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Abstract: We present TimberTool (TTool v2.1.1) , a software designed for woodworking tasks assisted
by augmented reality (AR), emphasizing its essential function of the real-time localization of a tool
head’s poses within camera frames. The localization process, a fundamental aspect of AR-assisted
tool operations, enables informed integration with contextual tracking, facilitating the computation
of meaningful feedback for guiding users during tasks on the target object. In the context of timber
construction, where object pose tracking has been predominantly explored in additive processes,
TTool addresses a noticeable gap by focusing on subtractive tasks with manual tools. The proposed
methodology utilizes a machine learning (ML) classifier to detect tool heads, offering users the
capability to input a global pose and utilizing an automatic pose refiner for final pose detection
and model alignment. Notably, TTool boasts adaptability through a customizable platform tailored
to specific tool sets, and its open accessibility encourages widespread utilization. To assess the
effectiveness of TTool in AR-assisted woodworking, we conducted a preliminary experimental
campaign using a set of tools commonly employed in timber carpentry. The findings suggest that
TTool can effectively contribute to AR-assisted woodworking tasks by detecting the six-degrees-
of-freedom (6DoF) pose of tool heads to a satisfactory level, with a millimetric positional error
of 3.9 ± 1 mm with possible large room for improvement and 1.19 ± 0.6° for what concerns the
angular accuracy.

Keywords: augmented reality; digital fabrication; woodworking; timber construction; visual sensing;
human–machine interaction

1. Introduction
1.1. Context

Automation and robotic digital fabrication in construction have garnered significant
research attention. However, the effectiveness of novel processes is offset by the need
for high capital investment and skilled operators, as well as their limited adaptability
to diverse environments and existing workflows. These technologies show promise for
the future digitization of the architecture, engineering, and construction (AEC) industry
but are not the most accessible for small, local construction firms utilizing bio-sourced
materials like timber. Augmented reality (AR) has emerged as a compelling alternative,
blending human skills with digital computation in manual construction processes. This
hybrid approach digitizes human resource management at a fraction of the cost, offering
rapid implementation and high efficiency. The implementation of a modern feedback
loop represents a significant advancement in the AR domain, providing the potential to
create an accurate digital replica of the work environment or, at the minimum, capturing
its essential components. At the heart of this capability is the essential role played by
six degrees of freedom (6DoF) reconnaissance and tracking, serving as a foundational
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element for advancing cutting-edge AR applications in the construction sector. In digital
fabrication, assisted by computer vision, significant progress has been made in additive
tasks, particularly in localizing and tracking the 6DoF pose of individual building units
for assembly [1–3]. However, this achievement does not extend to augmented subtractive
construction; it includes passing activities, such as cutting, sawing, and drilling. While
tool tracking has been actively researched in other domains [4–7], contextual exploration
within AR digital fabrication remains limited. The detection and continuous tracking of
the employed tool heads throughout the fabrication process are fundamental for efficient
and contemporary AR applications. Further, the precise identification of a tool’s pose
provides pertinent information, such as distance to the target object, depth, and rotation,
particularly when coupled with targeted object tracking. In the construction sector, manual
labor remains crucial, and our previous work demonstrated the integration of onboard
sensors into ordinary tools, retrofitting them for a manual digital fabrication pipeline. Our
past approach to localizing tool heads relied on the rigid sensor registration of the tool
itself [8], posing challenges in dynamic timber construction scenarios with varying lighting,
backgrounds, and material shininess. To address these challenges, we propose TimberTool
(TTool): a monocular, model-based and machine learning-assisted detector that is capable
of localizing metal tool head poses for close-range distances. TTool is a three-step 6DoF
and inside–out tracking system. It utilizes a trained machine learning (ML) classifier to
detect the tool head’s typology, a user-defined initial global pose, and an automatic refiner
for final validation. Designed for fish-eyed RGB monocular onboard sensing, TTool is
shared as either a console app or an external API. We provide TTool’s openly shared source
code, emphasizing community benefit and reproducibility. Additionally, in recognizing
the importance of technology dissemination, we offer a prototype server for ML model
training via REST API and a basic web interface to customize TTool’s ML component for
any user’s tool set. The presentation of TTool follows the following format in the present
paper: an overview of the scientific literature in 6DoF tracking with particular attention
to manual AR-based operations, the introduced methodology, an experimental campaign
carried within the specific scope of woodworking, a discussion of the obtained results, and a
summary of achievements and current limitations with a focus on future research avenues.

1.2. Related Works

Detecting the position and rotation of an object within a given camera frame is a
well-established concern in computer vision research. This issue can be viewed from
one of these two angles: localizing the camera’s pose concerning the target object or
determining the target object’s pose relative to the camera. Regardless of the adopted
approach, the underlying challenge persists. Object (multi)tracking can be considered a
three-step problem in the majority of the scientific literature: (i) identification of the object
to track, (ii) initial global pose detection, and (iii) refinement of the rough global pose. We
consider points (ii) and (iii) to be separate most of the time. Global pose detection algorithms
frequently require a local refiner to obtain a final, accurate pose result. As we chose to
focus on monocular RGB cameras for this review, we narrowed the scope to relevant works
addressing this sensor. Additionally, the tracking of application targeting tools receive
privileged attention in our review due to their contextual and applied importance for our
domain of application.

