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Abstract: The main goal of this work is to combine the usage of the numerical homogenization
technique for determining the effective properties of representative volume elements with artificial
neural networks. The effective properties are defined according to the classical laminate theory. The
purpose is to create and train a rapid surrogate model for the quick calculation of the mechanical
properties of hollow concrete slabs. First, the homogenization algorithm was implemented, which
determines membrane, bending and transverse shearing properties of a given parametrized hollow-
core precast slab reinforced with steel bars. The algorithm uses the finite element mesh but does not
require a formal solution of the finite element method problem. Second, the learning and training
artificial intelligence framework was created and fed with a dataset obtained by optimal Latin
hypercube sampling. In the study, a multilayer perceptron type of artificial neural network was used.
This allows for obtaining rapid calculations of the effective properties of a particular hollow-core
precast slab by using a surrogate model. In the paper, it has been proven that such a model, obtained
via complex numerical calculations, gives a very accurate estimation of the properties and can be
used in many practical tasks, such as optimization problems or computer-aided design decisions.
Above all, the efficient setup of the artificial neural network has been sought and presented.

Keywords: hollow-core slabs; numerical homogenization; laminate theory; artificial neural network;
multi-layer perceptron regressor

1. Introduction

Prefabrication in structural and civil engineering is an effective way to significantly
accelerate construction, which allows investors to obtain a faster return on their investment.
In addition, strictly controlled conditions of the production of the main structural elements
enable ensuring a repeatable quality with a high degree of accuracy and less waste, as well
as more efficient usage of the resources, such as human potential, energy, etc. The current
trend in construction is sustainable development, the goals of which coincide with the goals
of prefabricated constructions.

Prefabrication has been used for many years in steel structures. Currently, large-
scale prefabrication is also used in reinforced concrete structures. Various types of precast
structural reinforced concrete elements are available, such as: footings, foot columns,
ground sills, columns, beams, multi-layer walls, slabs (full, channel and TT), stairs, girders
and purlins [1]. Also, many other types of elements used in civil engineering structures
are produced by prefabrication plants, such as tanks, railroad bed slabs, acoustic screens,
tubings, bridge abutments and retaining walls, etc. Those examples shows that the precast
technology enables the implementation of more complex structural elements with a more
specific purpose than in the traditional technology.

As a result, more difficult constructions are designed and built, which often require the
creation of more complex computational models, in which it is necessary to use advanced
models and methods of computational mechanics. In advanced computational models
of constructions, nonlinear concrete material laws are often used, which, for instance,
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that take into account crack failure [2–5], corrosion [6] and/or prestress [7,8] of precast
structures. Despite its advantages, detailed modelling has one important disadvantage:
such an approach is time-consuming. There are two reasons for this fact: (i) building
and validating the model itself takes longer than usual and (ii) the computational time is
significantly longer (up to several hundred times longer than for typical models).

This disadvantage can be eliminated by using selected mechanical and numerical
methods. Building a complex model (i) can be shortened, for instance by using proven
homogenization techniques [9,10] or metamodeling [11]. This will enable the mapping
of the mechanical behavior of even a complex structure, similar to the paper of Staszak
et al. [12], in which the sandwich panels were considered for homogenization. Another
example could be the paper of Staszak et al. [13], in which it was shown that the precast
concrete slabs reinforced with spatial linear trusses may be efficiently homogenized to one
effective layer of a representative shell element. On the other hand, the computational time
(ii) can be reduced by using soft computing methods such as the artificial neural network
(ANN) algorithms [14–18] or metamodeling [19,20]. This usually requires a significant
computational effort, which is incurred before the solution of the target computational
problem is needed, but it allows one to obtain a solution with an acceptably small error in a
fraction of a second when the actual problem occurs.

A computational tool that solves c”mple’ engineering problems using ANN in a very
short amount of time gives a wide range of possibilities. For example, it allows one to
prepare software that will give an instant solution to a complex engineering problem at
a construction site. It can be applied to specialized calculators on site or in optimization
processes, where the specificity of optimization methods requires multiple solutions of
the objective function [19,21]. If the single solution of the objective function is costly, the
minimization problem cannot be solved effectively with respect to the computational time.
In such cases, ANN methods work best. It is recommended to perform the sensitivity
analysis, like in [22], before building the ANN database.

In this paper, we show how a reliable artificial neural network may be built, and
what its setup should be, in order to approximate the behavior of reinforced concrete slabs
through the numerical homogenization technique. The ANN built computes the effective
properties of the representative volume element (RVE) of reinforced hollow core (HC) slab.
Reinforced HC structures were selected for the study because they have periodic geometry
and can be computationally expensive due to their geometric complexity. RVE of reinforced
HC slab was selected as a periodic hollow core unit forced by the hole spacing, and a square
RVE base was assumed.

First, the numerical model of RVE of reinforced hollow core slab was assumed with
six parameters, which are related with HC slab geometry and area of steel reinforcement.
For more details, see Section 2.1. Second, according to the optimal Latin Hypercube
Sampling (LHS) the spread of the parameters was defined. For more details regarding
sampling method, please see Section 2.2. Thus, the number of RVEs, built through the
sets of particular parameters, represented various reinforced concrete HC slabs. Then,
the effective mechanical properties of selected HC slabs were computed according to
Garbowski and Gajewski’s numerical homogenization method [10], see Section 2.3. In a
later section, we show how the numerical framework was built to train and validate the
ANN for computing the effective properties without using the homogenization method;
see Section 2.4. In Section 3, first, the verification of the used homogenization method was
shown in comparison to the data presented in the literature; see Section 3.1. Additionally,
the selected ANN setups in reference to their accuracy were demonstrated; see Sections 3.2
and 3.3. Finally, we show an example of the influence of changing one of the design
parameters of HC slab on its effective properties.

