instances: for some instances, differential evolution was better than
the others, and for other heuristics, tabu search provides the best makespan. Rather than
listing the values of each heuristic, we consider, for each instance, the best and the worst
makespan obtained by these heuristics: we used such values to represent an interval for
which the gap is much more narrow than the one found with the CP approach. Within
this range lie the results of the four heuristics cited before (iterated local search, genetic
algorithm, differential evolution, and tabu search). Therefore, we consider such a gap as a
reference with which to compare. Instead of showing the absolute values for each instance,
we can normalize the maximum makespan with respect to the minimum makespan so that
the gaps of the different instances are comparable and can be put in a single graph. We also
normalize the makespan obtained by SCHED-T so that it is simple to understand if it falls
in the gap provided by other heuristics.

Makespan: In Figure 4, we compare the makespan obtained on the set of instances by
SCHED-T with the one obtained with the other reference heuristics. The results show that
SCHED-T is able to find a makespan within the gap defined by the other state-of-the-art
heuristics. In some cases, it outperforms the other heuristics by 2%, whereas in two cases, it
finds a larger makespan by 3%. We notice that every heuristic proposed in the literature,
including our solution, provides an approximate solution, and there are no guarantees on
the error bound. Therefore, we can only observe how well these heuristics perform on real
datasets. Figure 4 shows that the approximate solutions have a 4–12% gap; therefore, such
an error can be considered acceptable. From these results, SCHED-T performs similarly to
other state-of-the-art heuristics on instances without considering the transport time.
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Figure 4. Normalized makespan for the set of the 50 + 50 large instances in [12,16]. The shaded area
represents the gap (minimum and maximum makespan) found with different heuristics in [12], while
the orange points are the results of SCHED-T.

Running time: Figure 5 shows the running time (in minutes) required to find the
solutions of the 50 instances in [16]. The instances are ordered by increasing the number of
tasks (shown at the top of the graph), e.g., instance 50 has almost 1000 tasks. Even with a
large number of tasks, SCHED-T is able to obtain a solution that is comparable to the results
found in the literature in less than 10 min.

Sensitivity analysis: SCHED-T has a set of parameters that tune the depth of the
exploration phase. At the task level, we can exchange tasks belonging to the same job or to
the next or previous job by considering the current scheduling order. At the job level, we
can exchange jobs. During our tests, we noted that switching jobs provides most of the gain,
while at the task level, the impact of changing the order on the makespan is less significant.

Therefore, the two main parameters we consider are the number of moves we explore
Tmax and the number of neighbors we evaluate in each iteration, R. These parameters
influence the time required to compute the solution. Figure 6 shows two views for analyzing
the impact of these parameters on the normalized makespan, i.e., the makespan found with
a combination of Tmax and R divided by the makespan found with the highest values of Tmax

and R used in our test. If we maintain Tmax as fixed and we increase R (Figure 6, left), when
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R is sufficiently large (R > 10), no additional improvement is observed. However, even for
smaller values of R, the makespan only slightly increases (2–5%) with respect to the best
makespan found. This is also confirmed if we keep R fixed and vary Tmax (Figure 6, right);
the two figures refer to two different instances, and they are representative of the general
behavior that we observed for all the instances.
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Figure 5. SCHED-T running time for finding the solution is shown in Figure 4. The top axis indicates
the number of tasks associated with each instance.

Therefore, the two main parameters we consider are the number of moves we explore,
denoted as Tmax, and the number of neighbors we evaluate in each iteration, denoted as R.
These parameters influence the time required to compute the solution. Figure 6 provides
two views for analyzing the impact of these parameters on the normalized makespan.
In other words, it shows the makespan found with a combination of Tmax and R divided
by the makespan found with the highest values of Tmax and R used in our test. If we
keep Tmax fixed and increase R (Figure 6, left), when R is sufficiently large (R > 10), no
additional improvement is observed. Even for smaller values of R, the makespan only
slightly increases (2–5%) compared to the best makespan found. This observation holds
even if we keep R fixed and vary Tmax (Figure 6, right). The two figures represent different
instances but are indicative of the general behavior observed for all instances.
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Figure 6. Sensitivity analysis of SCHED-T: impact of the parameters on the makespan (makespan
normalized to the best value found). Left and right figures refer to different instances.

Overall, SCHED-T is not extremely sensitive to parameter settings and provides good
results across a wide range of values. In terms of computational time, using small Tmax and
R allows for obtaining a solution in less than 30 s, while larger Tmax and R may take up to
10 min. However, since large Tmax and R do not significantly improve the results, the use
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of a small Tmax and R is appropriate, especially in dynamic contexts where scheduling is
recomputed when new jobs arrive.