1.2.1. Tag-Based Tracking

Registering fiducial markers to the tool head’s geometry is a popular approach that
has yielded robust and accurate results in the past. This approach has been demonstrated in
conjunction with head-mounted displays (HMD) for high-precision drilling operations [4,9]
and tool placement [10]. Multiple fiducial markers are often employed to reinforce the
accuracy of detection [11], even using smartphones as the main interface [12,13]. Small-
scale artificial patterns for motion tracking are a valid alternative to traditional ArUco or
QR codes for close-range deployments [5,14,15]. Using fiducial landmarks with monocular
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cameras has a major advantage: the camera can easily determine its scaled position around
the calibrated object, even without depth information. Further, it is simple to replicate and
integrate. In contrast, establishing tag positions on a model requires the careful calibration
of physical–digital referencing. This process can be disrupted by shocks and vibrations
during its utilization, making it brittle and unfit for unstructured environments.

1.2.2. Contour or Edge Approach

Using edges to track the 3D object in a monocular RGB camera is also feasible and
fast. There are multiple proposed edge-based methods [16,17]. RAPID [16] incorporates
a predefined set of control points to match certain contours to an image. As RAPID
exclusively leverages the edges of an image, it is able to perform only on high-contrast
edges, where the edges of the object are clear. Additional features, from an image, for
instance, can be adopted to make the method more robust. One of these features is a
direction-based pose validation scheme that increases the robustness of edge-based tracking
by exploiting the motion of the object in a video [18]. However, the challenge arises when
the method is used in clutter edges. To tackle this issue, Zhong et al. [19] utilizes 2D–3D
correspondences by searching for the feature based on the location of the object in the
previous scene. Nevertheless, this method needs to handle false 2D–3D correspondences.
Additionally, SLET [20], the refiner that we modify and integrate into this paper, includes
the color features of the 3D object projected on the 2D scene. Furthermore, it accounts for
the occlusion of multiple 3D objects in the scene, as well as edge confidence. Since SLET is
an edge-based algorithm, the 6DoF computational gains in terms of speed are considerable.
However, within the field of woodworking, metallic tool heads are characterized by a shiny
surface with patterned edges. These features have the potential to disrupt tracking when
relying on edge and color cues. As a result, specific adjustments are necessary for the
optimal use of edge-based object tracking.

1.2.3. Deep Learning Approach

Leveraging deep learning for 6DoF pose estimation demonstrated considerable po-
tential. This approach can be categorized into two main categories: (i) direct regression,
which directly obtains the pose from an image input, and (ii) keypoint inference for 2D–3D
correspondence map estimation using the deep-learning model and solving the perspective-
n-point (PnP) problem to derive the pose.

PoseCNN [21], an end-to-end pose estimation method, demonstrates remarkable
robustness to occlusion. This network performs semantic segmentation and center-box
prediction for translation and rotation prediction. It is trained directly on RGB images
to predict the 6DoF of predefined objects. Since its introduction, PoseCNN has led to
numerous applications and has undergone various improvements [22–26]. It is model-
specific, which means that it can only estimate the pose of the objects in the dataset on
which it was trained. Thus, a dataset of RBG images and the corresponding precise poses
of the tool heads are mandatory requirements. This is true for the majority of direct pose
estimation models based on RGB images. Most deep learning 6DoF pose estimators can
provide a rough global pose that often requires subsequent local pose refinement. One such
refinement technique is differentiable rendering [22], which calculates the loss by comparing
an RGB image with a 3D image of the object and pose. This iterative process refines the
pose in subsequent iterations. Alternatively, deep iterative matching (DeepIM) [23] receives
the initial pose from PoseCNN and an RGB image to predict the differentiable manifold,
allowing iterative refinement. Notably, this refinement process requires only an RGB image
and an initial pose, which does not necessarily originate from PoseCNN. Hence, other
direct pose estimation methods [27–29] can undergo the aforementioned refinement.

The conventional 2D–3D correspondence method relies on the presence of textured
objects. The limitation of requiring textures is addressed by learning-based 2D–3D methods,
as researched by Tekin et al. [30]. On the one hand, the single-shot approach proposed by
Tekin et al. [30] aims to predict nine points (eight corners of a 3D bounding box and one
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centroid), enabling the network to be 3D object-agnostic. On the other hand, PVNet [31]
adopts a two-stage approach for pose estimation. In the first stage, PVNet regresses a 2D
map of vectors whose directions are oriented toward the candidate keypoints. Utilizing
these vectors to vote for keypoints, PVNet employs random sample consensus (RANSAC)
to facilitate the voting process. This stage yields final 2D keypoints corresponding to the
3D keypoints of the object. In the second stage, PnP is computed to obtain an initial pose
estimation. Similar to direct pose estimation, refinement can be performed after acquiring
the pose using the 2D–3D correspondence method [24,32]. Chen et al. [33] affirm that
robustness against occlusion can be enhanced through data augmentation, surpassing
state-of-the-art techniques when the regression is coupled with a pose refiner. Despite
the potential achievements of learning-based pose estimation, difficult generalization and
dataset acquisition represent obstacles to wider adoption. Yet, synthetic photorealistic
data, such as those produced by Tremblay et al. [34], seem to be promising attempts
at overcoming such limitations. Nevertheless, despite the rich scientific literature and
although it holds great promise for the future of 6DoF pose detection, deep learning-based
techniques do not currently offer the level of millimetric precision and robustness required
in the timber fabrication domain.

1.2.4. Benchmark Datasets

When it comes to effectively benchmarking any proposed 6DoF pose detector, using
annotated datasets as ground truth (GT) appears to be a common practice. Among the most
renowned is RBOT [35], a semi-synthetic dataset for the evaluation of monocular object pose
tracking algorithms. The YCB-Video [21] dataset provides sequences of videos informed by
accurate 6DoF pose notations. Li et al. [36] propose BCOT, a markerless dataset composed
of physical objects noted with GT data owing to an external multicamera system. Datasets
such as OPT [37]—although presenting a real-scene dataset—leverage fiducial markers in
the background for GT pose estimation. Similar to the last approach, we also make use
of fiducial markers to obtain GT notations for our evaluation. However, the scenes in the
datasets mentioned earlier differ significantly from our current focus on digital construction.
Specifically, we highlight the lack of metallic parts and the presence of unstructured
construction visuals that deviate substantially from woodworking shops or building sites.
DIMO [38] is the benchmark dataset closest to the experimental conditions that we can
report. It presents a hybrid synthetic dataset of industrial metal objects containing RGB
frames with 6DoF pose labels. Notations are obtained via a robotically controlled recording
session, and the targeted objects present shiny textures and symmetric features. Despite
the presence of metallic elements, DIMO lacks challenging characteristics, such as skewed,
occluded, and close-range views, which are prevalent in our application domain.

