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Abstract: Sentence Boundary Disambiguation (SBD) is crucial for building datasets for tasks such
as machine translation, syntactic analysis, and semantic analysis. Currently, most automatic sen‑
tence segmentation in Tibetan adopts the methods of rule‑based and statistical learning, as well as
the combination of the two, which have high requirements on the corpus and the linguistic founda‑
tion of the researchers and are more costly to annotate manually. In this study, we explore Tibetan
SBD using deep learning technology. Initially, we analyze Tibetan characteristics and various sub‑
word techniques, selecting Byte Pair Encoding (BPE) and Sentencepiece (SP) for text segmentation
and training the Bidirectional Encoder Representations from Transformers (BERT) pre‑trained lan‑
guage model. Secondly, we studied the Tibetan SBD based on different BERT pre‑trained language
models, which mainly learns the ambiguity of the shad (“།”) in different positions in modern Ti‑
betan texts and determines through the model whether the shad (“།”) in the texts has the function
of segmenting sentences. Meanwhile, this study introduces four models, BERT‑CNN, BERT‑RNN,
BERT‑RCNN, and BERT‑DPCNN, based on the BERT model for performance comparison. Finally,
to verify the performance of the pre‑trained language models on the SBD task, this study conducts
SBD experiments on both the publicly available Tibetan pre‑trained languagemodel TiBERT and the
multilingual pre‑trained language model (Multi‑BERT). The experimental results show that the F1
score of the BERT (BPE) model trained in this study reaches 95.32% on 465,669 Tibetan sentences,
nearly five percentage points higher than BERT (SP) and Multi‑BERT. The SBD method based on
pre‑trained language models in this study lays the foundation for establishing datasets for the later
tasks of Tibetan pre‑training, summary extraction, and machine translation.

Keywords: sentence boundary disambiguation; Tibetan; pre‑trained language model; BERT (BPE);
shad (“།”)

1. Introduction
Sentence boundary disambiguation (SBD) is a fundamental task in natural language

processing (NLP), which is crucial for understanding the structure and semantics of sen‑
tences [1]. Humans are good at their languages and can quickly determine the location of
sentence boundaries when reading a passage based on linguistic conventions or grammar.
Humans cannot only determine sentence boundaries through punctuation but also rely on
information about sentencemeaning to assist in sentence boundary disambiguation. How‑
ever, very often, when our task requires a large amount of data, sentence segmentation by
manual methods is labor intensive. It can lead to inconsistent segmenting results due to
differences in each person’s understanding of sentences [2].

From a more macroscopic point of view, studying Tibetan clauses is of great signif‑
icance in promoting the overall development of the Tibetan NLP field. Through the re‑
search and improvement of clause technology, we can promote the progress of other NLP
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tasks in the Tibetan language field and improve the automation level of Tibetan informa‑
tion processing. This helps promote the dissemination and communication of Tibetan cul‑
ture and supports the informatization andmodernization of Tibetan areas. Tibetan clause‑
splitting technology also showsmany application prospects in practical application scenar‑
ios. Whether in news reporting, social media, or literature, Tibetan clause‑splitting tech‑
nology can help people process and analyze Tibetan texts more efficiently and improve
work efficiency and accuracy. With the continuous development and improvement of the
technology, it is believed that Tibetan clause‑splitting technology will play a more signif‑
icant role in more fields in the future. The Tibetan clause task has essential applications
and significance in Tibetan NLP. It supports subsequent NLP tasks and is crucial in sev‑
eral practical application scenarios. With the deepening of research and the advancement
of technology, the Tibetan clause task will play an even more critical role in the future [3].

Tibetan is an ancient language belonging to the Tibetan–Burmese branch of the Sino‑
Tibetan language family, in which the SBD task is evenmore challenging because sentence
boundaries are often unclear. Most existing Tibetan sentences are labeled by rules and sta‑
tistical learning methods and then proofread by hand. Still, the efficiency could be better
in the case of large amounts of data or high data demand. Therefore, batch data processing
using deep learning techniques is essential. By training the model on a large amount of
Tibetan text data, the model learns the syntactic structure and patterns of Tibetan text to
determine sentence boundaries accurately [4]. At this stage, NLP‑based research includes
basic tasks such as sentence segmentation, word segmentation, linguistic annotation, and
syntactic analysis, as well as downstream tasks such as machine translation, dialog gener‑
ation, information extraction, and summary generation. Most of these tasks require sen‑
tences as input units, so themerits of SBD tasks directly affect the efficiency of downstream
tasks [5]. Tibetan has its unique script, phonetics, grammatical features, and grammatical
rules, and is a phonetic script. These foundations are still in use in the modern Tibetan
script. The Tibetan language is a phonetic script spelled by phonetics. The modern Ti‑
betan language consists of 30 consonant letters and four vowel letters [6].

Units separated by a tsheg (“་”) in Tibetan are called syllables, and a Tibetan syllable
corresponds to a word in English. A Tibetan syllable may have at least one consonant and
up to seven phonemes. The seven parts are root, prefix, superfix, subfix, vowel, suffix,
and postfix. Each letter in the syllable is called a component, and components are the
constituent parts of a syllable and equal to characters in English. In Tibetan encoding, the
character is the basic unit of the computer display, printing, and counting. Tibetan has
both horizontal and vertical spelling, and this two‑way spelling is a significant feature of
Tibetan [7].

In traditional Tibetan grammar, a sentence is a linguistic unit consisting of two or
more syllabic words that can express the name of a transaction connected with a gram‑
matical auxiliary or an ordinary dummyword to express the distinction of the transaction.
Tibetan sentences contain various dummy words, among which gerunds mainly express
semantic relations between noun components and verbs. Tibetan sentences can be divided
into long sentences (compound sentences) and short sentences (single sentences). Nouns
with grammatical auxiliaries form short sentences, while long sentences can express a com‑
plete meaning and usually have a dummy word at the end of the sentence to indicate the
end of the sentence.

A complete sentence in Chinese or English has a distinct end punctuation mark, usu‑
ally a period, question mark, exclamation point, semicolon, or ellipsis to indicate the end
of a sentence. In Tibetan, due to the problem of the partitive class of end‑of‑sentence dots
and intra‑sentence dots, the end‑of‑sentence dots cannot be used as sentence clauses or syn‑
copation markers [8]. For example, “བཀྲ་ཤིས་རྟགས་བརྒྱད་ནི་དཔལ་བེའུ་དང་། ¬ པད་མ། ­ གདུགས། ® དུང༌།
¯ འཁོར་ལོ།°རྒྱལ་མཚན།± བུམ་པ།²གསེར་ཉ་བཅས་སོ།³” (the Eight Auspicious Treasures are the aus‑
picious knot, the incredible lotus, the precious umbrella, the conch, the gold‑lipped block,
the precious vase, and the golden fish.) In the “Auspicious Eight Treasures”, the shad at
¬~² is an intra‑sentence shad, and only the shad at ³ is an end‑of‑sentence shad. When



Appl. Sci. 2024, 14, 2989 3 of 20

divided into shad, the sentence will be divided into several non‑sentence units such as
“བཀྲ་ཤིས་རྟགས་བརྒྱད་ནི་དཔལ་བེའུ་དང༌།” and “པད་མ་”. The problem of concatenating end‑of‑sentence
and intra‑sentence shad in Tibetan has caused significant difficulties in automatic clause
splitting [9].

In addition, Tibetan is rich in the phenomenon of linguistic partitions; for example, in
the dictionary samples listed in the above literature, there are several noun‑verb partitions
such as “ུ་”, “ིད་”, and “ོར” [10]. The text does not propose any corresponding disam‑
biguation strategy or method, which leads to the fact that when splitting a sentence; the
noun‑verb partitionswill be taken for the verb of the sentence end, resulting in the splitting
of many incorrect sentences [11].