The overall structure of the study is presented in the Figure 1. The particular elements
of the study will be described in the forthcoming sections.
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Figure 1. The flowchart graphically representing the research study.

2. Methods and Materials
2.1. Representative Volume Element and Structure Parametrization

In this paper, the hollow core concrete slabs reinforced with steel bars are considered.
The hollow cores are stadium shaped. The geometry of the structures replicates the com-
mercial products of construction companies (manufacturers of prefabricated structures),
which produces the precast HC slabs, for instance, SPK from Konbet [23] or HC from
Pekabex [24]. The typical widths are 1200 mm and common heights of the slabs range from
150 to 500 mm, respectively.

Because the scope of the paper is to show the efficiency of the proposed problem
reduction via an elaborate numerical approach, minor attention has been given to material
modeling and linear elasticity was assumed. The typical values of the material constants
have been used, namely, for concrete and steel, a Young’s modulus of 30 Gpa and 210 Gpa
and Poisson’s ratio of 0.2 and 0.3 have been used, respectively.

Due to the homogenization method used, namely the Garbowski and Gajewski al-
gorithm [9,10] it is necessary to isolate the representative volume element (RVE). The
periodic geometry of HC slabs defines the RVE geometry which was used in a natural
way. The width of the RVE slab corresponds to the vertical distances between the concrete
ribs. Moreover, it was assumed that the RVE has a square base. The example of the RVE
geometry is presented in Figure 2a. In the numerical homogenization technique used,
the finite element (FE) stiffness matrix of the RVE must be computed; here, the Abaqus
FEA was used for computing the stiffness matrix. The steel bars were modelled by using
two-node, 3-dimenssional truss elements (T3D2 according to Abaqus FEA [25]), while the
concrete volume was modelled by using solid general purpose linear brick elements with
reduced integration (C3D8R according to Abaqus FEA [25]). These choices of element
types are recommended and align with the best industry practices. Truss elements are
particularly suitable for structures where the primary mode of load transfer is axial, such as
in beams, columns, and trusses. Solid brick elements are well-suited for modeling concrete
structures as they can capture both the tensile and compressive behaviors, as well as shear
deformation and confinement effects. Moreover, the reduced integration helps to mitigate
shear locking issues.
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Figure 2. (a) The representative volume element of the section of the hollow-core slab with host
part (blue volume contour) and submerged elements of reinforcement (red lines); (b) scheme of a
cross-section of a hollow core concrete slab with the parameters of a representative volume element.

In the RVE, the reinforcement was taken into consideration by using a special numer-
ical technique called embedded region [7,25]. In this technique, the interaction between
steel and concrete is accounted for indirectly by using truss FE elements for modeling steel
bars. Here, the stiffness of the steel truss FE is added to the concrete solid FE. In such an
approach, an ideal bond between the materials is assumed. An alternative technique, not
considered here, is the extrusion technique, in which steel is modeled by solid elements;
the interaction is accounted by employing the contact techniques. The first approach is
beneficial, because it does not require dense mesh in the area of the reinforcement and
higher convergence is ensured.

In the study, the RVE is built based on the set of six parameters, which are simul-
taneously the ANN input parameters, see Figure 2b, i.e., h: slab height, a: width of a
periodic part, a1: position of the steel reinforcement, r: hole radius, As1: cross-sectional
area of steel reinforcement and l: vertical dimension of the hole. The parameters having
the greatest impact on the mechanical behavior of the HC slabs were selected (excluding
material properties). They will have a direct impact on the laminate stiffnesses obtained
from the numerical homogenization procedure, which form the output of the ANN. The
ANN output is represented by the laminate mechanical properties matrix, explained in
Section 2.3. In Table 1, the lower and upper boundaries of the ANN input parameters
assumed were demonstrated.

Table 1. Assumed limits of the parameters of hollow core slabs.

Parameter Symbol Lower Boundary Upper Boundary

Slab height h [cm] 15.0 50.0
Width of periodic part a [cm] 10.0 18.0
Position of the steel

reinforcement a1 [cm] 2.0 3.0

Hole radius r [cm] 3.0 6.0
Cross-sectional area

of steel reinforcement As1 [cm2] 0.0 6.44

Vertical dimension
of the hole l [cm] 0.0 20.0

Based on the set of six parameters, the RVEs of HC slabs are built. Next, the computa-
tional FE mesh is automatically generated as the input for the Garbowski and Gajewski
homogenization algorithm [10]. A few examples of the computational FE meshes used in
the study are shown in Figure 3.
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Figure 3. Selected examples of the generated computational mesh of hollow core slabs used as
a representative volume element: (a) slab with circular hole, (b,c) slabs with different stadium
type holes.

2.2. Latin Hypercube Sampling

In order to create a dataset for the artificial neural network, the Latin hypercube
sampling method (LHS) according to McKay et al. [26] was used. The algorithm provides a
large variety of near-random geometrical data from a multidimensional distribution for the
RVE models that were used in the learning process of the ANN. Data was generated using
Python library pyDOE2 [27]. In the library, various statistical functions are implemented to
help the scientists, engineers and statisticians to construct experiments, mainly for creating
factorization, response-surface or randomized experiments, such as LHS.