2. Developed Methodology

In this section, we present the methodology developed for TTool which aims to
precisely determine the 6DoF pose of a given tool head. Achieving accurate 3D localization
of end-effector results is crucial for advanced augmented fabrication in AR manufacturing
applications. The integration of TTool into any subtractive AR manufacturing system
enables the computation of pertinent information to guide users with machine-like precision
during any woodworking operation that requires tools. Nevertheless, challenges abound
in the 3D localization of metal end effectors, particularly in augmented woodworking
involving power tools. These challenges include the reflectiveness and symmetry of most
toolheads, the skewed and often occluded camera view caused by the onboard mounted
camera, as well as environmental factors (such as vibrations), noise in unstructured settings
(such as construction sites or workshops), and varying lighting conditions. The designated
TTool’s sensor is a monocular RGB camera with a fish-eye lens, as illustrated in Figure 1a.
This ordinary sensor was selected due to its economic availability, versatility, and potential
for broader adoption. Additionally, the designated monocular RGB sensor is designed to
be affixed in a stationary yet adjustable position on the tool. To address this requirement,
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we devised a magnetic mounting system between the sensor and the tools, allowing for
easy interchangeability in the toolset.

Figure 1. Early developments of TTool and circular saws: (a) monocular RGB camera, (b) circular saw
blade, and (c) camera live feed augmented with TTool’s detection widgets. Since the blade’s pose is
punctually detected, the targeted object can later be obstructed (e.g., here, through blade protection)
without interfering with the tracking.

To tackle these challenges, we devised a robust 6DoF pose detector implemented as
a multistep human-supervised pipeline. The paramount focus of TTool’s development
was ensuring robustness. To achieve this objective, we employed a combination of human
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inputs, ML classification, and traditional computer vision techniques within the same
software framework. TTool consists of a sequential process, illustrated in Figure 2, involving
the following steps: (1) a custom-trained ML classifier detects the tool head type in the
field, loading its previously scanned 3D mesh at runtime; (2) the user employs a built-in
transformation system to manipulate the visualized 3D model, approximating an initial
global pose input; (3) a local refiner optimizes the initial pose to achieve precise object
locking between the physical tool and its 3D model counterpart; (4) the user confirms the
refinement by visually checking the alignment, and the validated pose is cached, allowing
for the fabrication process to commence. While drilling or cutting, even when the tool
head is occluded by the timber element, TTool—owing to the stationary position of the
monocular camera—can still provide object localization (refer to Figure 3b). Ultimately,
a 6DoF detector, such as TTool in AR manufacturing, proves valuable by offering computed
feedback, such as depth or orientation, which would otherwise be extremely challenging
for the human eye to discern with accuracy.

Figure 2. Screenshots from each phase of the TTool pipeline for (a) drill bits and (b) blades. (1) The
tool is manually inserted, but the corresponding 3D model is not yet paired. (2) The ML classifier
detects the tool, and the loaded model is manipulated by the user to a satisfactory initial pose.
(3) TTool’s refiner optimizes the input pose until the user decides to interrupt the operation. Finally,
(4) the pose is validated, and the 3D model is locked in place, becoming resilient to obstructions and
the dynamic background.
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Figure 3. (a) TTool detects and localizes the 3D model of a given tool head within the mounted
camera’s frame. (b) Once localized and object-locked, even if the end effector is occluded by the
timber during cutting or drilling operations, it is still possible to inform the AR system of its position.
In fact, during such events, TTool is deactivated but conserves the registered pose and can run again
once the tool head’s contours are again fully visible.

The following subsections delve into the details of each phase and the components
involved in the functioning of TTool.

2.1. Dataset Digitization

To detect and track a given tool head, TTool requires a 3D mesh of the object. Hence,
the very first stage of the TTool pipeline is the constitution of an entry dataset composed of
a collection of the digital twins of the end effector that are later employed in the fabrication
session. The accuracy of the reconstituted model is capital for the quality of pose detection.
Moreover, a typical tool set necessary for a complete woodworking operation includes
items with lengths spanning from 10 cm (e.g., an ordinary auger drill bit) to 1 m (e.g.,
chainsaw). We identify the structure-from-motion (SfM) technique as the most suitable
and accessible scanning technique to obtain the digital twins of existing toolsets. We
achieve this by capturing images of the tools from various perspectives. By doing this, we
acquire images from all the semi-spherical angles (see Figure 4a). Once the image dataset is
completed, the dense point cloud can be reconstructed, postprocessed, and finally meshed
(see Figure 4b,c).

As of the current draft of this paper, we have made the set of scanned tools publicly
available for use [39]. All the reconstructed models are stored in a TTool’s model manager
responsible for facilitating the retrieval of these objects from all the different components
of the software. Additionally, it acts as a bridge to obtain and update the current pose
of the selected model. The model manager ensures synchronized model manipulation,
preventing discrepancies when switching between tool heads.
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Figure 4. (a) In the absence of production CAD models, tool heads can be easily digitized via the
structure-from-motion (SfM) technique. (b) Nevertheless, raw captured point clouds need to be
postprocessed via third-party software. (c) Finally, only the tool head needs to be isolated and meshed
in a watertight fashion.

