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Abstract: This paper presents the application of self-supervised deep contrastive learning in clustering
signals detected in the wideband RF spectrum, presented in the form of spectrograms. Radio
clustering is a method of searching for similar signals within the analyzed part of the radio spectrum.
Typically, it is based on one or several specific parameters processed from the signal in a given
channel. The authors propose a slightly different, innovative approach; thanks to the self-supervised
learning of neural networks, there is no need to define specific parameters, and the feature vector,
enabling comparison of Euclidean distances between signals, is generated by a deep neural network
trained using a contrastive loss function on a dataset containing different radio modulations. The
authors describe self-supervised solutions based on contrastive learning and the methods of signal
segmentation and augmentation. The training process utilizes a custom database and the Resnet-50
network with a contrastive cost function. Radio clustering is used for autonomous spectrum analysis
across wide frequency ranges and enables, among other things, the detection of tactical radio stations
operating with widely dispersed frequency-hopping or a significant reduction in computational
power required for real-time analysis of a large number of radio signals.

Keywords: RFML; radio frequency machine learning; unsupervised deep learning; AI; contrastive
loss; cognitive radio; RF clustering; CNN; SimCLR

1. Introduction

The analysis of RF signals in the wideband radio spectrum is particularly crucial in
cognitive radio solutions [1], spectrum monitoring [2], signal intelligence (SIGINT [3]),
electronic warfare, and next-generation telecommunications network solutions. Such
an analysis can be performed at various stages of radio signal processing, such as in
the baseband before demodulation, after demodulation, or even in the carrier frequency
domain as a slice of the wideband radio spectrum.

The radio spectrum contains wideband and narrowband signals, analog and digital
signals, and continuous and pulsed signals, with modulations of amplitude, phase, and fre-
quency, as well as their combinations. New multiplexing and channel access techniques are
employed, such as orthogonal frequency-division multiplexing (OFDM), non-orthogonal
multiple access (NOMA) [4,5], or spectrum spreading using pseudorandom sequences
(CDMA or FHSS). The methods of phase drift correction are also widely used to improve
the quality of transmission [6,7]. As a result, the range of analysis that can be applied to ra-
dio signals is highly diverse and may include detecting the modulation used, searching for
specific synchronization sequences, observing band occupancy over time (PSD), and more.

Modern radio receivers, measurement receivers, and spectrum analyzers are often
built based on software-defined radio (SDR) architecture. SDR technology was defined by
IEEE 1900.1 [8] as a radio in which some or all functions of the physical layer are defined
by software. The undeniable advantage of a software-defined radio is its reconfigura-
bility, allowing for changes in the parameters of the received or transmitted signal, not
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only statically but also dynamically, depending on the radio conditions. Furthermore,
with increasing challenges in managing radio spectrum occupancy, there is a growing
demand for cognitive and intelligent radio station solutions that rely on SDR and machine
learning elements.

The article explores the use of radio spectrograms in machine learning, specifically in
the radio signal clustering present in spectrograms, using deep neural networks.

2. The Signal Clustering Idea in a Radio Spectrogram

Typically, in signal analysis for a single radio channel, various classification methods,
including accurate or heuristic algorithms, can be successfully applied, such as those
operating on a radio spectrogram. However, the challenge remains to develop solutions
that can analyze signals in real time in the wideband radio spectrum, including those that
can simultaneously analyze multiple detected signals (sometimes dozens to hundreds)
within the analyzed bandwidth. Therefore, there is a need for the preliminary selection of
radio signals that are of interest from the perspective of a specific scenario of a wideband
cognitive spectrum analyzer operation.

The clustering of radio signals in the wideband spectrum is a process aimed at distin-
guishing signals with similar characteristics, such as received power, modulation, band-
width, duration, the same radio fingerprint [9–11], or originating from the same direction.
One of the fundamental tasks requiring a preclassifier is the detection of signals from
an anti-eavesdropping and jamming countermeasures radio station through the use of
frequency-hopping spread spectrum (FHSS) spectrum spreading.

Examples of goals for the clustering of FHSS signals include the need for the au-
tonomous determination of specific hopping frequencies, examining the vulnerability of
TRANSEC (TRANsmission SECurity) measures, and autonomously avoiding collisions or
jamming through real-time spectrum monitoring.