Let n denote the intended number of the RVE models, and k number of random
geometrical parameters of the models. The sampling space is k-dimensional. There are two
matrices: n× k matrix P and n× k matrix R. In the matrix P, every k column is a random
permutation of 1, . . . , n. Matrix R consists of the independent random values from the
uniform distribution (0, 1). Let us introduce V matrix, in which every row contains input
data for one RVE model. Sampling elements of matrix V are defined as:

V = F−1

(
Pij − Rij

n

)
(1)

where F−1 represents the inverse of the target cumulative distribution function.

2.3. Numerical Homogenization of Precast Reinforced Concrete Slab

Within the framework of the research, one of the methods used was the Garbowski
and Gajewski homogenization numerical technique [10]. The method is an extension of
the proposal of Biancollini from 2004 [9]. The homogenization method is based on the
deformation energy equivalent between a periodic section of a reinforced concrete hollow-
core slab and a simplified two-dimensional shell element. Having on the one hand a
representative volume element of a reinforced concrete hollow core slab with all geometric
details and on the other hand a simplified shell model, the effective properties of the element
can be determined assuming that the effective deformation in both models is equal. The
reinforced concrete hollow-core slab is treated as a heterogeneous element, which consists
of a concrete slab with circular or stadium openings and a layer of reinforcement with
two bundles of steel rods. Reinforcement and openings are arranged along the y-direction,
see Figure 4a.
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Figure 4. Representative volume element: (a) model with reinforcement indicated in blue and
(b) mesh of the model with marked external nodes in red.

Let us briefly introduce the homogenization method used. For more details, see [9,10].
In the finite element method, there is:

Ke·ue = Fe, (2)

in which Ke is a statically condensed (by eliminating the internal nodes) global stiffness
matrix of a representative volumetric model, ue is a displacement vector of the external
nodes, Fe is a vector of nodal force applied to the external nodes. An example of the finite
element mesh and external nodes is shown in Figure 4b.

The condensed stiffness matrix is calculated using the following equation:

K = Kee −KeiK−1
ii Kie, (3)

in which the overall stiffness matrix is decoupled by introducing the external (index e) and
its internal (index i) nodes. Then, four submatrices may further be defined, which reads:[

Kee Kei
Kie Kii

][
ue
ui

]
=

[
Fe
0

]
. (4)

After static condensation, the strain energy stored in the system is:

E =
1
2

uT
e Fe. (5)

The balance between the three-dimensional model and the shell model can be achieved
by appropriate definition of displacements and rotations in external nodes.

Using the Mindlin-Reissner theory [28,29], the normal strain can be decomposed into
a membrane and a bending state as follows: εx

εy
γxy

 =

 ∂u/∂x
∂v/∂y

∂v/∂x + ∂u/∂y

 =

 ε0
x

ε0
y

γ0
xy

+ z

 κx
κy

γxy

. (6)

The relationship between the generalized deformations and the position of the nodes
is expressed by the following transformation:

ui = Aiϵi, (7)
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in which for a single ith node assuming xi = x, yi = y, zi = z we have:

ux
uy
uz


i

=

x 0 y/2 z/2 0 xz 0 yz/2
0 y x/2 0 z/2 0 yz xz/2
0 0 0 x/2 y/2 −x2/2 −y2/2 −xy/2


i



εx
εy

γxy
γxz
γyz
κx
κy
κxy


i

. (8)

After substituting the above derivations into the definition of strain energy presented
earlier in Equation (5), it can be obtained that:

E =
1
2

uT
e Kue =

1
2

ϵT
e AT

e KAeϵe (9)

and considering that for a shell element subjected to bending, tension/compression and
transverse shearing, the internal energy finally takes the following form:

E =
1
2

ϵT
e Akϵe{area}. (10)

The stiffness matrix for a shell element is calculated from the discrete matrix:

Ak =
AT

e KAe

area
. (11)

From Equation (11), we obtain the laminate mechanical properties matrix Ak, also
known in the literature as ABD or ABDR (with the extension of transverse shearing prop-
erties) matrix, in which:

A =

A11 A12 0
A21 A22 0
0 0 A33

; D =

D11 D12 0
D21 D22 0

0 0 D33

, (12)

B =

B11 B12 0
B21 B22 0
0 0 B33

; R =

[
R44 0
0 R55

]
. (13)

Matrix A determines compression/tension stiffnesses, matrix B determines the cou-
pling stiffnesses, matrix D determines bending stiffnesses, while R determines the trans-
verse shear stiffnesses.

One also must determine the effective thickness of the shell, t, which can be obtained
from the following equation:

t =

√
12

trace(D)

trace(A)
. (14)

In Equation (14) it is assumed that the coordinate system is at the level of the neutral
axis of the cross-section. If this is not true, the corrected value should be used, i.e., in the
formula for t, instead of D, D* must be used, which takes D* = D− BA−1B [13].

2.4. Artificial Neural Network

In this work, the Multi-Layer Perceptron Regressor (MLPRegressor) was used to
create an artificial neural network model. MLPRegressor is an example of a deep learning
algorithm. It learns non-linear functions and creates a map of the input data (geometric:
dimensions of concrete slab, position of steel reinforcement, and physical: the area of
the steel reinforcement, see Section 2.1) to the output data (ABDR matrix, see Section 2.3)
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of the RVE models. In this study, MLPRegressor was used from scikit-learn [30]. Scikit-
learn is a free, open-source machine learning library in Python. It features various machine
learning algorithms, for instance, classification, regression, dimensionality reduction, model
selection, pre-processing and clustering.