We now provide an example of a sentence ending in “g‑” without “shad” and discuss
other uses of “shad”. In Tibetan, sentences ending in “g‑” usually denote statements or
commands and often do not need “shad” to mark the end of the sentence. Note the fol‑
lowing example: “དེབ་འདི་ཡག་པོ་འདུག” (This is a great book). In this example, the sentence
ends with “ཡག་” indicating a complete declarative sentence without the need for “shad”.
As for other uses of “shad”, in addition to marking sentence structure, it can also be used
to enumerate elements in a list. In this case, “shad” may appear after each enumerated
item to help the listener or reader distinguish between different items. For example, note
the following: “གཅིག། གཉིས། གསུམ།” (one, two, three.) In this enumeration example, “shad”
appears after each number, indicating that three elements are enumerated.

To summarize, shad in Tibetan is a multi‑functional auxiliary that plays various roles
in a sentence, such as marking structure, linking clauses, and enumerating elements. By
understanding these uses, we can better analyze and understand the complex sentence
structure of Tibetan. The functions of standard punctuation in modern Tibetan are shown
in Table 1; this study focuses on Tibetan SBD based on the shad (“།”).
Table 1. Modern Tibetan punctuation marks and their functions.

Punctuation Marks Function

Tsheg (“་”) The Tibetan tsheg is used to divide syllables.

Shad (“།”) The Tibetan shad indicates the discourse’s pause, turning
point, or end.

Double Shad (“།།”) The application of double shad is the same as the shad, but
it emphasizes that a passage or sentence has ended.

Quadruple Shad (“།།།།”) The quadruple shads are used in chapters, volumes, and
book endings. It belongs to Tibetan stylistic symbols.

Rinchenspung Shad (“༑”) The left end of the sentence begins with a Rinchenspung
shad when it is less than three letters.

Snake‑Shaped Shad (“༈”)
In a long Tibetan text, when the last syllable of a sentence is
at the first position of a line, the syllable is separated by a
snake‑shaped shad.

Double Ornament (“༄༅།”)
The Tibetan double ornament is mainly used at the
beginning of articles and books to indicate the start of the
text.

With the development of the global Tibetan language community and the populariza‑
tion of digitization technology, the data resources of Tibetan text are gradually enriched,
providing favorable conditions for developing Tibetan pre‑training technology [12]. In re‑
cent years, some research has been attempted to pre‑train Tibetan, and some results have
been achieved. The core idea of the pre‑trained language model is to use unlabeled text
data to pre‑train the model so that the model learns the intro, mosaic structure, and lan‑
guage pattern. Currently, models such as ELMo [13], GPT [14], and BERT [15] have become
benchmark models in NLP. However, the development and application of pre‑training
techniques still face many challenges for low‑resource languages like Tibetan [16].
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In the pre‑trained language model, the training unit is fundamental, and many tasks
use the word as the minimum processing unit, and a word is a token. In Chinese text en‑
coding, we can use “character” as the encoding unit, and in English processing, we can use
“letter” or “word” as the primary encoding unit. The use of “letters” as the coding unit is
prone to the problem of long coding length, which leads to a high computational cost of the
model. When using “word” as the basic unit, the number of “words” is fixed, and words
beyond the dictionary’s scope cannot be processed, resulting in the instability of the word
list. In deep learningmodel training, theword list is too extensive, which leads to computa‑
tional overload; most models discard low‑frequencywords during training or fix the word
list size [17]. Although such a setup reduces the computational load, it also encounters the
Out of Vocabulary (OOV) problem. The simplest solution to the OOV problem is to label
these words as Unknown (UNK) uniformly. However, too many words labeled “UNK”
during training will affect the model’s generalization ability. Based on this, people began
to study different methods to solve this problem, namely, the subword cut algorithm. Sub‑
word refers to the subunit in a word, which is a method of dividing words or phrases into
smaller units [18], with a granularity between words and letters. For example, “subword”
can be divided into two subwords: “sub” and “word” [19]. Commonly used encoding
methods are Byte Pair Encoding (BPE) [20], byte‑level BPE(BBPE) [21], Wordpiece [22],
and Sentencepiece [23].

Aiming at the current research status of Tibetan SBD, the need for downstream task
dataset establishment, and Tibetan grammar semantic analysis, this study explores the
automatic recognition of Tibetan sentence boundaries based on the BERT pre‑trained lan‑
guage model combined with the classical deep learning model through which the com‑
puter learns the meaning of the sequence composed of each shad (“།”) and the text preced‑
ing it, which transforms the SBD problem into a binary classification problem to determine
whether the current shad (“།”) is an actual sentence end marker. Since the current pub‑
licly available pre‑trained language models for Tibetan are generally effective on the SBD
task we first train a BERT pre‑trained language model for Tibetan in this study based on
BPE and Sentencepiece and verify the performance of the model by combining CNN [24],
RNN [25], RCNN [26], and DPCNN [27] on the two pre‑trained language models. Mean‑
while, to verify the effectiveness of the data in this study, experiments are also conducted
on the publicly available TiBERT [28] model and Multilingual BERT(Multi‑BERT) [29],
which proves the effectiveness of the SBD data in this study on multiple pre‑trained lan‑
guage models, as well as the suitability of Tibetan SBD tasks for the BERT pre‑trained lan‑
guage model based on the BPE word cutting approach. Meanwhile, to reduce the model’s
computational complexity and training cost, the experiment selects the number of token
sequences in the window before the punctuation mark to participate in the training and
testing. Finally, it proves the high efficiency of the BERT(BPE) deep learning‑based model
in the Tibetan SBD task.

2. Related Work
Most NLP technologies develop first with English, then German, French, Chinese,

and then low‑resource languages such as Tibetan. The research for SBD tasks lies in new
features and models that effectively distinguish between bounded and unbounded. For
languages such as English, where NLP research has been conducted earlier, most SBD is
based onmachine learningmethods such asDecision Tree (DT) [30], Multilayer Perceptron
(MLP) [31], HiddenMarkovModel (HMM) [32], maximum entropy (ME) [33], Conditional
Random Field (CRF) [34], and other models [35].

NLP techniques for languages such as English provide ideas and references for the
study of Tibetan, and the study of English SBD is mainly concerned with determining
whether an abbreviated period (“.”) is an actual sentence boundary or just an abbrevia‑
tion representing a particular position. Scholars have conducted studies based on rule‑
based and statistical learningmethods to address this issue. Read et al. [36] counted 75,000
English scientific abstracts in which 54.7–92.8% of the sentence dots appeared at the end,
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about 90% indicated the end of the sentence, 10% indicated abbreviation, and 0.5% both.
Mikheev [37], based on determining whether the words to the left of a potential sentence
boundary or the right side of a word are an abbreviation or a proprietary name, uses a set
of rules to implement SBD. Mikheev [38] combines the approach in the literature [37] with
lexical tagging methods for supervised learning, including tagging for sentence endings,
to reduce the error rate. Kiss and Strunk [39] propose a completely unsupervised system
called PUNKT. The system is rooted in recognizing acronyms by finding collocation keys
between candidate words and sentence points. Riley [40] proposed a DT classifier to de‑
termine whether acronyms mark sentence boundaries. It utilizes the probability of a word
being the end or beginning of a sentence, word length, and word case as features to per‑
form SBD. Reynar et al. [41] used supervised ME learning to study SBD by considering
sentence segmentation as a disambiguation task with good results. Gillick et al. [42] used
SVM to study SBD in English by using a large amount of training data through an SVM
model to determine the function of abbreviated periods in English.