2.2. Typology Detector

To estimate the pose of the tool head based on its digital model, the correct digital
model must be selected first. To expedite this selection, we trained a classification model
that can recognize the different tool heads and return a classification probability for each
tool head based on the video feed from the camera. These probabilities are then used to
display a list of tool heads in the user interface (UI), which is sorted from most to least
likely. This means that the user can simply select the first entry in the list for a correctly
classified tool head or one of the first couple of tool heads in the list if the model is uncertain.
Since the tool heads have complex shapes and the background is uncontrolled, we decided
to deploy a deep learning system and compared two of the standard architectures for
image classification: ResNet18 [40] and EfficientNetV2S [41]. The two architectures were
chosen over more recent larger models, because the inference has to run on the NUC, which
has limited computational resources available. Both models were trained on a total of
10,879 images (see Figure 5). The dataset encompass images of nine different tool heads
obtained through two distinct processes: first, images deliberately collected for training
purposes. This involved mounting the camera on a specific tool and moving it to mimic
the period preceding a carpenter’s commencement of the subsequent fabrication step.
Second, additional images were extracted from videos recorded during test fabrications
and manually classified. Notably, to prevent any leak of information between the validation
and training datasets, the training and validation data were extracted from separate sets of
videos in both scenarios. The preprocessing procedure commences by resizing the images
to dimensions 384 × 384 and 256 × 256 using bi-linear interpolation for the EfficientNet
and ResNet18, respectively. Subsequently, for ResNet18, a central crop to size 224 × 224 is
applied. The pixel values are then rescaled to a range of 0–1. Following this, a channel-wise
normalization is performed by subtracting the mean and dividing by the standard deviation.
These statistical parameters are derived from the ImageNet1K v1 dataset [42], with means
(R: 0.485, G: 0.456, B: 0.406) and standard deviations (R: 0.229, G: 0.224, B: 0.225). To increase
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the variability of our training data and make the model more robust, we augmented our
data with random rotations, horizontal and vertical flips, and hue jittering.

Figure 5. Examples of images fed to the proposed model (on the left are sawing tools, and on the
right are drill bits).

Because of the comparatively small number of training images, we decided to employ
transfer learning instead of training the networks from scratch. The weights were initialized
with the weights provided by torchvision and trained on the ImageNet-1K v1 dataset [42].
We replaced the classification head with a custom one to match the number of tools and
froze all of the weights, except for the classification head, while training. ResNet18 was
trained for 28 epochs until convergence with a batch size of 90, while EfficientNet took only
10 epochs to converge with a batch size of 90. To assess the effectiveness of the classifiers,
we determined their overall classification accuracy. This was achieved by calculating the
ratio of accurately classified images within our validation dataset to the entire count of
images in the same dataset. Our findings revealed that EfficientNet significantly surpassed
ResNet18, achieving a 93% accuracy rate compared to ResNet18’s 43%. To gain deeper
insights into EfficientNet’s performance, we subsequently analyzed the confusion matrix;
Figure 6. This step was crucial to confirm that the high overall accuracy did not mask
subpar performance on specific tools. It revealed that the network mostly struggles with
the spade drill bit and similar tool heads of different sizes, e.g., the �40 mm and �50 mm
self-feeding bits; Figure 6.

Some of our data originate from test fabrications. This makes them very realistic;
however, it also means that the network can learn the appearance of the wooden beam in a
given fabrication step to classify the tool head instead of the tool head’s topology. To ensure
that the network uses the topology of the tool head for its decision, we computed class
activation maps for the last convolutional layer using GradCAM [43]. The class activation
maps (in Figure 7) show that the parts of the image containing the tool head had the largest
impact on the classification result while objects in the background were ignored.
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Figure 6. Confusion matrix computed on the validation dataset for EfficientNet. The overall classifi-
cation accuracy is 93%.

Figure 7. Class activation maps computed with GradCAM show that the part of the images containing
the tool heads has the largest impact on the classification (corresponding to the warmest colors).
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To employ additional tool heads, the model was retrained. This required deep learning
knowledge and dedicated hardware in the form of a GPU. Since we cannot expect all users
to have these prerequisites in terms of both hardware and digital literacy, we provided a
web-based service for retraining the classifier with subsets of specific tool heads [44]. This
service allows for the user to upload their own data for new tool heads and obtain custom-
trained models for a specific application. Additionally, we reinforced the robustness and
generalization capacity of the proposed model with synthetic data. The synthetic dataset
was generated through Blender, and the designed add-on orchestrated the creation of
an animation portraying tool heads in rotation while the camera moved. To elevate its
authenticity, we implemented varied environmental lighting and incorporated metal brush
effects into the 3D models. To further enrich the dataset, we introduced diverse adjustments
in image temperatures and brightness levels; see Figure 8.

Figure 8. (a) Animation frames of four drill bits present in the synthetic dataset. (b) Example of
synthetic and augmented data generated from a drill bit. The tool head’s model and its textures
are obtained from the scanning process via photogrammetry. The procedural rendering is achieved
owing to a specially designed add-on for Blender.
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2.3. Global Pose Input

The component responsible for the input of the initial pose is defined by the operator’s
input. In fact, obtaining the initial pose involves manual input from the user, offering a
reliable and lightweight alternative to, for instance, deep learning approaches. At this
point, TTool receives either the rotation in degrees and the rotation axis or the translation
distance in pixels. It computes the transformation matrix and applies it to the current 3D
model managed by the model manager (see Section 2.1). By allowing a global pose input
via human–computer interaction, the algorithm can benefit from the human capacity while
approximating a rough pose estimation.