If there is a vector of the input data X = x1, x2, . . . , xM and vector of the output
data y = y1, y2, . . . , yS, where M is the number of the input data, and S is the number of
the output data, MLPRegressor creates an estimation for the function f (·) : X→ y for a
regression problem. To create a model, it is required to define the number of the hidden
neuron layers, the number of nodes in each of them, an activation function, and a solver
for weight optimization. Multilayer perceptron may contain one or more hidden layers.
Each node calculates the value from the previous node with the weight and deviation of
that node. Nodes are connected with nodes in the next layer from input layer to the output.
Data in the jn node is calculated by the following:

jn = g

(
M

∑
i=1

wijxi + bj

)
(15)

in which g(·) is a nonlinear activation function, wij is a weight and bj is a deviation.
MLPRegressor learns based on the expected results in the learning dataset by forward and
backward propagation due to adjusting the weight of the connection wij and values of
deviation in the layer output bj.

The activation function chosen for this research is Rectified Linear Unit (ReLU), which
suits a lot of ANN models. The way the function ReLU is activated has a biological basis,
namely, it is based on the behavior of the neurons in the brain. The activation function
takes the following:

g(X) = max(0, X). (16)

The solver chosen for this research study is Adam [31]; it is easy to implement and effi-
cient for the calculations for tasks characterized by a large amount of data and parameters.
After [31], the pseudo code of the Adam algorithm was shown in Algorithm 1.

The Adam method, used for computing ANN weights, utilizes first and second
moment vectors, which represents the estimation of the mean gradients and gradients
variance, respectively. Beta parameters, β1 and β2, correct the first and second moments.
Learning rates are adjusted adaptively for each parameter by dividing the current gradient
by the square root of the current estimation of the second moment. With adaptive learning
rate adjustment and the ability to use different coefficients for different parameters, Adam
is more stable and efficient than traditional gradient-based optimization methods.

2.5. Error Measures

In order to estimate the quality of the implementation of the homogenization algo-
rithm (see Section 3.1) or the quality of the approximation from ANN (see Section 3.3), its
results were compared with the references, i.e., published in Garbowski and Gajewski’s
paper [10] or computed by the homogenization algorithm implemented for this study
research, respectively. Let us introduce the error, e, which is accounted by the following

e =
∣∣∣∣y− y

y
·100%

∣∣∣∣, (17)

in which y is the reference, while y is the computed value.
Also, in order to compute the quality of ANN approximation by the scalar measure,

the Mean Squared Error (MSE) was introduced. The MSE is accounted by the following

MSE =
1

10

10

∑
i=1

(
ABDRi −ABDRi

)2 , (18)
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in which, the vectors ABDRi and ABDRi are laminate theory stiffnesses vectors:
{A11, A12, A22, A33, D11, D12, D22, D33, R44, R55}, the reference obtained by numerical ho-
mogenization and the values derived by ANN approximation, respectively.

Algorithm 1. The pseudo code of the Adam algorithm.

1:Require : α (stepsize)
2: Require : β1, β2 ∈ [0, 1) (exponential decay rates for the moment estimates)
3: Require : f (θ) (stochastic objective function with parameters θ)
4: Require : θ0 (initial parameter vector)
5:
6: m0 ← 0 (initialize 1st moment vector)
7: v0 ← 0 (initialize 2nd moment vector)
8: t ← 0 (initialize timestep)
9:
10: while θt not converged do:
11: t ← t + 1
12: gt ← ∇θ ft(θt−1)
13: mt ← β1 ·mt−1 + (1− β1) · gt
14: vt ← β2 · vt−1 + (1− β2) · gt

2

15: m̂t ← mt/
(
1− β1

t)
16: v̂t ← vt/

(
1− β2

t)
17: θt ← θt−1 − α · m̂t /

(√
v̂t + ϵ

)
18: end while
19: return θt v

3. Results
3.1. Verification of the Implementation of the Homogenization Algorithm

The homogenization technique used in the study was implemented from scratch
according to Garbowski and Gajewski’s paper [10] in the Python programming language.
The mathematical details of the method were briefly introduced in Section 2.3. Here, the
validation analysis was performed based on the numerical example from [10]. The example
was computing the ABDR matrix for the RVE of corrugated board with saw tooth geometry.
The cardboard considered was a single-wall profile with three layers of paper. The axial
spacing between the liners (outer layers of the cardboard) was 3.51 mm. The total thickness
of the board was 3.8 mm. In the FE input model, the four-node quadrilateral elements with
full integration scheme were used; this kind of element is labelled as S4 in Abaqus FEA [25].
These elements are recommended due to their versatility and effectiveness in structural
analysis; they accurately model complex geometries and handle stress concentrations. The
comparison between the results obtained from this study’s implementation and ref. [10]
is presented in Table 2. The effective stiffness considered, the value computed by the
implemented Python algorithm, the value from [10] and the value of error are presented in
the columns of the table, respectively. The error was computed according to the formula
presented in Section 2.5.

Table 2. The stiffnesses of representative volume element of corrugated board with saw tooth
geometry computed by numerical homogenization method from Python implementation confronted
with data from Garbowski and Gajewski [10].

Effective Stiffness Implementation of
homogenization [10] Published in [10] Error

A11 [kPa ·m] 2139.7 2140.0 0.01%
A22 [kPa ·m] 1664.5 1665.0 0.03%
A12 [kPa ·m] 382.9 382.9 0.00% *
A33 [kPa ·m] 662.5 662.5 0.00% *
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Table 2. Cont.

Effective Stiffness Implementation of
homogenization [10] Published in [10] Error

D11
[
Pa ·m3] 6.392 6.392 0.00% *

D22
[
Pa ·m3] 3.859 3.859 0.00% *

D12
[
Pa ·m3] 1.115 1.115 0.00% *

D33
[
Pa ·m3] 1.656 1.656 0.00% *

R44 [Pa ·m] 202.4 202.4 0.00% *
R55[Pa ·m] 99.0 99.0 0.00% *

* within the considered accuracy.