For Tibetan, rule‑based research, machine learning, and a combination of both have
been applied to the study of SBD. A rule‑based approach based on auxiliary suffixes to
detect sentence boundaries in Tibetan was proposed by Zhao et al. [43], which provided a
preliminary analysis and exploration of the syntactic features of Tibetan legal texts. Ren
and An [44] proposed an SBD method for constructing three lexicons (ending word lexi‑
con, non‑ending word lexicon, and unique word lexicon), which transforms the SBD prob‑
lem into a query of to which lexicon the word to the left of a shad (“།”) belongs. Cai [45]
proposed a verb‑centered binary SBDmethod based on maximum entropy. First, the max‑
imum entropy model detects Tibetan sentences by grammar rules and thesaurus and then
further identifies ambiguous sentences. Based on the literature [45], Li et al. [46] proposed
a rule and maximum entropy‑based approach. The ambiguous sentence boundaries are
first identified using Tibetan boundary word lists. Then, the maximum entropy model is
used to identify the ambiguous sentence boundaries that the rules cannot recognize. This
is the first time that rules and machine learning methods have been combined for the Ti‑
betan SBD task. Ma et al. [47] proposed a Tibetan SBD based on linguistic tagging. Firstly,
the text is segmented into words and lexically tagged; then, the text is scanned; when scan‑
ning a shad (“།”) or a double shad (“།།”), it determines whether the word to the left of the
shad (“།”) or double shad (“།།”) is a conjunction or not andwhether the position of theword
is a noun, a numeral, or a state word, if yes, the model will continue scanning; otherwise,
sentence segmentation is performed. Zhao et al. [48] studied the SBD method for Modern
Tibetan auxiliary verb endings, which first identifies the auxiliary verb to the left of the
shad (“།”), then determines whether the auxiliary verb to the left is a verb by the auxiliary
verb, and finally considers whether the syllable number of the sentence is more significant
than seven and segments it from the location of the shad (“།”). Zha and Luo [49] extracted
Tibetan sentences by reverse search of function word position and suffix lexical properties.
The method improved the efficiency of Tibetan sentence extraction and identified 11 lex‑
emes that mark the end of a sentence. Que et al. [50] investigated the problem of automatic
recognition of tight cuneiforms (“།”) in Tibetan based on rules and SVM. The method first
builds a feature vocabulary using terminal words and tight wedge characters and then
uses SVM for classification. Wan [51] investigated the rule‑based SBD problem for Tibet
by analyzing the concepts and properties of Tibetan sentences and statistically studying
the forms of Tibetan sentence endings and sentence‑final lexemes.

The above studies used rule‑based, statistical learning, and a combination of the two
to solve the SBD problem in modern Tibetan from different perspectives. However, the
corpora used in the above studies are oriented to different research focuses and have not
been publicized. Among them, the rule‑based approach requires researchers to have a high
level of linguistic and grammatical foundation, and they need to construct the correspond‑
ing word and lexical dictionaries that can identify the sentence boundaries in advance; at
the same time, the rule‑based study needs to perform the tasks of participle and linguistic
annotation, and based on the principle of error amplification in the deep learning model,
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the performance of participle and lexical labeling performance has a certain degree of in‑
fluence on SBD research.

3. Tibetan SBD Based on BERT (BPE)
In this study, Tibetan sentence boundary disambiguation based on BERT (BPE) is

investigated, which mainly includes the exploration of the BPE‑based Tibetan subword
method, the training of the BERT (BPE) pre‑trained language model, and the disambigua‑
tion of Tibetan sentence boundaries based on BERT and its improvedmodel, and this study
chooses BERT‑DPCNN as an example of the improved model to be introduced. Figure 1
is the structure of the BERT‑DPCNNmodel.
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3.1. Subword Method of BPE
In the process of NLP training, the input unit of the training text is crucial, and there

are differences in the impact of different input units on the results. The commonly used
subword methods in the BERT pre‑trained language model are BPE, Sentencepiece Word‑
piece, etc., and the subwordmethods are closely related to linguistic features. In this study,
we researched the Tibetan BERT pre‑trained languagemodel based on two subwordmeth‑
ods, BPE and Sentencepiece. BPE is one of the essential coding methods in NLP, and
its effectiveness has been proved by the most powerful language models such as GPT‑2,
RoBERTa, XLM, FlauBERT, and so on. Since it was found during the preliminary attempts
that the Wordpiece subword method would have lost information such as vowels, result‑
ing in incomplete information of Tibetan after word cutting, and the units generated by
the Sentencepiece subword method are longer, this study uses the BPE subword method
during the research of Tibetan pre‑trained language model. BPE, designed by Gage in
1994, is a statistically based sequence compression algorithm designed to solve the string
compression problem and is widely used in subword slicing in NLP.

The basic flow of the BPE subword slicing method is as follows:
Step 1: Slice each word into a sequence of characters and add a special ending symbol

to each character.
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Step 2: Calculate word frequency: count the number of occurrences of each character
sequence.

Step 3: Merge characters: find a pair of neighboring character sequences with the
highest word frequency and merge them into a new character sequence. At the same time,
update the word frequency table and recalculate the number of times each character se‑
quence occurs.

Step 4: Repeat step 3 until the specified number of subwords is reached or all the
character sequences in the word frequency table can no longer be merged.

Step 5: Final slicing: the initial word is sliced according to the final vocabulary list to
obtain the subword sequences.

The pseudo‑code for BPE word cutting is as Algorithm 1:

Algorithm 1 Byte‑pair encoding

1: Input: a set of string D, target vocab size k
2: procedure BPE(D, k)
3:       V←all unique characters in D
4:       while |V|< k  doMerge tokens
5:              tL, tR←Most frequent bigram in D
6:              tNew←tL + tR Make a new token
7:              V←V + [tNew]
8:             Replace each occurrence of tL, tR in D with tNew
9:        end while
10:      return V
11: end procedure

This study has tried three subword methods: BPE, Sentencepiece, and Wordpiece.
Table 2 is an example of three different subword methods. From Table 2, we can see that
the average length of the sequence after Sentencepiece cutting is the longest, the length
of Wordpiece cutting is the shortest, and many of them are single characters, while the
length of the BPE is betweenWordpiece and Sentencepiece. Meanwhile, we found that the
result of the WordPiece cut word has the problem of losing some of the building blocks,
so, in this study, we trained the BERT model for both the Sentencepiece and BPE word
cutting methods.

Table 2. Tokenization results of a Tibetan sentence under three subword methods.

Raw Text

Original Text:
བོད་ཡིག་ཡིག་གཟུགས་ནི་ལོ་ུས་ི་དུས་ཡུན་རིང་ཞིང་།རིག་གནས་ི་དོན་ིང་ཟབ་ལ་ུ་རྩལ་ི་ཉམས་འུར་ཕུན་སུམ་

ཚོགས་ པོ་བཅས་ལྡན་ པའི་ཡིག་རིགས་ཤིག་ཡིན།
English Translation: Tibetan Calligraphy Has a Long History, Deep Cultural

Significance, and Rich Artistic Style.