In typical signal clustering solutions, Key Indicators (KIs) are utilized, which are
specific metrics based on which signals can be compared to each other and then assigned
to specific groups. However, this requires the development of these indicators and often
the application of complex algorithms that analyze at least several parameters of the radio
signal. In this article, we present a different, innovative semi-supervised method for
clustering radio signals in the wideband spectrum, which does not require defining KIs for
this purpose.

3. Clustering Process

The first step in the preclassification and clustering process of signals in a radio
spectrogram is signal detection using a method that ensures high true positive detection
probability, while minimizing the false positive detection probability. In narrowband
spectrum sensing solutions, various signal detection methods are typically employed,
such as the energy detector, cyclostationary detector, matched filter, correlation detector,
or wavelet detector. However, in the case of wideband analysis and unknown signal
characteristics in the spectrum, the set of possible detectors narrows down to the energy
detector (ED [12–14]) or its extensions (e.g., ED-ENP [14]), including convolutional neural
network-based detectors such as RFROI-CNN [15]. These methods enable the identification
of regions of interest in the wideband spectrum, even at low signal-to-noise ratio (SNR)
values. An example spectrum with detected radio signals by a convolutional detector is
shown in Figure 1.

The selected regions are a list of attributes for the signal extractor module and consist
of four time-frequency coordinates [xmin, ymin, xmax, ymax], where x carries frequency infor-
mation and y carries time information, and around which a useful radio signal is likely
to be present. The signal extractor’s task is to extract a subtensor of the size determined
by the coordinate list, containing a single signal along with channel noise. An example
extraction of a wideband signal from Figure 1 is shown in Figure 2.
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Figure 1. Real radio spectrogram, captured using SDR, along with the signals identified by the
RFROI-CNN [15] detector.

Figure 2. The extracted signal from the wideband radio spectrum.

To perform clustering, a universal method of signal representation in the form of a
feature vector is required. Such a vector can be obtained from a properly trained convolu-
tional neural network. Commonly used feature extractors are autoencoder networks [16],
which consist of an encoder and a decoder. They are trained in such a way that the output
tensor generated from the latent vector is as similar as possible to the input tensor.

When a tensor (e.g., an image or spectrogram) is passed into a trained autoencoder
model, a feature vector is generated. If the goal is to compare multiple tensors for sim-
ilarity, one can simply calculate the Euclidean distances between the feature vectors of
the respective tensors. However, in the case of unsupervised learning, a problem arises
when two images depicting completely different objects are not necessarily far apart in
the latent space. Instead, they may concentrate within a narrow region of that space. One
compromise solution to this problem is to introduce supervised learning, which allows
maximizing the distances between feature vectors of tensors with different labels.

From the experiments conducted by authors during preliminary research on the
application of deep neural networks in the RF environment, it is evident that the use of
unsupervised learning powered by conventional autoencoders with MSE or cross-entropy
loss functions for clustering yields mediocre results. Not only does the proximity issue
arise in the latent space, but the autoencoder network is also often unable to reconstruct
the signal shape effectively, as it is typically designed for image-related tasks. This is
likely due to the high randomness of radio signal data in the form of additive noise,
which, considering the logarithmic power spectral density representation, can significantly
impact the network training process. Moreover, the loss functions used may not be well
suited for this problem. On the other hand, leveraging labels and supervised learning
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reduce the preclassification subsystem to a simple signal classifier trained on the signals
used during the training process. However, as mentioned earlier, the electromagnetic
environment is highly complex, and it is challenging to gather a diverse range of signals
within a single database.

Therefore, an alternative approach is needed for training a signal preclassification
network in the radio spectrogram domain without relying on labels. One such method is
self-supervised learning with a contrastive loss function.

4. Contrastive Learning

Contrastive learning is based on the assumption that representations of similar data
should be close to each other in the latent space, while dissimilar data should be as far
apart as possible. There are several approaches to contrastive learning, but one that has
gained popularity for visual representations is SimCLR (Simple Contrastive Learning of
Representations) [17]. The authors of SimCLR simplified certain self-supervised contrastive
learning algorithms without the need for custom network architectures.

During training using contrastive methods like SimCLR [17], a positive pair is sampled
from the database, which consists of two representations with the same content, or alter-
natively, one representation from which a positive pair is generated through appropriate
transformations, as shown in Figure 3.

Figure 3. Generating a positive pair from a single tensor in contrastive learning.