3.2. Selection of Parameter Values of the Artificial Neural Network Due to Approximation Error

The values of parameters of the ANN which would ensure high accuracy of ANN
approximation are not trivial to define. In general, learning time and the accuracy of
the approximation obtained depends on many variables, such as solver of the algorithm,
number of neurons in layers, number of epochs, data size and format or difficulty of
the problem (number of inputs/outputs). Therefore, in this study, an analysis of ANN
performance due to selected parameters has been conducted. The main goal was to obtain
a configuration with the smallest error measured by the MSE, see Section 2.5. Each ANN
configuration was used 10 times and the average MSE was calculated for each configuration.
In order to accelerate the calculations and reduce the MSE, the data were rescaled for the
learning process. In each instance of ANN, the parameters to decide were (1) the number of
layers, (2) the number of neurons in each layer and (3) the number of epochs. The number
of layers used were limited from one to four. The number of neurons was from 32 to 8192.
The number of epochs considered were from 200 to 2200.

The net was tested on six models (independent from the training set). Obviously,
overfitting is one of the most common concerns; here, the typical approach was used,
namely, the validation set was observed during training and was stopped if the validation
set error increased.

In the research study, first, several ANN configurations were selected and ANNs were
trained with these configurations. The result of this preliminary study is presented in
Figure 5. The horizontal tick labels represents the number of neurons and number of layers.
For example, “128,16” represents a two-layer case, with 128 neurons in the first layer and 16
in the second layer, respectively. Next, with better insight into what determines lower error
of ANN approximation for the problem of HC reinforced concrete slabs, the further ANN
configurations were selected to find ANN cases with lower error. The most interesting
cases and those with the lowest error were selected and shown in Figure 6.
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3.3. Achieved Accuracy of the Artificial Neural Network

In this section, the result of ANN approximation with its best configuration found was
validated with the results of traditional calculations, i.e., without the use of ANN, but with
the use of Garbowski and Gajewski’s algorithm [10]. As can be concluded by analyzing the
graphs in Figures 5 and 6, the best results, i.e., those with the lowest MSE, were obtained
by a two-layer network with 1024 and 8192 neurons. The model of this network was used
to compare the results from ANN with the results from the homogenization algorithm.

Six examples were selected to show the actual performance of the best ANN. The
parameters of six examples of RVE considered are presented in Table 3. They were generated
randomly within the considered parameter limits, see Table 1, assuming a homogeneous
sampling distribution. The results from best ANN are summarized in Tables 4–9. The
effective stiffnesses considered, the value computed by the best ANN, the values from the
use of Garbowski and Gajewski’s homogenization algorithm [10] and the values of error
were presented in the columns, respectively. The errors were computed according to the
formula presented in Section 2.5.

Table 3. Six examples of parameter sets for testing the accuracy of the best artificial neural network.

Example h [cm] a [cm] a1 [cm] r [cm] As1 [cm2] l [cm]

1 45.338 17.958 2.654 4.427 5.024 6.205
2 41.454 17.497 2.763 4.304 2.804 0.707
3 49.704 15.191 2.657 3.811 4.233 17.965
4 34.155 17.209 2.167 4.550 1.800 12.737
5 43.766 17.278 2.747 5.624 3.490 9.842
6 42.823 17.736 2.273 5.964 3.034 4.266
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Table 4. Comparison of the effective stiffnesses for the first example.

Effective Stiffness ANN
Homogenization

Homogenization
[10] Error

A11 [kPa ·m] 109.0 109.1 0.09%
A22 [kPa ·m] 130.1 132.0 1.44%
A12 [kPa ·m] 25.53 25.52 0.04%
A33 [kPa ·m] 44.68 44.61 0.16%
D11

[
Pa ·m3] 0.2419 0.2441 0.9%

D22
[
Pa ·m3] 0.2613 0.2697 3.11%

D12
[
Pa ·m3] 0.0543 0.0545 0.37%

D33
[
Pa ·m3] 0.0949 0.0952 0.32%

R44 [Pa ·m] 36.15 36.2 0.14%
R55 [Pa ·m] 41.08 40.86 0.54%

Table 5. Comparison of the effective stiffnesses for the second example.

Effective Stiffness ANN
Homogenization

Homogenization
[10] Error

A11 [kPa ·m] 113.7 113.8 0.09%
A22 [kPa ·m] 126.8 126.4 0.32%
A12 [kPa ·m] 26.72 26.74 0.07%
A33 [kPa ·m] 45.29 45.3 0.02%
D11

[
Pa ·m3] 0.1867 0.1896 1.53%

D22
[
Pa ·m3] 0.2011 0.2007 0.2%

D12
[
Pa ·m3] 0.0419 0.0422 0.71%

D33
[
Pa ·m3] 0.0734 0.0738 0.54%

R44 [Pa ·m] 37.34 37.41 0.19%
R55 [Pa ·m] 39.57 39.76 0.48%

Table 6. Comparison of the effective stiffnesses for the third example.

Effective Stiffness ANN
Homogenization

Homogenization
[10] Error

A11 [kPa ·m] 90.64 90.33 0.34%
A22 [kPa ·m] 125.8 127.6 1.41%
A12 [kPa ·m] 21.23 21.1 0.62%
A33 [kPa ·m] 39.05 39.1 0.13%
D11

[
Pa ·m3] 0.2946 0.2967 0.71%

D22
[
Pa ·m3] 0.3296 0.3396 2.94%

D12
[
Pa ·m3] 0.0667 0.067 0.45%

D33
[
Pa ·m3] 0.1164 0.1173 0.77%

R44 [Pa ·m] 31.09 30.88 0.68%
R55 [Pa ·m] 40.50 40.64 0.34%

Table 7. Comparison of the effective stiffnesses for the fourth example.