BPE

[‘བོད’, ‘་’, ‘ཡིག’, ‘་’, ‘ཡིག’, ‘་’, ‘གཟུགས’, ‘་’, ‘ནི’, ‘་’, ‘ལ’ོ, ‘་’, ‘ར’, ‘ ◌’ྒ, ‘◌’ྱ,‘ུས’, ‘་’, ‘ཀ’, ‘◌’ྱ, ‘’ི, ‘་’, ‘དུས’,
‘་’, ‘ཡུན’, ‘་’, ‘རིང’, ‘་’, ‘ཞིང’, ‘་’, ‘།’, ‘རིག’, ‘་’, ‘གནས’, ‘་’, ‘ཀ’, ‘ ’,‘’ི, ‘་’, ‘དོན’, ‘་’, ‘ས’, ‘ ◌’ྙ,‘ིང’, ‘་’, ‘ཟབ’, ‘་’,
‘ལ’, ‘་’, ‘ས’, ‘◌’ྒ, ‘’ྱ, ‘’, ‘་’, ‘ར’, ‘ ◌’ྩ, ‘ལ’, ‘་’, ‘ག’, ‘◌ྱ’, ‘’, ‘་’, ‘ཉམས’, ‘་’, ‘འག’, ‘◌’ྱ, ‘ུར’, ‘་’, ‘ཕུན’, ‘་’, ‘སུམ’,
‘་’, ‘ཚོགས’, ‘་’, ‘པ’ོ, ‘་’, ‘བཅས’, ‘་’, ‘ལ’, ‘◌’ྡ, ‘ན’, ‘་’, ‘པའི’, ‘་’, ‘ཡིག’, ‘་’, ‘རིགས’, ‘་’, ‘ཤིག’, ‘་’, ‘ཡིན’, ‘།’]

WordPiece

[‘བ’, ‘◌ོ’, ‘ད’, ‘་’, ‘ཡ’, ‘◌’ི, ‘ག’, ‘་’, ‘ཡ’, ‘ ◌ི’, ‘ག’, ‘་’, ‘གཟ’, ‘◌’ུ, ‘གས’, ‘་’, ‘ན’, ‘◌ི་’, ‘ལ’, ‘◌ོ་’, ‘ར’, ‘◌ྒྱ’ུ,
‘ས’, ‘་’, ‘ ཀ’, ‘◌ྱི་’, ‘ད’, ‘◌’ུ, ‘ས’, ‘་’, ‘ཡ’, ‘◌’ུ, ‘ན’, ‘་’, ‘ར’, ‘◌ི’, ‘ང’, ‘་’, ‘ཞ’, ‘◌’ི, ‘ང’, ‘་།’, ‘ར’, ‘◌’ི, ‘ག’, ‘་’,
‘གནས’, ‘་’, ‘ཀ’, ‘◌ྱི་’, ‘ད’, ‘ ◌’ོ, ‘ན’, ‘་’, ‘ས’, ‘◌ྙ’ི, ‘ང’, ‘་’, ‘ཟབ’, ‘་’, ‘ལ’, ‘་’, ‘ས’, ‘◌ྒྱུ་’, ‘ར’, ‘◌’ྩ, ‘ལ’, ‘་’, ‘ག’,
‘◌ྱི་’, ‘ཉམས’, ‘་’, ‘འག’, ‘◌ྱ’ུ, ‘ར’, ‘་’, ‘ཕ’, ‘ུ’, ‘ན’, ‘་’, ‘ས’, ‘ུ’, ‘མ’, ‘་’, ‘ཚ’, ‘ོ’, ‘གས’, ‘་’, ‘པ’, ‘ོ་’, ‘བཅས’, ‘་’,

‘ལ’, ‘ྡ’, ‘ན’, ‘་’, ‘པའ’, ‘ི་’, ‘ཡ’, ‘ི’, ‘ག’, ‘་’, ‘ར’, ‘ི’, ‘གས’, ‘་’, ‘ཤ’, ‘ི’, ‘ག’, ‘་’, ‘ཡ’, ‘ི’, ‘ན’, ‘།’]
SentencePiece

[‘བོད་ཡིག་’, ‘ཡིག་གཟུགས་’, ‘ནི་ལོ་’, ‘ུས་’, ‘ི་’, ‘དུས་ཡུན་རིང་’, ‘ཞིང་’, ‘།’, ‘རིག་གནས་ི་’, ‘དོན་ིང་’, ‘ཟབ་’,
‘ལ་’, ‘ུ་རྩལ་ི་’, ‘ཉམས་འུར་’, ‘ཕུན་སུམ་ཚོགས་པོ་’, ‘བཅས་ལྡན་པའི་’, ‘ཡིག་རིགས་’, ‘ཤིག་ཡིན’, ‘།’]
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3.2. BERT Model Training
Devlin et al. [15] proposed a Transformer‑based Bidirectional Encoder Model (BERT)

in 2019, masking several words with unique tokens before predicting them and prepro‑
cessing the bidirectional representation of unlabeled text by jointly regulating left and
right up and down in all layers. In this study, the Tibetan BERT pre‑trained language
model based on two subword methods, Sentencepiece and BPE, is applied in the SBD
model. The Tibetan SBD task is investigated based on the BERT + deep learning model.
The BERT uses the encoder part of the Transformer, which consists of multiple layers of
bi‑directional Transformer [52] encoder stacked together. Each layer of the Transformer’s
encoder consists of a multi‑head attention mechanism and a feed‑forward network with
layer normalization. The feed‑forward network consists of two fully connected layers
and a nonlinear activation function RELU; Figure 2 shows the structure of the multi‑head
attention mechanism.
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Themulti‑head attentionmechanism is an extension of the attentionmechanism,which
independently calculates attention weights in multiple representation subspaces, allowing
the model to learn different attention patterns in different subspaces, thereby improving
the model’s representation ability. The attention mechanism creates three vectors before
input: Query vector (Q), Key vector (K), and Value vector (V). Attention is computed in
three general steps:

(1) Calculate the weights; firstly, Q and all K calculate the weights using the similarity
method.

f (Q, Ki) =

{
QTKi

QTWKi
(1)

Normalization, using the Softmax function to normalize f (Q, Ki):
(2) Sum the normalized weights with V weighting to obtain Attention:

Attention = (Q, K, V) = ∑
i

aiVi (2)

where Q, K, and V denote the query, index, and the value obtained from the query, respec‑
tively, all obtained from the input word vectors by linear transformation, and then the
value of the Softmax function is solved by Equation (2), after calculating the attentional
weights of each position to the other positions, the self‑attention mechanism will generate
a weighted vector for each position based on these weights, i.e., multiplying each position
with the attentional weights of the other positions, and then summing up these products
to obtain the weighted vector for that position, i.e., the attentional representation of that
position [53].

In themulti‑head attentionmechanism, i.e., for a given queryQ, essentialK, and value
V, each attention head hi (i = 1, 2, . . . , h) is computed as follows:

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(3)
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The multi‑head attention mechanism is calculated as follows:

MultiHead(Q, K, V) = concat(head1, head2, . . . , headn)WQ (4)

In this study, the specific process of sentence boundary disambiguation based on the
Tibetan BERT pre‑trained language model is as follows:

(1) Sentences are first segmented, and [CLS] markers are added to the beginning of
each sentence, and [SEP] markers are added to the end of each sentence.

(2) The labeled sentences are input to the embedding layer: marker embedding, frag‑
ment embedding, and position embedding. Token embedding adds [CLS] tokens to the
beginning of each sentence while separating each sentence fragment by [SEP]; fragment
embedding is used to differentiate between multiple sentence fragments given, mapping
the tokens to EA in odd‑indexed sentences, andmapping the tokens to EB in even‑indexed
sentences. Positional embedding encodes the positional information of words in the input,
as shown in Equations (5) and (6).

PE(pos,2i) = sin(pos/10, 0002i/d) (5)

PE(pos,2i+1) = cos(pos/10, 0002i/d) (6)

d denotes the dimension of the embedding, 2i denotes the even dimension of the embed‑
ding dimension, and 2i + 1 is the odd dimension.

(3) The BERT model accepts these inputs, and after the model is trained, the context
embedding representation of each token is the output. The [CLS] tokens in front of each
sentence are entered into the output vector after modeling as the sentence vector represen‑
tation of that sentence.

(4) Input the acquired sentence vector representation into the Softmax layer. Finally,
for a simple binary classifier to determinewhether the input text is to be disconnected from
the current position or not, the judgment is shown in Equation (7).

Yl = σ(W0Ri + b0) (7)

In this study, in addition to studying the Tibetan SBD based on the BERT model, we
also compare the SBD based on the BERT + deep learning model, which is presented as an
example of DPCNN.