The input tensor in Figure 3 is denoted as x. Two different augmentation methods,
t and t′, selected from the set T, transform the tensor x into tensors xi and xj, which
are then fed into the encoder f (.) in the form of a deep convolutional neural network.
The output latent representations hi and hj from the encoder are passed through the dense
layer g(.), which maps the latent representations to a space where the contrastive loss
function is computed. SimCLR [17] defines the contrastive loss function for the positive
pair as “NT-Xent loss” (Normalized Temperature-Scaled Cross-Entropy Loss) described by
Equation (1).

Li,j = −log
exp(sim(zi, zj)/τ)

∑2N
k=1 1[k ̸=i]exp(sim(zi, zk)/τ)

(1)
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The similarity sim(zi, zj) and sim(zi, zk) is determined using cosine similarity, as de-
scribed by Equation (2), where zi and zj are vectors obtained from the dense layer g(.) for
similar images, and zi and zk are vectors for dissimilar images.

sim(A, B) =
∑n

i=1 AiBi√
∑n

i=1 A2
i

√
∑n

i=1 B2
i

(2)

The contrastive loss function includes the indicator function 1[k ̸=i] ∈ {0, 1}, evaluating
to 1 if and only if k ̸= i, as well as a parameter τ, which is a tunable temperature parameter
used to scale the input to the cross-entropy, directly affecting the feature distance in the
latent space.

During the training of SimCLR [17], a minibatch is sampled from the database, and con-
trastive prediction is performed on augmented tensors, creating positive pairs. For a specific
positive pair, the remaining augmented pairs are treated as negative pairs.

5. RF Signals Database and Data Augmentation

To train a network, it is necessary to have an appropriate database. In the case of
addressing the problem of the simple classification of radio signals in the baseband, gener-
ating synthetic signals or using publicly available databases such as [18–21] is sufficient.
However, for the clustering process, a database containing wideband representations
of radio spectrograms was chosen. The proprietary rfspec-db [22] database was used,
originally created for training neural networks for radio signal detection. The database
was built based on implemented GNURadio software waveforms for AM, FM, LSB, USB,
CW, and OFDM modulation. The generated database is publicly available and contains
391 spectrograms along with spectrograms of noise distribution and annotation files in
.xml files, inspired by the VOC2007 dataset [23]. The database contains spectrograms for
FFT sizes (1024, 2048, 4096, and 8192), temporal resolutions (256, 512, 1024, and 2048),
durations (0.25, 0.5, 0.75, and 1.00) in seconds, sampling frequencies (2, 5, 10, 15, 20, 25,
30, 35, and 40) in MHz, and SNR values ranging from −4 dB to 12 dB. Due to the large
sizes of files containing wideband radio spectrum IQ samples, only the spectrograms of
these spectra are stored in the online database. A sample spectrogram from rfspec-db [22]
is shown in Figure 4.

Considering that the database contains annotated files specifying the temporal fre-
quency coordinates of specific signals along with their labels, it was decided to use them.
This approach reduced the computational complexity of the training process (eliminating
the need for signal detectors on spectrograms). However, it resulted in bounding boxes
being centered too precisely around the signal on the spectrogram, which may lead to the
incorrect functioning of the neural classifier with real signals from the radio electromagnetic
environment. After extraction from the spectrum, these signals may not be properly cen-
tered relative to the central frequency of the subspectrogram. Therefore, during the process
of extracting spectral fragments for network training, data augmentation in frequency, time,
and amplitude needed to be considered.

The processing of the database for contrastive learning consisted of four steps: wide-
band spectrograms loading, signals extraction, adding to dictionary, and augmentation.
The process began by loading the list containing paths to annotation files and spectrogram
files. Then, the spectrogram file was loaded, and individual signals were extracted based
on the annotations. These signals, along with their labels, were added to a dictionary.
A copy of this prepared batch was created, which would undergo the augmentation process
entirely. Augmentation was performed in time, frequency, and amplitude. Frequency
augmentation involved trimming the spectrogram of the signal along the time axis from
either side. Amplitude augmentation involved adding or subtracting a constant value.
Time augmentation was the only operation that was applied simultaneously to two tensors
from a pair. It involved sequentially extracting subtensors with variable overlap values.
Dictionary pairs containing original and augmented data were passed to a method that
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overlays signal tensors of different dimensions onto a tensor of a fixed specified dimension,
such as [1, 96, 96]. These prepared pairs underwent normalization within the range (0, 1)
and were ready to generate the structure of the training database, which depended on the
training strategy with a contrastive loss function.