Effective Stiffness ANN
Homogenization

Homogenization
[10] Error

A11 [kPa ·m] 50.32 50.08 0.48%
A22 [kPa ·m] 79.67 77.78 2.43%
A12 [kPa ·m] 11.3 11.25 0.44%
A33 [kPa ·m] 23.26 23.19 0.3%
D11

[
Pa ·m3] 0.0831 0.0859 3.26%

D22
[
Pa ·m3] 0.1001 0.0992 0.91%
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Table 7. Cont.

Effective Stiffness ANN
Homogenization

Homogenization
[10] Error

D12
[
Pa ·m3] 0.0182 0.0186 2.15%

D33
[
Pa ·m3] 0.035 0.0352 0.57%

R44 [Pa ·m] 14.63 14.58 0.34%
R55 [Pa ·m] 22.54 22.68 0.62%

Table 8. Comparison of the effective stiffnesses for the fifth example.

Effective Stiffness ANN
Homogenization

Homogenization
[10] Error

A11 [kPa ·m] 82.52 82.4 0.15%
A22 [kPa ·m] 106.0 106.1 0.09%
A12 [kPa ·m] 18.9 18.89 0.05%
A33 [kPa ·m] 34.36 34.2 0.47%
D11

[
Pa ·m3] 0.2069 0.206 0.44%

D22
[
Pa ·m3] 0.2274 0.2275 0.04%

D12
[
Pa ·m3] 0.0461 0.0456 1.1%

D33
[
Pa ·m3] 0.0817 0.0812 0.62%

R44 [Pa ·m] 25.55 25.42 0.51%
R55 [Pa ·m] 31.31 31.36 0.16%

Table 9. Comparison of the effective stiffnesses for the sixth example.

Effective Stiffness ANN
Homogenization

Homogenization
[10] Error

A11 [kPa ·m] 94.79 94.91 0.13%
A22 [kPa ·m] 112.5 112.5 0.0% *
A12 [kPa ·m] 21.88 21.86 0.09%
A33 [kPa ·m] 38.43 38.43 0.0% *
D11

[
Pa ·m3] 0.1997 0.2025 1.38%

D22
[
Pa ·m3] 0.2162 0.2179 0.78%

D12
[
Pa ·m3] 0.0447 0.0449 0.45%

D33
[
Pa ·m3] 0.0786 0.0792 0.76%

R44 [Pa ·m] 29.69 29.65 0.13%
R55 [Pa ·m] 33.55 33.54 0.03%

* within the considered accuracy.

3.4. Influence of Changing Parameters of Prefabricated Concrete Slabs on the Effective Stiffnesses

Having a trained and accurate ANN which represents the properties of the prefab-
ricated HC concrete slabs through RVE response from numerical homogenization, the
influence of particular parameter of the slab structure can be verified. For example, by
modifying one parameter in a certain range of values, we can check changes in RVE ef-
fective properties. To present such an example, the parameter of height, h, was selected
due to its large influence on compression/tension stiffnesses of RVE. The slab height h
was changed from 0.3 m to 0.4 m with a step of 0.025 m. The other parameters were fixed:
a = 0.14 m, a1 =0.025 m, r =0.05 m, As1 = 0.00038 m2 and l = 0.07 m. ANN calculations
were then performed to obtain the effective and representative properties of five cases of
prefabricated slabs with different heights. The summary of the results were presented in
Table 10. The table illustrates the predicted effective properties of RVE due to the use of
an artificial neural network depending on the given height of the slab model. Not only
membrane, but also bending and transverse shearing properties were shown. In Figure 7,
the same data are presented using curves grouped by property type (membrane, bending
or transverse shearing).
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Table 10. Effect of increasing the height of a precast concrete slab model on the effective stiffnesses of
a representative volume element.

Effective
Stiffnesses

h [m]
0.300 0.325 0.350 0.375 0.400

A11 [kPa ·m] 4.81 5.63 6.47 7.30 8.14
A22 [kPa ·m] 6.67 7.51 8.33 9.16 9.97
A12 [kPa ·m] 1.08 1.27 1.47 1.68 1.88
A33 [kPa ·m] 2.04 2.35 2.66 2.98 3.29
D11

[
Pa ·m3] 0.0627 0.0828 0.1057 0.1318 0.1623

D22
[
Pa ·m3] 0.0735 0.0947 0.1196 0.1480 0.1808

D12
[
Pa ·m3] 0.0135 0.0181 0.0234 0.0294 0.0366

D33
[
Pa ·m3] 0.0248 0.0326 0.0416 0.0516 0.0634

R44 [Pa ·m] 1.33 1.64 1.96 2.26 2.57
R55 [Pa ·m] 1.75 2.06 2.36 2.67 2.97
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4. Discussion

Soft computing methods applied in mechanical engineering problems may greatly
reduce the size of the problems considered without losing the accuracy of the solution.
In this paper, it was proven that the artificial neural network applied to the engineering
problem may be an interesting alternative to consider by the designers instead of using
design standards.

First, in Section 3.1, the homogenization method implemented was validated with the
scientific paper. The example considered was replicated from the literature after [10] and it
proved a faultless implementation of the method in the Python environment as presented
in Table 2. In the table, the last column shows the errors computed as shown in Section 2.5.
The values achieved are very low, and in most cases they are even equal to 0 within the
assumed precision.