In any case, the tuning process can be performed in a simulated environment where
data collected from the production line is replayed, and different values of Tmax and R
are tested. If the production load does not vary much from one day to the next, this
offline analysis should provide an indication of the best parameter settings for that specific
production line.

ICE instances: In order to test SCHED-T in a real test case, we generated six instances
that can be executed within our research laboratory (described in Section 2). The number
of tasks and jobs for each instance are summarized in Table 2. Without considering the
transport time, we were able to solve the problem using a MILP model and compare the
results with SCHED-T (Table 2, column Opt).

Table 2. ICE instances: characteristics (cols. 2 and 3); makespan with no transport (cols. 4, 5, and 6).

Id #Jobs # Tasks Opt SCHED-T Err.

1 5 32 900 900 0%
2 10 106 3580 3650 2.0%
3 15 100 2930 3014 2.9%
4 20 142 3530 3698 4.8%
5 25 174 4935 4998 1.3%
6 30 263 7475 7570 1.3%

By using SCHED-T, we are able to find a solution in less than 30 s. The difference
between the local optimal and the global optimal solution is less than 5% (columns SCHED-
T and Err. of Table 2). As mentioned earlier, the literature deems an error gap of up to
10% acceptable, acknowledging the trade-off between accuracy and computational speed
provided by the approximate solutions. Regarding the variability in error, we were unable
to pinpoint any specific job characteristic that might influence such variability. It can be
regarded as an inherent variability intrinsic to the considered problem.

5.3. Instances with the Transport System

Introducing a transport system increases the complexity of the MILP model exponen-
tially. In fact, a MILP formulation given to standard MILP solvers, such as IBM CPLEX,
cannot be solved after hours of computation. As such, we do not have any values that can
be used as a global optimal comparison reference to our results. The results presented in
Table 3, column SCHED-T of Experim.-I, report the makespan found by SCHED-T. Next,
we describe the test we performed on a real-world testbed to validate such results.

Table 3. Reference layout scheduling instances with transport.

Id
Experim.-I Experim.-II

SCHED-T Actual Err. SCHED-T Actual Err.

1 1511 s 1556 s −2.89% 1221 s 1555 s −21.48%
2 2814 s 2861 s −1.64% 2243 s 2875 s −21.98%
3 3557 s 3674 s −3.18% 3321 s 4248 s −21.82%
4 4654 s 4892 s −4.87% 4366 s 5577 s −21.71%
5 5820 s 5963 s −2.40% 5473 s 7012 s −21.95%
6 7025 s 7227 s −2.80% 6461 s 8377 s −22.87%

5.4. Real-World Experiments

We consider the set of instances described in Table 2, and we run them on an actual
production line built in our lab (described in Section 2). The production line is governed by
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service-oriented manufacturing (SOM) software architecture similar to the one presented
in [33,34], which automatically manages the production line, interacting with both the
manufacturing execution system (MES) and the machines. On top, we have developed a
module that implements our proposed scheduling heuristic, and the execution is forwarded
to the SOM architecture. For each instance’s job, we have fixed the task execution time.
This allows for a fair evaluation of the accuracy of SCHED-T, removing processing time
variability. The case of a stochastic execution time will be considered in future works.

Given the schedule returned by SCHED-T, we ran the jobs on the production line and
recorded the makespan. The results are shown in Table 3, columns Experim.-I, and Actual.
SCHED-T is able to predict the actual makespan obtained from a real-world production
line with an error smaller than 5%. Additionally, in this case, there is no specific job
characteristic that might influence the small variability for the different instances.

Then, in column Experim.-II, we consider what happens if the scheduler does not take
into account the transport system, as most of the schedulers in the literature do. In this
case, they would produce a schedule that is not optimal. In particular, we run SCHED-T by
setting all the transport times to zero and we obtain a schedule that is fed to our production
line. We record the makespan obtained in this case and compare the error obtained with the
one computed in columns Experim.-I. If the scheduler does not include the transport times,
the resulting schedule contains an error of up to 23%, which is 18% greater than the one
obtained by the schedule considering the transport times. Thus, the makespan obtained
using the real system by considering the transport time improves the makespan by up to
14% with respect to the one found without considering the transport time.