Figure 4. An example spectrogram along with the visualization of signal occurrences.

6. CNN Training Strategy

In order to assess the feasibility of using contrastive learning for the clustering of radio
signals, a training strategy was devised to differentiate signal modulations in the spectro-
gram. Consequently, modifications had to be made to the standard SimCLR [17] approach
for training the network. Specifically, either a new implementation of the contrastive loss
function needed to be developed or a method for generating the training batch had to be
devised. The goal was to ensure that positive pairs corresponded to the same modulations,
while negative pairs did not contain the same modulations. The decision was made to
implement the latter option.

To implement the training strategy for the self-supervised learning of modulations
during the preprocessing of the database, signal instances with specific modulations were
grouped together. An additional augmentation step was introduced, which involved
rotating the spectrogram of the signal by 90 degrees. These transformed spectrograms were
also saved separately. Single-sideband modulations (LSB and USB) were grouped together
due to their low spectrogram resolutions. This approach effectively created 10 separate
signal subdatabases.

Figure 5 presents examples of positive pairs of radio signals with different SNR
coefficients and various sizes of the Fourier transform. Figure 5a shows a positive pair of
WBFM signals, Figure 5b shows a positive pair of AM signals, Figure 5c shows a positive
pair of LSB signals, and Figure 5d shows a positive pair of OFDM signals.

Positive pairs are simultaneously negative with respect to other positive pairs. For ex-
ample, a positive pair for WBFM (Figure 5a) is simultaneously negative with respect to the
AM pair (Figure 5b).
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(a) (b)

(c) (d)

Figure 5. Example positive pairs generated during network training, (a) wbfm, (b) am, (c) lsb,
(d) ofdm

The ResNet50 [24] convolutional residual network was employed as the backbone
of the clustering model, with a modified dense layer that reduced the output vector size
by a factor of 16, reducing from [−1, 2048] to [−1, 128]. The value 128 is a dimension of
a latent vector, that is used for comparing and clustering RF signals in proposed approach.
The input tensor dimensions are [3, 96, 96]. The training script used the Adam optimizer,
with a learning rate set to 0.0003 and weight decay set to 1 × 10−4.

During the training process, the average loss, TOP1 accuracy, and validation clustering
accuracy metrics were computed every epoch using the obtained feature vectors for the
validation set. The validation set was extracted from rfspec-db [22] and consisted of the
first 10% of spectrograms in the database. The Rand Index (RI) [25] was used for validation,
as described by Equation (3).

RI =
TP + TN

TP + FP + FN + TN
(3)

TP represents the number of true positives, FP represents the number of false positives,
TN represents the number of true negatives, and FN represents the number of false nega-
tives. The Rand Index takes values from 0 to 1, where 0 indicates that two sets do not agree
on any pair of points, while 1 indicates that both sets are identical. We can interpret the
Rand Index as a percentage measure of correct assignment decisions made by the clustering
algorithm. To calculate the RI, a reference assignment of specific signals to groups (in this
case, modulations) is required, obtained from the annotation files of the validation portion
of the database. Subsequently, the hierarchical clustering of the obtained feature vectors
for the spectrogram batch was performed using different threshold values λ to generate
assignment vectors necessary for the RI calculation.

The temperature coefficient τ was initially set to 0.2. The network was trained for
50 epochs on a computer equipped with an RTX3060 GPU. The training duration for
a single epoch was approximately 1 min and 23 s, resulting in a total training time of
around 69 min.

Figure 6 presents the graph of the loss function values, Figure 7a–c illustrate the
Rand Index values for threshold values λ = 5, λ = 10, and λ = 15, respectively. Even after
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50 epochs, the accuracy_top_1 value exceeds 90%, and the Rand Index increases from the
initial values of 0.73 and 0.72 for λ = 10 and λ = 5 to over 0.755 and 0.76, respectively.

Analyzing the Rand Index data plots, we can observe that towards the end of the DNN
training (number of epochs approaching 50), the Rand index value decreases for λ = 15,
and flattens out for λ = 10. This is due to the fact that as the training process of the neural
network with a contrastive loss function progresses, similar signals tend to have lower
Euclidean distances to each other. At some point, the static cutoff value at λ = 15 or λ = 10
becomes too high for most of the Euclidean distances determined by the trained network.