3.3. Introduction to the DPCNNModel
Early deep learningmodelsmainly includeConvolutionalNeuralNetworks (CNNs) [24]

and Recurrent Neural Networks (RNN) [25]. TextRNN and TextCNN are model archi‑
tectures for multi‑label text classification problems. The TextRNN model adopts a Bi‑
directional Long Short‑Term Memory (Bi‑LSTM), where the input of the latter time step
depends on the output of the previous time step, which cannot be processed in parallel and
affects the overall process speed. TextCNNmainly relies on sliding windows to extract the
features, which are limited in their ability to model long distances and are insensitive to
the order of speech. Based on TextCNN, researchers propose the text recurrent convolu‑
tional neural network (TextRCNN [26]), in which the function of feature extraction in the
convolutional layer is replaced by RNN, i.e., the feature extraction of TextCNN is replaced
by an RNN. The advantage of RNNs is that it can better capture contextual information,
which is conducive to capturing the semantics of long texts. Therefore, the overall structure
becomes an RNN + pooling layer called RCNN. Based on TextCNN, Deep Pyramid Con‑
volutional Neural Networks (DPCNN [27]) have been proposed, which is strictly the first
word‑level widely effective deep text classification convolutional neural network, which
can also be understood as a more effective deep CNN.

As shown in the upper part of Figure 2, the DPCNNmodel mainly consists of region
embedding, two equal‑length convolutions, the Block region, and the residual connections
represented by the plus sign. Among them, the Block region contains one‑half pooling and
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two equal‑length convolutional layers, which is why the model is called the deep pyramid
model. The main advantage of DPCNN is its ability to extract long‑distance textual depen‑
dencies by continually deepening the network. This study investigates BERT‑DPCNN as
an example of an improved BERT+ deep learning model.

3.4. Sentence Boundary Disambiguation
Figure 2 is the network structure diagram of this study based on the BERT‑DPCNN

model as an example of studying the Tibetan SBD based on the BERT + deep learning
model. After training on the BERT model to obtain the representation of each token, it is
inputted into the deep learning model for the second stage of training. Finally, the label of
each clause is obtained by the softmax function. Training datamay contain several clauses,
assuming that each clause is represented by S. The clause where the shad (“།”) containing
the end‑of‑sentencemarker is labeled as a positive sample, and the other labels are negative
samples. Suppose the clause S contains n tokens (where n is determined according to the
length of (S), then S is a sequence consisting ofw1, w2, …, we. In this study, we use p(k|S; θ)
to denote the probability that the shad (“།”) at the end of the current clause fragment is the
true clause token k, where θ is a parameter in the network.

After obtaining the vector representation xi of the syllable wi, a linear transformation
will be performed with a tanh linear activation function to send the result to the next layer.

y(1)i = tanh(W(2)xi + b(2)) (8)

After all, the token is represented as a vector, and this study uses a maximum pool‑
ing layer to convert clauses of different lengths into fixed‑length vectors that capture the
information of the entire sentence.

y(2) = maxi=1,...ny(1)i (9)

Themax function is themaximum function and the kth element of y(2) is themaximum
of the kth element of y(1)i . The pooling layer uses the output of the loop structure as input.
The model ends with the output layer, which is defined as follows:

y(3) = W(3)y(2) + b(3) (10)

Finally, the output number y(3) is converted into a probability using the softmax func‑
tion, i.e.,the probability that the current clause’s shad (“།”) is an accurate end‑of‑sentencemarker.

pi =
exp(y(3)i )

∑n
k=1 exp(y(3)k )

(11)

4. Experimental Setup and Results
4.1. Experimental Setting

This study uses an NVIDIA V‑100 GPU to train the model. The manufacturer of
NVIDIA V‑100 GPU is NVIDIA Corporation. The company is headquartered in Santa
Clara, CA,USA.When themodel is trained, eachparameter’s parameter settings are shown
in Table 3. This study uses the Tibetan BERT pre‑trained language model based on BEP
and Sentencepiece subword methods. The checkpoints are saved each time the model is
trained, and finally, the training ends when the loss does not drop for 1000 consecutive
batches on the validation set, and the model is tested on the model with the highest perfor‑
mance checkpoints.
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Table 3. Experimental parameter settings.

Parameters Values

batch 128
pad size 32

learning rate 5 × 10−5
epoch 10

hidden Size 768
window size 3, 5, 10, 15

vocab size (Multi‑BERT) 119,547
vocab size (BPE) 32,000
vocab size (SP) 40,206

vocab size (TiBERT) 30,005

4.2. Experimental Data
The research found that there are fewer publicly available standardized electronic

data in Tibetan, and it is necessary to collect experimental data that can satisfy the SBD
task before conducting the research. The Tibetan data in this study is mainly a corpus
of 13 types of news data obtained from the crawler of the Yunzang Tibetan search engine
(https://www.yongzin.com/), and the data are organized by the State Key Laboratory of Ti‑
betan Information Processing and Application of Qinghai Normal University, which con‑
structs a Tibetan sentence database of 465,669 sentences [54]. In this study, rule‑based
methods generate Gold standard data definitions and then manually proofread them to
ensure the accuracy and reliability of the data. “Generated by rule‑based methods” means
data are created using predefined rules or algorithms. “Manual proofreading” is usually
performed by experts or teams with specialized knowledge and experience, who will scru‑
tinize and compare the data to ensure accuracy, completeness, and reasonableness. Statis‑
tically, the length of the units in the experimental data cut by a shad (“།”) is from 3 to 50
syllables. This study divides the training set, test set, and validation set according to the
ratio of 8:1:1. To verify the generalizability of the pre‑trained language models on the task
of sentence boundary disambiguation, this study experiments with the English SBD based
on the BERT and Multi‑BERT with English data from the “Europarl” corpus [55].

For the experiments data in this study, a complete Tibetan sentence is randomly se‑
lected and labeled according to the training requirements. For instance, we have the follow‑
ing: “ཤེས་རྟོགས་ུང་བར་གཞིགས་ན། ན་ནིང་བོད་ོངས་ིས་རྒྱལ་ཁབ་ིས་མ་རྩ་བཏང་ེ་འཛུགས་ུན་བྱས་པའི་མངོན་མིན་རི
ག་གནས་ཤུལ་བཞག་ུང་ོབ་བེད་སྤྱོད་ིག་བཀོད་རྣམ་གྲངས10བཀོད་ིག་དང་ལག་བསྟར་བྱས་པར་མ་དངུལ་བསྡོམས་འབོར་ོར
་ི10055བཏང་བ་དང་། རིམ་ིས་བརྒྱབ་ན་མ་དངུལ་ོར་ི3342བཏང་ེ་རྣམ་གྲངས་འཛུགས་ུན་ལས་དོན་ལ་ུལ་འདེད་མོ
གས་པོ ་བཏང་ ཡོད་པ་རེད།” Separate the training data with a shad (“།”): “ཤེས་རྟོགས་ུང་བར་གཞིགས་ན།”,
“ན་ནིང་བོད་ོངས་ིས་རྒྱལ་ཁབ་ིས་མ་རྩ་བཏང་ེ་འཛུགས་ུན་བྱས་པའི་མངོན་མིན་རིག་ གནས་ཤུལ་བཞག་ུང་ོབ་བེད་སྤྱོད་
ིག་བཀོད་རྣམ་གྲངས10བཀོད་ིག་དང་ལག་བསྟར་བྱས་པར་མ་དངུལ་བསྡོམས་འབོར་ོར་ི10055བཏང་བ་དང་།”, “རིམ་ིས་
བརྒྱབ་ན་ མ་དངུལ་ོར་ི༣༣༤༢བཏང་ེ་རྣམ་ གྲངས་འཛུགས་ུན་ལས་དོན་ལ་ུལ་འདེད་མོགས་པོ་བཏང་ཡོད་པ་རེད།”. The
result after cutting by BPE method is as follows: “ཤེས ་ རྟོགས ་ ུང ་ བར ་ [UNK] ་ ན ། ན
་ [UNK] ་ བོད ་ ོངས ་ ིས ་ རྒྱལ ་ ཁབ ་ ིས ་ མ ་ རྩ ་ བཏང ་ ེ ་ འཛུགས ་ ུན ་ བྱས ་
པའི ་ མངོན ་ མིན ་ རིག ་ གནས ་ ཤུལ ་ བཞག ་ ུང ་ ོབ ་ [UNK] ་ སྤྱོད ་ ིག ་ བཀོད ་ རྣམ ་
[UNK] ་ ིག ་ དང ་ ལག ་ [UNK] ་ བྱས ་ པར ་ མ ་ དངུལ ་ [UNK] ་ འབོར ་ ོར ་ [UNK]
་ བ ་ དང ་ ། རིམ ་ ིས ་ བརྒྱབ ་ ན ་ མ ་ དངུལ ་ ོར ་ [UNK] ་ ེ ་ རྣམ ་ གྲངས ་ འཛུགས ་
ུན ་ ལས ་ དོན ་ ལ ་ ུལ ་ [UNK] ་ མོགས ་ པོ ་ བཏང ་ ཡོད ་ པ ་ རེད །”. In this study,
the last fragment is labeled as “1” and the rest of the fragments are labeled as “0” in the
training phase. The last segment “རིམ་ིས་བརྒྱབ་ན་མ་དངུལ་ོར་ི3342བཏང་ེ་རྣམ་གྲངས་འཛུགས་ུན་ལས་
དོན་ལ་ུལ་འདེད་མོགས་པོ་བཏང་ཡོད་པ་རེད།”, when we set the window size to 10, the sequence of 10