The proposed global pose manipulator allows for the user to adjust the translation
as well as the rotation on three axes (see Figure 9). The translation is performed on the
world axis, whereas the rotation is performed on the local axis. We define the origin of
the local axis as the mass center of the object, which aligns with its orientation. Each axis
represents a specific direction in the object’s local coordinate system. We consider this
presented approach to be more user-friendly, intuitive, and robust for the user to adjust the
initial pose rather than deploying an AI-based one-shot approach. The following paragraph
presents the global input mechanism in detail.

Figure 9. TTool can detect the 6DoF pose of a tool head via a monocular sensor installed on a
power tool. To achieve this, the object must initially be positioned within the camera’s frame and
subsequently undergo refinement by the user.

Each 3D object is characterized by its pose matrix Tcm. This matrix represents the
transformation of the object from the origin with translation t and rotation R. Additionally,
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the center of the model might be off the origin. That is, the center of each given model might
not be exactly at the origin of the world axis. To address this, the normalization matrix
Tn is introduced. The last one translates the local model to the origin. On the one hand,
the translation to the world axis can be expressed as the translation matrix applied to the
model’s pose Tcm. For rotation, on the other hand, local-to-world transformation is required.
Given rotation axis ⃗Alocal , the local axis rotation is performed by transforming the local axis
into world coordinate system ⃗Aglobal . Further, a rotation operation around ⃗Aglobal is applied
next. For instance, rotating the model around the local z-axis produces ⃗Alocal =

[
0 0 1

]
.

To perform these operations, a local axis transformation is first required.

⃗Aglobal = Tcm · Tn ·
[

⃗Alocal |0
]

(1)

The local axis, represented by vector ⃗Alocal , is transformed from the object’s local to
world coordinate system. This transformation takes into account the current pose of the
object (Tcm) and any normalization adjustments (Tn). Note that the vector is assumed
to always pass through the world’s origin and not yet be exactly at the center of the
model. Next, the rotation is performed by translating the model to the origin of the world
coordinate and rotating it around ⃗Aglobal . Finally, the model is translated back to its original
position. We let C be the translation matrix from the origin to the center of the model in the
world coordinate system and R be the rotational matrix around ⃗Aglobal . Rotated pose T′

cm is
as follows:

T′
cm = C · R · [−C] · Tcm (2)

To resume, the local axis is first transformed into the global coordinate system, and ro-
tation is applied around the same transformed axis. This approach allows for precise control
over the rotation of the object relative to its inherent orientation and structure. The transfor-
mation system’s callbacks are accessible via TTool’s API. In Section 3, we demonstrate how
they can be embedded in a UI specifically designed for the evaluation campaign.

2.4. Supervised Pose Refiner

In the following phase of TTool, the approximated estimation of the pose provided
by the user needs to be refined to fit perfectly the corresponding physical tool’s contour.
To achieve this goal, we leveraged a modified version of a state-of-the-art pose refiner,
SLET [20]. Necessary modifications were introduced to adapt the basic algorithm to our
own study case and application scenario. The following is a description of our contribu-
tions to a modified version of the refiner and how human interaction is integrated into
its functioning.

It is worth noting that the designated refiner requires only the camera’s RGB feed,
making this phase particularly lightweight. In SLET [20], corresponding 2D–3D points
are established by matching the contour points from the video frame (2D points) with the
projected 3D model contour (3D points). SLET effectively addresses challenges such as
occluding contour points, complex texture backgrounds, and other kinds of noise by lever-
aging probability computations. For each candidate contour point hij, three probabilities
are computed based on the color cue: the probability of hij belonging to the foreground
(P(hij|F)), the probability of hij belonging to the background (P(hij|B)), and the probability
of hij being the actual contour (P(hij|C)). To ensure the robustness of the selected contour
points, SLET applies a filtering criterion to them. A candidate contour point is retained
only when the probability of it being an actual contour point surpasses both the probability
of it being in the foreground and it being in the background (Equation (3)).

P(hij|C) > P(hij|F) and P(hij|C) > P(hij|B) (3)

The refiner may lose track while attempting to update the pose on the current frame.
In our setup, where the camera is fixed on the tool head (see Figure 10), a more effective
strategy is either to maintain the current pose without updating it or to reset the pose
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to the best one previously specified by the user. This dual approach results in optimal
performance due to the stationary nature of the tool heads relative to the camera. Hence, it
is introduced in our version of the refiner.

Figure 10. Given that the monocular sensor is mounted (1) and fixed (2) on the board of the power
tool, the tool head remains static in the background (3). TTool’s refiner can adjust for the tracked tool
head’s correct pose during sudden movements and vibrations.

Our investigation reveals a direct correlation between the P(hij|C) of selected candi-
dates and the tracking quality. When the tracker loses signal of the model, the average
probability, denoted as ⟨P(hij|C)⟩, Equation (4), of the representing contours is observed
to be low. A correlation between the value of 0.00625 and tracking loss is also found via
experimental tests. Therefore, the object’s pose should reset to the initial pose. A value of
0.1 correlates with a low-quality update. Thus, the model should not update its pose to the
new pose computed with these contours,

⟨P(hij|C)⟩ =
1
|C| ∑

hij∈C
P(hij|C) (4)

where C is the filtered set of contour points. When tracking is lost, the negative feedback
loop begins. In other words, an inaccurately oriented 3D model contour is employed for the
subsequent pose computation. We use a semi-automatic adjustment to address this issue.

We introduce Algorithm 1 using the tracking score described above. In the event
of tracking loss, the object pose is reset to its initial position, as this initial pose (Ti) is
expected to be near the current tool head’s location. This facilitates the tracker in regaining
its tracking capability. When the tracking achieves a higher score, indicating the presence
of several quality candidates for the newly computed pose (Tcm), we proceed to update the
pose. Alternatively, if the tracking score is lower, signifying a lack of robust candidates, we
opt to freeze the tracking at the current pose.