Figure 6. Loss plot for 50 training epochs.

(a)

(b)

(c)

Figure 7. Graph of Rand Index values for the validation set, 50 epochs, and thresholds (a) λa = 5,
(b) λb = 10, and (c) λc = 15.
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7. Evaluation of the Model and Clustering of RF Signals

Evaluating the network based on wideband radio spectrogram requires generating
subspectrograms containing detected radio signals, which will be processed by the neural
network. Similar to the training process, the annotation files of the rfspec-db [22] database
were used, enabling the extraction of signals from the wideband spectrum without the
need for energy detectors such as ED [12–14] or RFROI-CNN [15]. The annotation files
also provide information about the modulation used, which was used for validating the
proposed simple hierarchical clustering method.

The generated subspectrograms formed a batch in the form of a tensor, which was
processed by the trained neural network. The output of the network was a tensor containing
feature vectors of length 128 for each signal. With this set of features, we could compare
signals to each other. Firstly, we needed to calculate the Euclidean distances between each
pair of vectors using Formula (4).

d(A, B) =

√
n

∑
i=1

(xiA − xiB)2 (4)

After calculating the distance matrix, we had sufficient data to find signals that are
similar in terms of modulation. We could search for the n most similar spectrograms,
similar to searching for similar images, or we could define an empirically chosen threshold
of Euclidean distance below which signals would be considered similar, and above which
signals would be considered different from each other.

7.1. Searching for Similar RF Signals in Spectrograms

An example spectrogram, labeled in rfspec-db [22] as 000310 with signal numbers
overlaid, is shown in Figure 8. Signals 0, 1, and 10 are modulated with LSB modulation,
signals 2 and 5 are CW (continuous wave) carriers, signals 3, 4, 6, and 8 are FM signals,
and signals 7 and 9 are AM signals. For example, to find a signal similar to signal 4 (FM
signal with low SNR), we can locate the fourth row of the distance matrix, which contains
the distance vector between the features of signal 4 and the other signals.

Figure 8. Spectrogram 000310 (fft_size 1024, samp_rate 2.5 × 106, and length = 0.5 s) with detected
signals from the rfspec-db database [22].
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The distance vector for signal 4 is presented in Equation (5). From this vector, we
can infer that the closest signal to signal 4 is signal 8 (distance of 0.84), followed by
signal 6 (distance of 5.71). Signal 3 is also quite similar (distance of 10.47) compared to
the subsequent signals, with the next closest signal having a distance of 31.93. All of the
mentioned similar signals have the same FM modulation, while signal 3 differs from the
rest in terms of its SNR indicator, exhibiting a significantly higher spectral power density
in the spectrogram. Therefore, a thresholding method can be applied to extract similar
signals. In order to classify signals with the same modulation and similar SNR, a threshold
distance of λ = 6 is sufficient in this case. However, to classify signals with different SNR,
an optimal threshold distance value of λ = 11 seems appropriate.

Am,4 =
(
44.84 45.30 31.93 10.47 0.00 42.51 0.84 41.34 5.71 42.37 44.35

)
(5)

The inverted hard thresholding method (Equation (6)) for small argument values
involves substituting one value (typically a logical ’0’) for the condition greater than
or equal to being met, and another value (typically, a logical ’1’) for the condition not
being met.

am(x) =

{
0 if |x| ≥ λ

1 if |x| < λ
(6)

Therefore, after applying inverted thresholding with λ = 6 and λ = 11 to the distance
vector from Equation (5), it will appear as shown in Equations (7) and (8), where ’1’ indicates
that the signal is similar (True) and ’0’ indicates that the signal is dissimilar (False).