Secondly, in Section 3.2, the configuration of the ANN with the best performance was
sought. More than one hundred and fifty configurations were analyzed; selected cases are
presented in Figures 5 and 6. From the presented configurations, the best ones were selected
on the basis of the error measurement according to the MSE measure from Section 2.5. As
shown in Figure 6a, the best results were obtained by the model with two hidden layers
with 1024 and 8192 neurons (400 epochs), in which the accuracy was 0.00017. This model
was used to compare the results from ANN and homogenization algorithm in next section,
i.e., Section 3.3. Moreover, based on the results obtained it was observed that the ANN with
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one layer of neurons always was characterized with high MSE. Those ANN configurations
are not recommended to be used.

In general, the more neurons, the better the accuracy. For example, if the total number
of neurons was greater than 8000, the MSE obtained was no higher than 0.0005. However,
also for a smaller total number of neurons, low MSE could be obtained, e.g., for the “4096,
512” ANN configuration, the MSE was 0.00018, which was one of the best results. Also, the
“1024, 2048” ANN configuration gave a low MSE, i.e., 0.0002, while “1024, 1024” gave a MSE
equal to 0.00025. These four values can be thought of as a Pareto front when considering
the number of neurons and the MSE accuracy.

In this study, the influence of a number of epochs was also verified. It was observed
that increasing the number of epochs significantly affects the MSE if a small number of total
neurons is considered, see Figure 5. MSE can be decreased even several times, like in “128,
64”, in which the MSE for 2200 epochs was almost five times lower than for 200 epochs.
Similar features may be observed for the “512, 128, 64” configuration. However, that feature
does not occur if the total number of neurons is higher, see Figure 6, i.e., for 1000 or more of
total neurons, the fluctuations are not so significant and the trend is not always preserved.
For instance, in the best case, “1024, 8192”, the relation is the opposite; for 200 epochs, the
MSE is 0.00016, while for 800 epochs the MSE equals 0.00019. It should be emphasized that
the overfitting effect may occur for a large number of epochs. Therefore, an ANN with a
lower epoch number should be preferred when comparing two ANN configurations with
similar errors.

The verification of the values of the effective stiffnesses were also computed in
Section 3.3 for selected cases, see Table 3. In the first example, the greatest error was
equal to 3.11% and 1.44%, while the rest was not greater than 0.6%. In the second example,
the greatest error was equal to 1.5%, while the rest was not greater than 0.7%. In the third
example, the greatest error was equal to 2.9% and 1.41%, while the rest was not greater
than 0.8%. In the fourth example, the greatest error was equal to 3.26%, 2.43% and 2.15%
while the rest was not greater than 1.0%. In the fifth example, the greatest error was equal
to 1.1% and 0.62%, while the rest was not greater than 0.51%. In the sixth example, the
greatest error was equal to 1.38%, 0.78% and 0.76%, while the rest was not greater than
0.45%. Individual effective stiffnesses with high error values were not observed. As shown
above, for random examples selected, the biggest error was 3.11%, which proves very good
agreement between the value computed by trained ANN and the value computed due to
homogenization algorithm [10]. Those magnitudes of values of error in homogenization
computations are acceptable as shown in [12,18].

Having a quick and reliable approximation of the RVE properties of prefabricated
hollow-core slabs makes it possible to analyze the effect of changing the parameters on the
individual mechanical properties of this complex structure. The example of such analysis
was shown in this study, see Section 3.4. In Table 10 and Figure 7, the effect of changing
the height of the prefabricated slab on its effective stiffnesses, i.e., compression/tension,
bending and transversal shear stiffnesses was demonstrated. Other parameters of RVE
were fixed. In Figure 7a, it may be observed that the influence on A11, A22, A12 and A33
is linear. For those properties, the maximal increase of the height, i.e., 33%, causes the
increase of 69%, 49%, 74% and 61% of the effective stiffnesses, respectively. The influence
is one and a half times greater, taking into account D11, D22, D12 and D33, the values are
increased with 159%, 146%, 171% and 156% for 0.4 m slab height, respectively. The trends
for D stiffnesses are slightly nonlinear, see Figure 7b. While considering the transversal
shear stiffnesses, i.e., R44 and R55, the growths are linear, see Figure 7c. The percentage
increases for 0.4 m slab height are 93% and 70%, respectively. The above analysis of five
examples was derived from ANN computations which took less than 0.1 s.

The ANN model built in the study gives the computational results in a very short time.
The numerical homogenization for 50 models takes about 26 min, while for 200 models it is
about 104 min. The ANN computations for 50 models last about 0.6 s, while for 200 models
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it lasts 0.75 s. The time saving while comparing the homogenization method and ANN
computations is several thousand times.

There are a few limitations of the study, namely, relatively simple measure for error
was used for training the ANN. In the literature, there are a lot of other functions, which
may reduce the probability of overfitting. Also, for finding the solution with lower MSE,
the trial-and-error method was used. One can utilize a more elaborate method to determine
the number of layers and neurons through solving formal optimization problem. However,
it should be properly conditioned to avoid overfitting. Other more advanced ANN architec-
tures such as convolutional, recurrent networks or physics-based neural networks [18,32]
were not explored in the study. The application of such architectures or the use of other
machine learning regressors could improve accuracy and/or generalizability and could
be included in future studies. Furthermore, in the study, the experimental validation was
not conducted. The Authors refer directly to the homogenization method results, the
effectiveness of which has already been confirmed in the literature, therefore, no validation
is required. The main aim of the study is to replace the computations of homogenization ac-
cording to laminate theory with an ANN approach and find its best structure. Therefore, to
demonstrate the effectiveness of the proposed approach, the numerical examples provided
were sufficient.