https://www.yongzin.com/
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tokens before the shad (“།”) is preserved during training, the sequence is as follows: “པོ ་
བཏང ་ ཡོད ་ པ ་ རེད །”. Figure 3 shows the statistics of clause lengths after shad (“།”) sepa‑
ration. According to the related research on determining the end position of a sentence by
analyzing the words near the punctuation mark and the lexical properties of the words, in
this study, we set the window sizes in the experiments to reduce the training cost, which
are 3, 5, 10, and 15, respectively.
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4.3. Evaluation Metrics
To evaluate the model’s performance, the experiments in this study choose three nec‑

essary indicators for evaluating the deep learning model: precision, recall, and F1‑score.
Due to the large gap between the total number of positive and negative samples in the
data and considering that the imbalance of the samples will lead to bias in the results, the
weighted average of these three indicators is finally chosen to measure the model’s effi‑
ciency. In the experimental results listed subsequently, P, R, and F1 represent precision,
recall, and F1‑score, respectively.

4.4. Experimental Results
This study uses pre‑trained language models to explore the Tibetan SBD method. To

verify the reliability of the experimental data in the sentence boundary disambiguation
task, the pre‑trained language model of Tibetan BERT based on two subword methods,
BPE and Sentencepiece, was firstly trained, and the experiments of Tibetan sentence bound‑
ary disambiguation were carried out on BERT (BPE), BERT (SP), the publicly available
TiBERT model and Multi‑BERT model. Meanwhile, related experiments were conducted
on BERT combined with classical deep learning models (BERT‑CNN, BERT‑RNN, BERT‑
RCNN, BERT‑DPCNN). In this study, the parameter settings for training the BERT pre‑
trained language model are consistent with Google’s publicly available BERT base param‑
eter settings, and the Tibetan SBD experiments are conducted on the trained models.

4.4.1. Tibetan Sentence Boundary Disambiguation Based on BERT (BPE) and BERT
(Sentencepiece)

In this study, we first validate the Tibetan sentence boundary disambiguation based
on BERT (BPE) and BERT (Sentencepiece), and the experimental results are shown in
Tables 4 and 5.
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Table 4. Tibetan SBD based on BERT (BPE) pre‑trained language models.

BERT (BPE) Window = 3 Window = 5 Window = 10 Window = 15

P R F1 P R F1 P R F1 P R F1

BERT 94.91 94.92 94.9 94.62 94.59 94.55 95.19 95.2 95.19 94.91 94.89 94.9
BERT‑CNN 94.94 94.93 94.9 94.76 94.73 94.69 95.32 95.32 95.32 94.15 94.16 94.15
BERT‑RNN 94.82 94.81 94.78 94.9 94.9 94.88 95.12 95.12 95.1 94.73 94.7 94.71
BERT‑RCNN 95.04 95.05 95.03 94.81 94.79 94.76 95.24 95.24 95.23 94.74 94.75 94.74
BERT‑DPCNN 94.3 94.3 94.27 94.94 94.95 94.94 95.26 95.26 95.24 94.49 94.5 94.48

Table 5. Tibetan SBD based on BERT(SP) pre‑trained language models.

BERT (SP) Window = 3 Window = 5 Window = 10 Window = 15

P R F1 P R F1 P R F1 P R F1

BERT 88.55 88.58 88.56 90.21 90.26 90.20 90.60 90.63 90.61 91.47 91.49 91.47
BERT‑CNN 88.57 88.55 88.56 90.51 90.51 90.51 90.88 90.88 90.88 90.61 90.64 90.62
BERT‑RNN 88.74 88.75 88.75 90.34 90.36 90.35 94.47 90.51 90.47 45.23 38.54 37.33
BERT‑RCNN 88.36 88.38 88.37 90.49 90.53 90.50 90.88 90.91 90.88 90.57 90.59 90.51
BERT‑DPCNN 88.75 88.77 88.76 90.35 90.36 90.35 91.34 91.37 91.34 91.15 91.16 91.15

Tables 4 and 5 show that the performance of Tibetan SBD based on BERT (BPE) is
about 5% higher than that of Tibetan SBD based on BERT (Sentencepiece). In the experi‑
ments of Tibetan SBD based on BERT (BPE), the highest F1 value is 95.32%, and the lowest
is 94.9%; for BERT (BPE), on the BERT‑CNN model, the highest F1 score is found when
the window is 10, followed by the performance of the BERT‑RCNN model when the win‑
dow is 3, with an F1 score of 95.03%, and the performance of the model based on BERT
(BPE) + deep learning model is 95.03%. The metrics differ when the model and window
are different. However, the overall is around 95%. Table 5 shows the Tibetan SBD based
on the BERT (SP) model practiced in this study, and the overall F1 of the Tibetan SBD
performance based on BERT (SP) is between 88.76% and 91.47%. All the performances
tend to increase during the process of increasing the window. Still, the maximum value is
3–4 percentage points different from BERT (BPE). Tables 4 and 5 show that the window
change has a more noticeable effect on BERT (SP). At the same time, the performance of
BERT(BPE) is more stable with the increase in the window, which also verifies the scien‑
tific and referable nature of the related literature in determining whether the shad (“།”) is
an accurate end‑of‑sentence marker or not by analyzing the words on the left side of the
shad (“།”) and the linguistic properties of the words.
4.4.2. Tibetan SBD Based on Publicly Available BERT Pre‑Trained Language Models

To compare the effectiveness of the pre‑trained language models in this study, the
Tibetan SBD based on the publicly available pre‑trained language model TiBERT and the
multilingual model Multi‑BERT are produced, and the Tibetan SBD based on the
BERT+deep learning (BERT‑CNN, BERT‑RNN, BERT‑RCNN, BERT‑DPCNN) model is
also compared with the performance. During the study of SBD based on a pre‑trained
language model, it is found that there are also Tibetan elements present in Multi‑BERT,
namely, “།”, “ག”, “ང”, “ག”, “ཆ”, “ད”, “ན”, “པ”, “བ”, “མ”, “ཚ”, “ར”, “ལ”, “ས”, “ི”, “ེ”, “ེ”,
“ོ”, “ྒ”, “ྫ”, and “ྱ”, which contain the commonly used Tibetan end‑of‑sentence punctu‑
ation mark “།” and the syllable separator “་”. Multi‑BERT cuts words based onWordpiece,
while TiBERT cuts words based on Sentencepiece. The experimental results based on TiB‑
ERT and Multi‑BERT are shown in Tables 6 and 7.
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Table 6. Sentence boundary disambiguation in Tibetan based on TiBERT.