Sm,4(λ = 6) =
(
0 0 0 0 1 0 1 0 1 0 0

)
(7)

Sm,4(λ = 11) =
(
0 0 0 1 1 0 1 0 1 0 0

)
(8)

With the similarity vectors, it is possible to plot a similarity matrix, which is shown
in Table 1 for signal 4 and λ = 6 and λ = 11. Analyzing the table for two λ values yields
interesting conclusions. The analyzed signal 4 is modulated with WBFM. For λ = 6,
only signals 6 and 8 are considered similar, with respective PSNR values of 1 dB and 2 dB,
while signal 4 has a PSNR of 4 dB. There is another WBFM radio station in the spectrogram
transmitting the same modulating signal but with a higher PSNR of 10 dB. To include it in
the common set for WBFM, the λ value needs to be increased to 11. For λ = 6 radio stations
with a power difference of 3 dB are included in the set, while for λ = 11, the power difference
is 6 dB. This indicates that the trained network distinguishes not only modulations but also
signal power in the spectrogram, which can be a valuable solution for recognizing signals
scattered across the ultra-wideband spectrum from specific FHSS radio stations.

Table 1. Similarity of signal 4 to the other RF signals detected in the spectrogram 000310 (fft_size
1024, samp_rate 2.5 × 106, and length = 0.5 s) from the rfspec-db database [22].

sig id 0 1 2 3 4 5 6 7 8 9 10

MOD LSB LSB CW WBFM WBFM CW WBFM AM WBFM AM LSB

PSNR
[dB] 16 16 11 10 4 1 1 4 2 8 16

FREQ
[px] 717 717 613 852 207 500 71 468 366 555 717

4
(λ = 6) False False False False True False True False True False False

4
(λ = 11) False False False True True False True False True False False

By having the similarity matrix, we can visualize the similarities between signals on
the background of the wideband radio spectrogram (Figure 8), as shown in Figure 9a,b for
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λ = 6 and λ = 11, respectively. The similarities are visualized by overlaying an orange color
on the detections of similar signals.

(a)

(b)

Figure 9. Visualization of signals similar to signal 4 for λ = 6 (a) and λ = 11 (b).
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7.2. Clustering RF Signals

An interesting issue is the automatic clustering of radio signals detected and evaluated
in the proposed model. We decided to evaluate the performance of clustering using
hierarchical clustering, specifically agglomerative clustering [26,27].

Agglomerative clustering [26,27] is a hierarchical clustering algorithm that starts by
considering each data point as an individual cluster. It iteratively merges the closest pairs
of clusters based on a similarity measure until all data points belong to a single cluster.
The algorithm begins by calculating the distance or similarity between each pair of data
points and creates a proximity matrix. It then identifies the two closest clusters based on
the proximity matrix and merges them into a new cluster. The process continues until all
data points are part of a single cluster.

The challenge of clustering in datasets with an unknown number of clusters requires
setting a threshold value λ, similar to the simple method of finding similar signals. The im-
plementation of agglomerative clustering [26,27] was obtained from the Scikit library [28].
An example of the model’s operation, along with agglomerative clustering, is demonstrated
using spectrogram 000303, which is shown in Figure 10. There are six visible signals, where
0 and 1 correspond to LSB, 2, 3, and 4 correspond to FM, and 5 corresponds to AM.

Figure 10. Spectrogram 000303 (fft_size 2048, samp_rate 17.5 × 106, and length = 0.75 s) with detected
signals from the rfspec-db database [22]).

The distance matrix between signals is presented in Equation (9). With the distance
matrix, the similarity matrix can be calculated as shown in Table 2. On the other hand,
similar signals have been color-coded in Figure 11.

Am,n =



0.00 8.51 36.70 39.30 36.27 20.72
8.51 0.00 32.89 35.87 32.48 19.84

36.70 32.89 0.00 5.69 0.90 24.89
39.30 35.87 5.69 0.00 6.46 27.79
36.27 32.48 0.90 6.46 0.00 24.32
20.72 19.84 24.89 27.79 24.32 0.00

 (9)

However, not all signals can be easily distinguished, as shown in the example spec-
trogram 000381, depicted in Figure 12a, where signals 0, 1, and 2 represent AM, signal
3 represents WBFM, and signals 4–11 represent USB. In Figure 12b, visualizations of similar
signals after hierarchical clustering with an RI of 0.84 are presented.
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Table 2. Similarity matrix of RF signals detected in the spectrogram 000303 (fft_size 2048, samp_rate
17.5 × 106, and length = 0.75 s) from the rfspec-db database [22].

sig id 0 1 2 3 4 5

MOD LSB LSB WBFM WBFM WBFM AM

PSNR [dB] 14 14 4 2 14 16

FREQ [px] 1861 1861 1920 509 1886 1942

0 (λ = 11) True True False False False False

1 (λ = 11) True True False False False False

2 (λ = 11) False False True True True False

3 (λ = 11) False False True True True False

4 (λ = 11) False False True True True False

5 (λ = 11) False False False False False True

Figure 11. Cluster visualization of similar signals after evaluation in a neural network and agglomer-
ative clustering.