Moreover, we provide users with the option to specify whether the current mode
pose is precise and should serve as Ti when tracking is lost. Users can also manually
halt tracking; adjust the pose using the global pose input (Section 2.3) when the tracker
completely loses track; or resume tracking to refine the pose from the initial pose (Ti).
With user supervision on the initial pose and during pose refinement, our modified SLET
algorithm benefits from both the human dexterity and machine-like precision of the refiner
to enhance the accuracy of the tool head’s pose.
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Algorithm 1: Pose Update
Data: Image frame, 3D model
Result: Object pose update
Calculate the average probability, ⟨P(hij|C)⟩;
if ⟨P(hij|C)⟩ < 0.00625 then

Reset: Set object pose to initial pose Ti
end
else if ⟨P(hij|C)⟩ < 0.1 then

Freeze: Do nothing
end
else

Tracking: Update object pose to Tcm
end

Once the user validates the pose refinement, TTool’s 6DoF detection is terminated,
and woodworking fabrication can start. At this moment, the physical tool head is perfectly
aligned with its corresponding 3D model. Most importantly, any occlusions and cluttering
of the targeted object (e.g., a drill bit piercing into the wood, protection metal component
hiding the circular saw blade, and simple wood chipping) do not affect the object locking
achieved by TTool. This is a fundamental condition of AR fabrication, since feedback can
also be computed when the tool head pierces or cuts through the wood (e.g., providing
depth monitoring on when to interrupt the drilling operation), as shown in Figure 11.

Figure 11. An example of (a) drilling and (b) sawing operations with TTool: (a) 1. The pose of the
drill bit is detected via TTool. (a) 2,3. Once the drill bit is locked to its 3D model, piercing the wood or
any other form of occlusion does not influence object locking. (a) 4. Once extracted, TTool can be
re-initialized to swiftly refine the pose of the drill bit.
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3. Experimental Campaign
3.1. Experimental Set-Up

We opted to assess TTool’s pose detection accuracy in actual workshop fabrication
conditions. Due to the algorithm’s significant reliance on human–machine interaction and
its sensitivity to real woodworking constraints (e.g., metallic objects, noise, varying lights,
and abrupt change of backgrounds), the designed evaluation is based on live-captured
feeds instead of rendered benchmarks on synthetic datasets. The evaluation source code is
shared with the community and can be found in the public repository of the project [45]. In
addition to gauging the accuracy and precision of the estimated 6DoF poses, we include a
preliminary designed form to evaluate the user experience (UX). The cognitive load and
interface usability represent important components of a supervised 6DoF pose detector,
such as TTool. Users are engaging with displays and contemporary operating power
woodworking tools. The UX benchmark is designed to fuse state-of-the-art references in
the field of UX satisfaction benchmarks [46–49] but also physical load evaluators, such
as the popular NASA-TLX index [50]. However, it is important to note that the current
participant pool is limited to one person with no prior construction experience but who is a
competent digital literate. Consequently, further testing with a more diverse and larger
population sample size is essential for a comprehensive assessment of TTool’s UX.

To assess the precision of TTool’s pose detection, we utilize a mold that is meticulously
referenced to a 3D model via the use of fiducial markers of type STag [51]. This particular
fiducial marker is chosen due to its capacity to perform accurate pose detection, especially
in cluttered views and steep view angles compared to other artificial markers [52–54].
This mold serves as a replica of a 3D model in execution, featuring accurately replicated
slots and hole placements where physical tool heads can be inserted and compared. Once
the mold is manufactured by computer numerical control (CNC), additional scanning is
performed with the inserted tools to calibrate all fabrication inaccuracies and correct them
in the 3D model (see Figure 12).

Figure 12. Illustration of the CAD drawing for the probing plate, in which the blue stripes indicate
tags calibrated to the locations of the slots. Following fabrication, the recalibration of slots and holes
was performed using scans from physical tools inserted into the corresponding slots.

As part of this process, the user inserts the tool head into the designated slots.
The alignment for this comparison is feasible, as TTool’s camera is calibrated via the
detection of fiducial markers. This results in both the computed pose of the tool and the
digital twin model sharing common reference points in the same coordinate system. Hence,
GT can be determined by identifying common reference points between the tool head
model and its negative counterpart, such as the spinning axis. This alignment method en-
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sures a straightforward and reliable means of obtaining accurate measurements, as shown
in Figure 13.

Figure 13. Illustration of the evaluation system to obtain ground truth (GT) data via the digital twined
set-up: (a) The axis of the estimated pose (green) is compared with the one from the model (pink)
and the physical model (blue), which can be considered coincident once the operator calibrates the
tool to the probing plate shown in (b) and the bottom view shown in (c).

The user is tasked with determining the pose of 162 tool heads using TTool’s pipeline.
The evaluation exercise comprises four sessions, each consisting of five assessment cycles
per tool, with each cycle encompassing the utilization and pose detection of nine distinct
tools. As shown in Figure 14, (a,b) is a self-feeding bit (of �50 and �40 mm), (c) a brad-point
drill bit, (d) a twist drill bit, (e) a spade drill bit, (f,g) an auger drill bit (of �20 and �34 mm),
(i) a circular saw with (a blade of 190 mm), (l) a sword saw, and finally (m) a chain saw.
Further, the varying diameters of the self-feeding and auger drill bits are introduced to
stress the system’s capacity under the same typology of tools but with slightly different
dimensions (i.e., a maximum of 2 cm in diameter difference). We introduce this disturbance
to reproduce a common condition in which varying dimensions of the same tool head’s
shape are present in the same tool set.