Table 4 shows the results obtained by applying SCHED-T to a different plant configu-
ration depicted in Figure 7. This new configuration consists of a modified version of our
real-world case study: we added a bay and a machine of the same type on the opposite side
of each existing one to implement production redundancy. We built this new configuration
by exploiting Tecnomatix Plant Simulation, a commercial state-of-the-practice discrete
event simulation tool. The simulation allows for testing our proposed algorithm on a
different scenario, enabling the calculation of simulated production times (e.g., makespan)
and demonstrating that SCHED-T can also be applied to different plant configurations. We
executed the same test using Table 3, generating new instances of the same size. The results
show that when considering transport time, SCHED-T allows for reducing the error of the
estimated makespan, keeping it within 5% and lowering it by 17% when not considering
transport time.

LOAD/
UNLOAD

QUALITY 
CONTROL

ROBOTIC 
CELL

MILLING 
MACHINE

QUALITY 
CONTROL

ROBOTIC 
CELL

MILLING 
MACHINE

Figure 7. The modified layout of the production line used to test another scenario. We added a bay
and a machine of the same type on the opposite side of each existing one.
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Table 4. Modified layout scheduling instances with transport.

Id
Experim.-I Experim.-II

SCHED-T Actual Err. SCHED-T Actual Err.

1 1362 s 1343 s +1.41% 1107 s 1412 s −21.60%
2 2444 s 2436 s +0.33% 2214 s 2721 s −18.63%
3 3575 s 3685 s −2.99% 3231 s 4239 s −23.78%
4 4796 s 4775 s +0.44% 4428 s 5557 s −20.32%
5 6041 s 5929 s +1.89% 5354 s 6945 s −22.91%
6 6973 s 7189 s −3.00% 6488 s 8428 s −23.02%

To sum up, our proposed solution allows us to estimate the makespan within a
reasonable time frame with high precision. By correctly estimating the transfer times time,
we are able to build a more precise schedule.

5.5. Multiple Arrivals

The results discussed above focused on the efficiency of the solution at each single
job arrival. In this section, we evaluate how the schedule changes as new jobs arrive. We
consider the same set of instances without the transport system (Section 5.2) and with the
transport system (Section 5.3). We remove p% of the jobs, compute the initial makespan
without these jobs, and uniformly spread the arrival of the removed jobs at random between
zero and the initial makespan. For each arrival, we update the schedule and the makespan.

In order to evaluate the quality of the final makespan obtained in this way, we con-
sider an ideal scheduler that knows all the jobs (the initial ones and the future ones,
with their arrival times) in advance and computes a single optimize schedule; we call
this scheduler clairvoyant.

Figure 8 shows the difference (in percentage) between the final makespan obtained
after updating the initial makespan at every job arrival and the makespan obtained with
the clairvoyant scheduler for different percentages of dynamic jobs (jobs removed from
the instances).
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Figure 8. Difference (in percentage) between the makespan updated at every job arrival and the
makespan from the ideal clairvoyant scheduler. Left and right figures refer to instances in [16] and
the ICE instances.

In both cases (with and without the transport system), updating the schedule at
every arrival provides a solution that is comparable to an ideal scheduler that has all the
information in advance. The case with the transport system shows a higher deviation since
the instances have a lower number of jobs. Overall, the total rescheduling strategy provides
near-optimal solutions with a limited use of the processing resources.
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6. Conclusions

Estimating the start and finish time of tasks belonging to jobs is fundamental for
improving the efficiency of the manufacturing system. This is even more important in a
fully automated environment, in which tasks are typically frequent but short. Integrating
task duration with transport times enables more robust control of the overall process.
To this aim, we designed a scheduler based on stochastic local search, which explores the
solution space with a randomized approach.

Our proposed heuristic, SCHED-T, allows for building accurate and near-optimal
schedules in a limited amount of time. This allows for efficiently managing the dynamic
scenarios in which jobs continuously arrive or when unexpected events, such as machine
breakdowns or maintenance activities, may occur.

In the future, we plan to extend our heuristic to include stochastically variable task-
processing times and evaluate their impact on overall efficiency.
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Terminology

Availability
Intervals of times when machines can be used (i.e., it is not under
maintenance or booked for task execution).

Job
A set of operations or tasks that create a new product either directly from
raw materials or components.

Machine
Equipment that processes, forms, or shapes raw materials or the output
or other machines.

Makespan
Total execution time to process all the jobs currently submitted to the
facility.

Precedence
Constraint on a task that can not be started before the completion of one
or more tasks.

Processing time Time required by a machine to perform a task.

Task A unit of work performed on a single machine.

Transport times
Time required to move the partially processed materials from one
machine to the next.
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