As observed, the FM signal (3) is correctly distinguished from the others (highlighted
in yellow), a portion of the AM signal (highlighted in blue) as well as the USB signals
(highlighted in orange) are also correctly detected as separate signals. However, there are
overlapping detections of signals 1, 11, 4, 5, 7, 8, and 9 that are not grouped with either
USB or AM, even though signal 1 is actually an AM signal, and the rest are USB signals.
This may be attributed to various factors. Firstly, during evaluation, only a segment of the
signal with a maximum duration of 96 pixels was sampled, whereas in reality, the signal is
much longer. One potential solution could be to extract all subspectrograms composing the
signal and calculate the average of the latent vector. Another significant aspect is the low
resolution of the spectrograms and analog modulation signals, such as in the case of SSB
modulation. For instance, a long constant tone in SSB modulation on the spectrogram may
appear similar to AM or CW modulation.
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(a) (b)

Figure 12. Visualization of signals similar to signal 4 for λ = 6 (a) and λ = 11 (b).

8. Conclusions

The paper deals with the topic of spectrum awareness, specifically the preclassifica-
tion of detected signals in the wideband radio spectrum. Spectrograms were proposed as
a means to apply convolutional neural networks (CNNs) in the discussed context, as the
waterfall visualization depicts signal characteristics in the frequency–time–amplitude do-
main as a sequence of interconnected pixels, forming geometric objects easily interpretable
by CNNs.

The focus of the study was on the preclassification and clustering of signals in the
wideband radio spectrum. Preclassification serves the purpose of grouping similar signals
and performing an initial clustering of radio signals received by a wideband receiver
based on a latent feature vector generated by the network structure. An unsupervised (self-
supervised) learning method was proposed, using a contrastive loss function. The approach
was inspired by the SimCLR solution, but the network training strategy was modified and
adapted to the problem of distinguishing signal modulations for different transform sizes,
spectrogram durations, SNR coefficients, etc. An author-created database was used for
training and evaluation purposes.

As part of the evaluation of the trained network model, simple searching for simi-
lar signals (based on modulation) in radio spectrograms was presented, along with the
capability of automatic grouping and visualization of similar signals in the wideband
radio spectrum.

The paper demonstrated the feasibility of employing deep convolutional neural net-
works in the analysis of wideband radio spectrum for building artificial intelligence systems
operating in the domain of the radio electromagnetic environment. The preclassification
of signals, exemplified in the paper using modulation as an example, can be realized for
various parameters of radio signals or even radio fingerprints. This opens up new possibili-
ties in autonomous spectral analysis, including spectrum monitoring conducted by civilian
authorities or electronic warfare on the battlefield.

Author Contributions: Investigation, A.O. and Z.P.; methodology, A.O. and Z.P.; resources, A.O.;
supervision, Z.P.; validation, Z.P.; writing—original draft, A.O. All authors have read and agreed to
the published version of the manuscript.



Appl. Sci. 2024, 14, 2990 15 of 16

Funding: This research was funded by the Military University of Technology, Faculty of Electronics,
grant number UGB 22 747 on Application of artificial intelligence methods to cognitive spectral
analysis, satellite communications and watermarking and technology Deepfake.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The training dataset used to train the neural network was prepared
by the authors and publicly shared at: https://github.com/aolesinski/rfspec-db (accessed on
3 May 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AM Amplitude modulation
CDMA Code-division multiple access
CLR Contrastive learning of representations
CW Constant wave
ED Energy detector
FFT Fast Fourier transform
FHSS Frequency-hopping spread spectrum
FM Frequency modulation
GPU Graphics processing unit
IQ In-phase/quadrature
MOD Modulation
NOMA Non-orthogonal frequency-division multiplexing
LSB Lower sideband modulation
OFDM Orthogonal frequency-division multiplexing
PSD Power spectral density
PSNR Peak signal to noise ratio
RF Radio frequency
RI Rand index
SIGINT Signal intelligence
SNR Signal-to-noise ratio
USB Upper sideband modulation
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