TiBERT
Window = 3 Window = 5 Window = 10 Window = 15

P R F1 P R F1 P R F1 P R F1

TiBERT 89.6 89.58 89.59 91.45 91.47 91.46 90.85 90.88 90.86 90.31 90.36 90.32
TiBERT‑CNN 90.02 90 90.01 90.27 90.25 90.26 90.38 90.39 90.39 90.43 90.47 90.44
TiBERT‑RNN 90.05 90.05 90.05 90.38 90.4 90.39 90.38 90.41 90.39 91.34 91.32 91.33
TiBERT‑RCNN 90.01 89.98 89.99 90.4 90.35 90.37 90.42 90.42 90.42 90.63 90.6 90.62

TiBERT‑
DPCNN 90.06 90.04 90.05 90.28 90.23 90.25 90.84 90.86 90.85 90.34 90.35 90.34

Table 7. Sentence boundary disambiguation in Tibetan based on Multi‑BERT.

Multi‑BERT
Window = 3 Window = 5 Window = 10 Window = 15

P R F1 P R F1 P R F1 P R F1

BERT 89.48 89.53 89.44 89.44 89.49 89.42 89.01 89.04 88.93 39.94 63.19 48.94
BERT‑CNN 88.35 88.30 88.12 89.96 89.96 89.86 88.78 88.84 88.77 39.94 63.19 48.94
BERT‑RNN 88.68 88.73 88.63 90.64 90.68 90.64 90.43 90.44 90.34 69.75 70.67 69.42
BERT‑RCNN 89.26 89.31 89.27 89.59 89.63 89.54 91.05 91.07 91.00 73.34 37.32 20.95
BERT‑DPCNN 88.66 88.72 88.66 89.45 89.45 89.45 90.32 90.29 90.17 13.55 36.81 19.8

As can be seen fromTable 6, the performance of the TiBERT‑basedTibetan SBDmethod
is close to that of BERT (SP), with an overall F1 of 89.99–91.33%. The performance of the
TiBERT‑based pre‑trained language model is more stable when the window is changed.
The TiBERT model has the most considerable F1 value at a window of 5, 91.46%, followed
by the TiBERT‑RNN at an F1 value when the window is 15, which is 91.33%, and under
the same window setting, the change of the model has a more subtle effect on the accuracy.
This also proves that the Tibetan‑based BERT pre‑training model will have room for im‑
provement after changing the subword method and training corpus. Expanding the size
of the Tibetan pre‑trained language model corpus is necessary to train an efficient Tibetan
pre‑trained language model.

This study explores the existing publicly available Multi‑BERT pre‑trained language
model for Tibetan sentence boundary disambiguation, and the experimental results are
shown in Table 7. Table 6 shows that the performance of Tibetan SBD based on Multi‑
BERT is partially close to that of Tibetan SBD based on Sentencepiece. From Table 7, it can
be found that the Multi‑BERT pre‑trained model can recognize a part of Tibetan sentence
boundaries. The five models show a trend of increasing and then decreasing evaluation
indexes, such as F1, as the window increases, and the performance based on BERT‑RCNN
is the optimal value among all the experiments, reaching 91%when the window is 10. The
experimental results show that in the experiments based onMulti‑BERTmodels, the effect
of BERT‑based combined with deep learning models is improved over BERT alone.

4.4.3. Comprehensive Performance Comparison of Tibetan SBD under Four Pre‑Trained
Language Models
(1) Comparison of average metrics

Table 8 and Figure 4 compare the average metrics on the four pre‑trained language
models to compare the performance of Tibetan SBD.
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Table 8. Average values on the four pre‑trained language models.

Average
Values

BERT(BPE) BERT(SP) TiBERT Multi‑BERT

P R F1 P R F1 P R F1 P R F1

BERT 94.91 94.9 94.89 90.21 90.24 90.21 90.55 90.57 90.56 76.97 82.81 79.18
BERT‑CNN 94.79 94.79 94.77 90.14 90.14 90.14 90.28 90.28 90.28 76.76 82.57 78.92
BERT‑RNN 94.89 94.88 94.87 79.70 77.04 76.73 90.54 90.55 90.54 84.88 85.13 84.76
BERT‑RCNN 94.96 94.96 94.94 90.08 90.10 90.07 90.37 90.34 90.35 85.81 76.83 72.69
BERT‑DPCNN 94.75 94.75 94.73 90.40 90.42 90.4 90.38 90.37 90.37 70.50 76.32 72.02
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From Table 8 and Figure 4, it can be seen that there are specific differences in the av‑
erage SBD indicators of the five models on the four pre‑trained language models: BERT
(BPE), BERT (SP), TiBERT, and Multi BERT. The performance of BERT (BPE) and TiBERT
pre‑trained language models is relatively stable, with the highest average performance on
the BERT (BPE) model, followed by the TiBERT model, and the lowest average perfor‑
mance on Multi‑BERT. BERT (BPE) outperforms other models by four percentage points.
Table 7 shows that on the Multi‑BERTmodel, the performance indicators become unstable
with the increase in windows. We know that, during text segmentation and pre‑training,
other pre‑trained languagemodels include all Tibetan letters (30 consonants and four vow‑
els). At the same time, the vocabulary in Multi‑BERT only contains a portion of Tibetan
letters. Therefore, during training, when segmenting the corpus, a lot of “[UNK]” will be
generated, which significantly impacts understanding the text’s meaning.

(2) True Positive Comparison

In the experiments of this study, the data of the Tibetan test machine is 46,564 entries.
After segmentation by the shad (“།”), a total of 126,762 labeled data units are obtained,
including 46,564 positive samples (labeled as “1”) and 80,198 negative samples (labeled as
“0”). The focused task of SBD is to determine the probability that a shad (“།”) with a clause
function is recognized as correct. Therefore, this experiment compares the number of True
Positive samples for each model in data prediction based on the BERT(BPE) and TiBERT
(public Tibetan pre‑trained language model), as shown in Table 9.
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Table 9. Ture Positive samples of Tibetan SBD based on BERT(BPE) and TiBERTwith fourwindow sizes.

True Positive
Window = 3 Window = 5 Window = 10 Window = 15

BERT
(BPE) TiBERT BERT

(BPE) TiBERT BERT
(BPE) TiBERT BERT

(BPE) TiBERT

BERT 42,553 40,128 41,693 40,909 43,071 40,388 43,655 39,589
BERT‑CNN 42,175 40,409 41,815 40,629 43,548 40,316 42,188 39,995
BERT‑RNN 42,145 40,259 42,333 40,205 42,564 39,985 43,666 41,365
BERT‑RCNN 42,677 40,537 42,044 40,915 42,849 40,466 42,847 40,921
BERT‑DPCNN 41,790 40,431 42,880 40,835 42,683 40,579 42,236 40,290

From Table 9, it can be seen that the predicted number of TP samples of different mod‑
els is consistent with Tables 4 and 6, primarily, under the same window, the BERT(BPE)
syncopation performs better than the TiBERT model, which in line with the experimen‑
tal data in the previous study, and at the same time, for the same pre‑trained language
model, the number of TP samples in the process of window change is also consistent with
the results in the previous table, so that the BERT model trained by using the BPE sub‑
word method is better suited for the Tibetan SBD task, and this provides a preprocess‑
ing method for subsequent downstream tasks and pre‑trained language model datasets to
be constructed.

4.4.4. Experimental Result of Sequence Labeling SBD
This study conducts sequence labeling experiments on HMM, CRF, Bi‑LSTM, and

Bi‑LSTM‑CRF models. The experimental results are shown in Table 10. A, P, R, and F1
represent the accuracy, precision, recall, and F1 score.