The evaluation is conducted on NUC-running Ubuntu 22.04 LTS with an Intel 4-Core
i7-1360P processor, 32 GB of RAM, and a seven-inch touchscreen device as the designated
interface. The display is mounted on each tool owing to a magnetic attachment. Further,
TTool is developed as a C++ console app and API for UNIX-based systems. Opting for a ×64
machine with a connected touchscreen device significantly streamlines the research process
during software development and evaluation. In addition, utilizing a more ergonomic
headset or phone would necessitate proprietary software (e.g., Unity) and considerable
time dedicated to code wrapping in order to adapt the source code written in C++. The use
of a touchscreen device allows for software evaluation while maintaining interoperability
through the low-level nature of TTool’s source code. The UX interface was realized with
DearImGui [55], a versatile free-bloat graphical user interface written in C++. The control
panel occupies half of the display, whereas the other half presents an augmented view of
the live feed (Figure 15). The user can control the 3-step TTool’s algorithm via the provided
widgets while manipulating the woodworking tools. The interface allows to automatically
detect the tool (see Figure 15c), manipulate the 3D object projection via a set of sliders (see
Figure 15g), activate the pose refinement (see Figure 15e), and finally save the final pose
(see Figure 15f).
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Figure 14. Selection of the tools considered for the evaluation: (a,b) self-feeding bits; (c) brad-point
drill bit; (d) twist drill bit; (e) spade drill bit; (f,g) auger drill bits; (h) drill; (i) circular saw; (l) sword
saw; and (m) chainsaw.

From the user’s perspective, the evaluation is structured as follows: The user clips the
display on the tool and adjusts the camera view to include the end effector (Figure 16a,b).
The tool head is detected, and the user inputs an initial global pose, which is subsequently
cached. The refiner is then activated (Figure 17) and interrupted by the user when it
is in alignment (Figure 16c or Figure 18a). Finally, the tool head is positioned in the
corresponding probing plate’s slot (Figure 16d or Figure 18b). At this moment, the GT and
computed poses are referenced to the same coordinates and are ready to be saved on a
disk (Figure 16e).
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Figure 15. Overview of the UX interface designed specifically for the evaluation of TTool: (a) the
projection of the 3D model of the sword saw’s plate to be tracked; (b) the sword saw; (c) button to
activate the TTool classifier; (d) the classifier reordering the library of tools from the highest to the
lowest prediction score; (e) the set of widgets to switch between during the tracking and manual
input phases; (f) the controls to save the pose or reinitialize it; and (g) the 3D transformation bars
divided by rotation axis and translation axis.

Figure 16. Evaluation of the TTool pipeline for chainsaw: (a) The user clips the display and sensor to
the tool. (b) The camera is adjusted to include a chainsaw’s plate in the frame. (c) The tool is first
detected by AI, and the pose is initialized by the user and refined automatically. (d) The user inserts
the tool into the manufactured slot. (e) Finally, the pose is exported to a disk for later analysis.
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Figure 17. Sample frames from all the evaluated tool heads during TTool’s refinement stage.

Figure 18. (a) The user calls the AI detector, initializes an initial pose, and refines the pose automati-
cally. (b) Once the user is satisfied with the detected pose, the blade is inserted into the slot of the
probe plate, and TTool’s pose is exported.
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After completing the evaluation cycles, the output data can be postprocessed and
analyzed, as elaborated in the following section.

3.2. Results

In this chapter, we present the postprocessing of the raw data obtained during the
evaluation campaign, as well as the discussion and interpretation of the produced results.
The benchmark raw and processed data are shared with the community and can be found
in the public Zenodo repository of the project [56].

As illustrated in Figure 13a, we demonstrate how, for each evaluated pose, we can
obtain TTool’s axis and its GT counterpart. To gauge position accuracy, we measure
the Euclidean distance between the start and end points (Figure 19a,b) of the respective
computed and GT axes. The mean of these distances is then calculated to provide a current
comprehensive indicator of accuracy (Figure 19c). The rotational error is represented by
the angle between the same two axes (Figure 19d).

Figure 19. Graphs reporting the errors for (a) the base tip, (b) the tool tip, (c) the mean position,
and (d) the mean rotation. On the x-axis, we present the error expressed in millimeters or degrees,
whereas the x-axis indicates a thick for each cycle of tested operations for a total of 18 rounds for each
tool head.

Table 1 reports the values from Figure 19c,d. The presented summary reveals a
generally coherent and compact distribution of results for both position and rotation error,
which is indicative of consistent performance by TTool’s pose detector. However, it is
noteworthy that the results for two distinct tool heads deviate from the overall trend: the
auger drill bit (�35 mm) with a 12.85 mm error and the chain saw blade with a 10.61 mm
error. The first is the result of false detection by the ML classifier (see Section 2.2). A user
without any construction skills or knowledge is falsely guided by TTool to proceed with
evaluating the wrong model. Two objects that differ in diameter by only 1 cm make it
difficult for an inexperienced user to identify TTool’s misleading detection and correct it.
The emergence of such errors highlights the necessity for enhancements in the model’s
predictive capabilities in the same tool’s typology but of different sizes. Concerning the
high error value of the chainsaw blade, a later inspection of the scanned model revealed
inadequacies, specifically in its scaling, as evidenced by the approximate 2 mm error. This
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is because models obtained from photogrammetry are, by default, scaleless. Thus, manual
scaling calibration is needed. This discrepancy significantly impacts the accuracy of pose
detection. The inaccurately scaled scan undermines the proposed system, emphasizing
ensuring a properly calibrated dataset. In both scenarios, it is evident that TTool’s rotation
detection error is significantly less affected by an incorrect model than by a positional error.
As a result, a drilling feedback loop is likely to be more reliably accurate than monitoring
values, such as depth, which depend on the detected position of the tool head.