5. Conclusions

In this study, the soft computing technique was used to build the surrogate model
for numerical homogenization in order to rapidly characterize the mechanical properties
of hollow core reinforced concrete slabs depending on the slab properties. First, the
homogenization technique based on the strain energy equivalence between the numerical
three-dimensional model with geometrical details of the HC slab and its representation
of Reissner-Mindlin flat plate was implemented and validated. Second, the framework
of the artificial neural network was developed with automatic generation of RVE with
given parameters. Next, the ANN was trained to compute the effective stiffnesses of shell
representation of HC slab based on several geometrical parameters.

An important part of the study was the performance analysis of ANN. The perfor-
mance of the network was checked for a selected numbers of epochs, the number of hidden
layers and number of neurons. The accuracy of the approximation was measured by using
the mean squared error. The network achieved the highest accuracy for 200 epochs and two
hidden layers (1024 and 8196 neurons). The average calculation times were also compared;
in the case of calculations using ANN, the cost was several thousand times lower than that
while using homogenization method.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/app14073018/s1, Table S1: Input and output data for train-
ing the artificial neural networks: a, h, As1, a1, r, l, A11, A22, A12, A33, D11, D22, D12, D33, R44, R55.

Author Contributions: Conceptualization, T.G.; methodology, T.G. and P.S.; software, P.S.; validation,
T.G. and P.S.; investigation, P.S.; resources, T.G. and P.S.; data curation, T.G.; writing—original draft
preparation, T.G. and P.S.; writing—review and editing, T.G.; visualization, T.G. and P.S.; supervision,
T.G.; project administration, T.G. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author and, partially, in Supplementary Materials.

Conflicts of Interest: Authors declare that they has no conflict of interest.

https://www.mdpi.com/article/10.3390/app14073018/s1


Appl. Sci. 2024, 14, 3018 17 of 18

References
1. Derkowski, W.; Surma, M. Prestressed hollow core slabs for topped slim floors—Theory and research of the shear capacity.

Eng. Struct. 2021, 241, 112464. [CrossRef]
2. Jankowiak, T.; Łodygowski, T. Identification of parameters of concrete damage plasticity constitutive model. Found. Civ. Environ.

Eng. 2005, 6, 53–69.
3. Hafezolghorani Esfahani, M.; Hejazi, F.; Vaghei, R.; Jaafar, M.; Karimzadeh, K. Simplified Damage Plasticity Model for Concrete.

Struct. Eng. Int. 2017, 27, 68–78. [CrossRef]
4. Lubliner, J.; Oliver, J.; Oller, S.; Oñate, E. A plastic-damage model for concrete. Int. J. Solids Struct. 1989, 25, 299–326. [CrossRef]
5. Chrysanidis, T.A.; Panoskaltsis, V.P. Experimental investigation on cracking behavior of reinforced concrete tension ties.

Case Stud. Constr. Mater. 2022, 16, e00810. [CrossRef]
6. Vu, K.A.T.; Stewart, M.G. Predicting the likelihood and extent of reinforced concrete corrosion-induced cracking. J. Struct. Eng.

2005, 131, 1681–1689. [CrossRef]
7. Arab, A.A.; Badie, S.S.; Manzari, M.T. A methodological approach for finite element modeling of pretensioned concrete members

at the release of pretensioning. Eng. Struct. 2011, 33, 1918–1929. [CrossRef]
8. Staszak, N.; Garbowski, T.; Ksit, B. Application of the generalized nonlinear constitutive law in numerical analysis of hollow-core

slabs. Arch. Civ. Eng. 2022, 68, 125–145. [CrossRef]
9. Biancolini, M.E. Evaluation of equivalent stiffness properties of corrugated board. Comp. Struct. 2005, 69, 322–328. [CrossRef]
10. Garbowski, T.; Gajewski, T. Determination of transverse shear stiffness of sandwich panels with a corrugated core by numerical

homogenization. Materials 2021, 14, 1976. [CrossRef]
11. Kalita, K.; Haldar, S.; Chakraborty, S. A Comprehensive Review on High-Fidelity and Metamodel-Based Optimization of

Composite Laminates. Arch. Comput. Methods Eng. 2022, 29, 3305–3340. [CrossRef]
12. Staszak, N.; Szymczak-Graczyk, A.; Garbowski, T. Elastic Analysis of Three-Layer Concrete Slab Based on Numerical Homoge-

nization with an Analytical Shear Correction Factor. Appl. Sci. 2022, 12, 9918. [CrossRef]
13. Staszak, N.; Garbowski, T.; Szymczak-Graczyk, A. Solid Truss to Shell Numerical Homogenization of Prefabricated Composite

Slabs. Materials 2021, 14, 4120. [CrossRef]
14. Archaviboonyobul, T.; Chaveesuk, R.; Singh, J.; Jinkarn, T. An analysis of the influence of hand hole and ventilation hole

design on compressive strength of corrugated fiberboard boxes by an artificial neural network model. Packag. Technol. Sci.
2020, 33, 171–181. [CrossRef]

15. Adamopoulos, S.; Anthony, K.; Rapti, E.; Birbilis, D. Predicting the properties of corrugated base papers using multiple linear
regression and artificial neural networks. Drewno 2016, 59, 61–72. [CrossRef]

16. Gajewski, T.; Grabski, J.K.; Cornaggia, A.; Garbowski, T. On the use of artificial intelligence in predicting the compressive strength
of various cardboard packaging. Packag. Technol. Sci. 2023, 37, 97–105. [CrossRef]
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