Table 10. Experimental result of sequence labeling SBD.

Models HMM CRF Bi‑LSTM Bi‑LSTM‑CRF

Labels P R F1 P R F1 P R F1 P R F1

B 81.22 91.59 86.10 95.27 94.07 94.67 71.60 97.00 82.38 90.53 96.91 93.61
E 81.14 90.79 85.70 95.27 94.09 94.68 77.78 96.37 86.08 90.52 96.85 93.58
M 99.68 99.24 99.46 99.79 99.83 99.81 99.88 98.81 99.34 99.89 99.63 99.76

Avg/Total 99.04 98.96 98.99 99.63 99.63 99.63 99.00 98.74 98.82 99.56 99.54 99.55

Table 10 shows the SBD results based on the sequence labeling methods. We know
that when the sequence labeling methods for SBD are trained, most syllables are labeled
with label M, so there is a problem of label imbalance. We can see from Table 10 that the F1
of labelM is the highest among the fourmodels, followedby label E, and label B is theworst.
It can be seen from Table 4 that the average F1 of the three labels under the four models
ranges from 98.82% to 99.63%, but the accuracy of the three labels varies greatly. Since
label M is the most significant proportion of labels in the training data, its F1 is the highest,
ranging from 99.34% to 99.81%, label B from 82.38% to 94.67%, and label E from 85.7 to
94.68%. This study focuses on SBD, and we should pay more attention to the evaluation
index of the label E. For themetric of label E, CRF and the Bi‑LSTM‑CRF have the best effect
among the four models, and their performance is approximately 94.68%, followed by Bi‑
LSTM,which is 86.08%, and the F1 ofHMM is the lowest, which is 85.7%. It can be seen that
among the sequence labeling methods based on deep learning, the CRF Method is better
than Bi‑LSTM, and Bi‑LSTM‑CRF ismuch higher than Bi‑LSTM.We can conclude that CRF
can improve the performance of sequence labeling SBD. It can be seen that for the sequence
labeling method to realize SBD, the evaluation results show significant differences among
labels due to the imbalance of labels.
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4.4.5. English Sentence Boundary Disambiguation Based on BERT and Multi‑BERT
In the previous study, the Tibetan SBDwas verified on the TibetanBERTmodel trained

in this study and the publicly available Tibetan BERT model, and from the results, it can
be seen that the BERT (BPE) trained in this study has the best performance, followed by
the publicly available pre‑trained language model for Tibetan, TiBERT, and the BERT (SP)
trained in this study. In contrast, the SBD for Tibetan based on Multi‑BERT has the worst
experimental results in the previous study. To verify the generalizability of the pre‑trained
languagemodels on the task of sentence boundary disambiguation, this study experiments
with the English SBD based on the BERT and Multi‑BERT, and the window sizes were set
to 3 and 5. The experimental results are shown in Tables 11 and 12.

Table 11. English sentence boundary disambiguation based on BERT (uncased).

BERT (Uncased)
Window = 3 Window = 5 Average

P R F1 P R F1 P R F1

BERT 98.04 98.37 98.09 98.32 98.43 98.13 98.18 98.40 98.11
BERT‑CNN 98.17 98.36 98.09 98.30 98.46 98.21 98.24 98.41 98.15
BERT‑RNN 98.16 98.4 98.13 98.21 98.44 98.17 98.19 98.42 98.15
BERT‑RCNN 98.06 98.35 98.08 98.28 98.44 98.20 98.17 98.40 98.14
BERT‑DPCNN 98.16 98.39 98.09 98.18 98.43 98.18 98.17 98.41 98.14

Table 12. English sentence boundary disambiguation based on Multi‑BERT.

Multi‑BERT
(Uncased)

Window = 3 Window = 5 Average

P R F1 P R F1 P R F1

BERT 98.21 98.41 98.14 98.34 98.45 98.16 98.28 98.43 98.15
BERT‑CNN 98.18 98.39 98.15 98.29 98.44 98.18 98.24 98.42 98.17
BERT‑RNN 98.17 98.4 98.12 98.23 98.44 98.19 98.20 98.42 98.16
BERT‑RCNN 98.16 98.38 98.14 98.26 98.43 98.14 98.21 98.41 98.14
BERT‑DPCNN 98.14 98.39 98.13 98.2 98.41 98.15 98.17 98.40 98.14

FromTables 11 and 12, we can see that when BERT andMulti BERT are introduced for
English sentence boundary disambiguation, they achieve more than 98% disambiguation
effect, respectively. Meanwhile, wefind that the F1 score is slightly higher thanBERTwhen
Multi BERT is used for sentence boundary disambiguation, and the indexes are slightly
improved when the window is increased from 3 to 5. Under the BERT pre‑trained lan‑
guage model, all the sentence boundary disambiguation methods based on the improved
BERT model (i.e., BERT‑CNN, BERT‑RNN) have slightly improved than the BERT model,
in which the F1 value of the BERT‑CNN is the highest. Under the Multi BERT pre‑trained
language model, the performance of SBD based on the BERT model is higher than that
based on the improved BERTmodel (i.e., BERT‑CNN and BERT‑RNN), so from the results
of the English SBD experiments, it can be seen that the English SBD performance is higher
than Tibetan SBD performance because there is ambiguous punctuation in English as “.”,
from the previous introduction, it is known that for the English punctuation “.”, 54.7–92.8%
of them appear at the end of the sentence, about 90% indicate the end of the sentence, 10%
indicate an abbreviation, and 0.5% both, so it is easier to distinguish whether it is an end‑
of‑sentence marker or not while in Tibetan, the structure of Tibetan characters is complex,
the function of a shad (“།”) is more diverse, and there are marking phrases, fragments, and
end‑of‑sentencemarkers inmany cases, so the problem of SBD in Tibetan has been amatter
of concern and deserves more investigation.

5. Discussion
This study explores Tibetan SBD based on pre‑trained languagemodels, which solves

someproblems that traditionalmethods cannot solve, but there are still some shortcomings.
Compared with mainstream languages such as Chinese and English, the data resources of
Tibetan are relatively limited. This leads to the problem that deep learning models may
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need more data during training, affecting SBD accuracy. Deep learning‑based Tibetan
SBD models are often trained for specific domains or datasets, and their generalization
ability could be improved. The model’s performance may be affected when applied to
other domains or datasets.

6. Conclusions and Future Work
Building a high‑quality training corpus has become increasingly important for the ap‑

plication and development of the “pre‑training + fine‑tuning” model in the field of NLP.
Since it is costly to build the datasetmanually, it has become a trend to build it through com‑
puter modeling. In this study, to improve the efficiency of the Tibetan sentence boundary
disambiguation model, we first analyze the characteristics of existing Tibetan pre‑trained
language models on the SBD task, then train the Tibetan BERT pre‑trained model based
on different subword methods and finally validate the performance of the Tibetan SBD on
four different pre‑trained language models, namely, BERT (BPE), BERT (SP), TiBERT, and
Multi‑BERT. The performance of SBD on pre‑trained + four classical deep learning models
with different windows is studied. The experimental results show that the method in this
study has some generality in SBD tasks, and the BPE subword approach is more suitable
for the Tibetan SBD task. In later work, the corpus size will be expanded further. The
open corpus will be supplemented for more in‑depth validation of the model, and at the
same time, we will try to apply the method of this study in the data preprocessing stage
of Tibetan machine translation, summary extraction, text generation, and pre‑trained lan‑
guage models. The future improvement directions mainly include two parts. Firstly, we
aim to establish a larger Tibetan corpus, including text data from different fields and styles.
Secondly, a deeper understanding of the rules of Tibetan language in terms of grammar
structure, language features, and the use of punctuation can provide more accurate evi‑
dence for SBD.
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