Table 1. Resuming the error metrics for all 162 operations of the datasets grouped by category of tag
layers and densities where * is the angular error and ** is the positional error.

Tool Name (-) Number of Operations (-) Mean Rotation Error * (°) Mean Position Error ** (mm)

Drill auger ∅20 18 0.85 ± 0.42 6.17 ± 1.38
Drill spade ∅25 18 2.74 ± 2.04 4.97 ± 2.91
Drill auger ∅35 18 1.96 ± 0.45 12.85 ± 0.91

Drill brad point ∅20 18 0.95 ± 0.43 2.92 ± 0.69
Drill twist ∅32 18 0.73 ± 0.62 3.21 ± 0.83

Drill self-feeding ∅50 18 1.09 ± 0.59 3.09 ± 0.67
Circular sawblade 18 0.92 ± 0.37 1.99 ± 0.48
Sword sawblade 18 1.1 ± 0.2 5.2 ± 0.28
Chain sawblade 18 2.08 ± 1.21 10.61 ± 1.93

If we exclude the aforementioned tools from the summary, the accuracy of our eval-
uation pipeline yields mean position and rotation errors of 3.9 ± 1 mm and 1.19 ± 0.6°,
respectively. The obtained rotation error value can be satisfactory within fabrication con-
straints. However, the positional error may be excessively high for woodworks, demanding
more precision. Further, it is important to note that the positional error is significantly influ-
enced by tolerances inherent in the physical aspects of the evaluation campaign, such as tag
detection, CNC manufacturing, and wood deformations of the probing plate. Additionally,
the scaling of the models, as observed, has a considerable impact on the positional error
and requires thorough calibration. In summary, accounting for these additional tolerances,
positional detection may exhibit better performance than indicated in the present results.
Finally, the UX graphs provide insights that are distinct from the results of the rotation and
positional error (Figure 20a,b). Notably, despite the auger drill bit of �34 mm displaying
higher errors compared to the other tools, it was rated comfortably in the UX assessments.
In the tool-based questions, all tools received satisfactory ratings of four or five, except for
the auger drill bit of �20 mm, which was rated as three. This may indicate that user comfort
and tool efficiency can, in this case, deviate from technically accurate measurements.

As highlighted earlier, the enhancement of UX should involve a more diverse tester
population. However, focusing on this specific aspect, the suggested template study indi-
cates that the revamped TTool experience is not only user-friendly but also minimally taxing,
both physically and cognitively. Several factors contribute to this positive assessment. Con-
sistency in tool usage and a fixed camera position allow the TTool system to efficiently
cache the end effector’s pose, eliminating the need to repeatedly align and streamline the
overall process. The algorithm’s straightforward logic facilitates easy alignment of the
digitized tool with its physical counterpart, enabling users to rotate intuitively and position
the tools. The tool detector demonstrates efficient identification in most cases, reducing
the user’s need for manual tool selection. Finally, TTool’s refiner adeptly generalizes to the
roughly initialized pose, ensuring swift alignment and machine-like precision.
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Figure 20. Overview of the results for the user evaluation of TTool: (a) UX progress-based question
graph and (b) tool-based question graph.
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4. Conclusions

In this paper, we presented TTool, a supervised and AI-assisted 6DoF pose detector for
tool heads employed in woodworking operations. We demonstrated the importance of the
3D object detector TTool as a necessary component of any state-of-the-art AR application
in the fabrication domain. We illustrated its functioning and the main components that
constitute the algorithm. We evaluated performance in terms of pose accuracy through a
physical evaluation campaign with a dedicated mock-up UI and hardware and suggested
a template for UX evaluation for future studies. The results report a rotational error that
is inferior to 2°, a positional error assumedly in the range of 2 mm, and a preliminary
satisfactory user experience evaluation.

While our proposed method holds promise for advancing tool localization and pose
detection, there are notable limitations and avenues for improvement. One critical consid-
eration revolves around the implications of implementing a global pose detector. While a
global pose detector could eliminate the need for manual input poses, potential negative
effects and trade-offs must be carefully evaluated. Additionally, exploring alternative ML
models that may offer improved performance or better alignment with our application
remains an avenue for future research. The evaluation results, while providing a broad
understanding of system accuracy, must be interpreted with caution due to the high vari-
ance introduced by the physical and contextual evaluations. Future research could involve
integrating the system into a comprehensive design-to-fabrication framework to assess
its performance in a more holistic context, thereby gauging the ultimate impact on the
fabricated piece itself. To address practical challenges, we recognize the need for a more
efficient and robust dataset acquisition process. The current methodology’s sensitivity
to scale adjustments emphasizes developing a more resilient system that can withstand
variations in scale calibration and dataset acquisition. Ideally, 3D models can be openly
sourced from fabricators, simplifying AR operations by not having to collect scans of the
user’s own tool heads. TTool is developed to propose a reliable alternative for object
detection in augmented subtractive fabrication processes in timber construction. TTool
is specifically tailored to target monocular RGB sensors, a typology that is the most ver-
satile in our opinion and that possesses the greatest potential for widespread adoption.
Through the incorporation of AI assistance and intuitive AR processes, as demonstrated
by TTool, we illustrated how a hybrid approach with human dexterity, AI reconnaissance,
and traditional computer vision algorithms offers a robust and complementary alternative
to full automation. The work presented here is just one facet of what we envision as a com-
prehensive AR application in woodworking. Ongoing development includes an adapted
simultaneous localization and mapping (SLAM) system, generative fabrication instructions,
and a complete interface, which will soon be showcased as part of an integrated software
platform incorporating TTool.
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