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Abstract: Recently, for the high performance of automobiles, the application ratio of zinc-coated
steel sheets with excellent corrosion resistance has been increasing. However, it is difficult to achieve
sound welds, as porosities form from zinc during welding. In this study, a laser welding process,
with the addition of a pretreatment step to conventional laser welding, was devised to improve
weld quality by eliminating pores caused by zinc in the welds. Laser welding was performed on
the overlapping joint of hot-dip galvanized steel sheets (SGARC 340, Hyundai Steel., Suncheon-Si,
Jeollanam-do, Republic of Korea), with a thickness of 1.2 mm in the upper sheet and 0.9 mm in
the lower sheet, and the welding characteristics were investigated by varying the laser power and
focal position. Compared to conventional laser welding, the three-step laser stitch welding process
significantly reduced the degree of spatter generation and welding defects. Additionally, it increased
the tensile–shear load by approximately 37%. Moreover, the reduction in the zinc component of the
three-step laser stitch welds was confirmed through SEM-EDS analysis. These findings contribute
valuable information for securing high-quality welding joints and effectively addressing zinc-coated
steel sheet welding quality issues in the automotive and industrial sectors.

Keywords: hot-dip galvanized steel; three-step laser stitch welding; zinc removal effect; porosity control

1. Introduction

Zinc-coated steel sheets [1], widely utilized as automotive materials, have consistently
seen an increasing adoption rate compared to non-coated steel sheets [2]. However, the
application of zinc-coated steel sheets has been accompanied by challenges during welding
due to their significantly lower melting and vaporization temperatures of the zinc layer
compared to steel sheets, resulting in welding defects such as blow holes and pits [3–7].
This issue arises from the formation and growth of porosities within the molten pool caused
by zinc vapor [8–11], and various methods have been continuously devised to prevent such
welding defects [10,12–17].

Graham, M. P. et al. verified the reduction in welding defects by creating a fine gap for
zinc vapor discharge between the overlapping joints of galvanized steel sheets [12]. Gu, H.
et al. improved weld quality by combining a YAG laser with a TIG welding process, using
additional energy from the TIG plasma to sustain the keyhole during welding [13]. Li, X.
et al. devised a method for inserting a thin aluminum foil for generating an Al-Zn alloy
between the overlapping joints of a galvanized steel sheet using a relatively low melting
point (about 660 ◦C) and a high vaporization point (about 2519 ◦C) [14]. Han, S.-W. et al.
obtained a higher performance of pore-free welding in the GMA process by reducing the
CTWD and using ER70S-3 wire (Harris Products Group, Mason, OH, USA) [15]. Although
these methods have suggested a solution to significantly reduce welding defects, they have
a series of problems that additional processes or equipment are indispensable.
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Therefore, methods for improving the quality of galvanized steel sheet welds solely
through laser welding equipment, without the need for an additional separate process,
have been newly proposed. Xiong, W. et al. reported that reducing the spiral spacing in
laser spiral welding processes of galvanized steel sheet material had a greater effect on
pore suppression than increasing keyhole velocity [10]. Ma, J. et al. improved the quality
of the welds by devising a two-pass welding process to remove the galvanized layer by
irradiating the galvanized steel sheet with a laser in the pre-heating mode before the main
welding [16]. Young-Nam, A. et al. reviewed and verified the applicability of two-pass
welding during the laser welding of galvanized steel sheets [17].

In this study, we tried to apply a pretreatment procedure that added pre-heating steps
before the main welding to control the porosity of galvanized steel sheets by eliminating
the galvanized layer. This welding process, named three-step laser stitch welding, was
devised to secure sound welds during the overlap welding of SGARC 340 material for
automobile body parts. Through the first and second steps, zinc vaporization was induced
to remove the zinc plating layer, and in the third step, penetration depth was secured by
increasing the power, and main laser welding was performed. These entire steps were
carried out using a single laser heat source without the need for additional processes or
equipment. Furthermore, to investigate the characteristics of weld quality according to
the change in process parameters during laser welding, the reliability of the weld was
assessed by considering the weld bead characteristics and the mechanical and metallic
characteristics.

2. Experimental Method
2.1. Material and Welding Method

In this study, we used galvanized steel sheets (SGARC 340) as the base metals. The
upper sheet had a thickness of 1.2 mm and dimensions of 270 mm (length) × 105 mm
(width), while the lower sheet was 0.9 mm thick with the same dimensions. The mechanical
properties and chemical compositions of the material are shown in Table 1. As shown in
Figure 1, laser stitch welding was performed with a bead length of 20 mm and an overlap
length of 35 mm.

Table 1. Chemical compositions and mechanical properties of SGARC340.

Chemical Composition (wt%)

C Si Mn P Ti S-AL
0.001 0.048 0.005 0.01 0.43 0.033

Mechanical Properties

Tensile Strength (MPa) Yield Strength (MPa) Elongation (%)

359 198 39%
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2.2. Welding Process and Conditions

The laser stitch welding process for galvanized steel sheets devised in this study
consists of a total of three steps, and a detailed step-by-step schematic diagram is shown in
Figure 2. The first step involves using the laser in the partial penetration mode to remove
the zinc plating layer from the welds and induce zinc vaporization by melting the material
down to the top surface of the lower sheet. In the second step, the laser irradiation direction
is reversed and returned to the starting position. This step releases the residual zinc and
pre-heats the welds by irradiating a laser beam with relatively low power. The third step
is performed using the full penetration mode, ensuring a penetration depth up to the
appropriate thickness of the lower sheet of the material.
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Figure 2. Schematic diagram of the three-step laser welding process.

In this study, laser welding was performed using a CW fiber laser (LMS, MAT-040HC,
MAT, Seoul, Republic of Korea) with a maximum output power of 4 kW and a wavelength
of 1070 nm. Nitrogen (N2) shielding gas was supplied with a flow rate of 10 L/min to
prevent oxidation during welding. The pitch was set to 40 mm to minimize the thermal
impact on subsequent stitch welds. The bead length was set to 20 mm in order to minimize
thermal deformation caused by high-temperature laser welding. The first and second steps
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of the three-step laser welding had the fixed welding speed and laser power as shown in
Table 2. These conditions were designed to remove the galvanized layer of the top and
bottom surfaces of the upper sheet, which can cause defects during welding before the main
welding process begins. In the final step, the welding speed was fixed at 35 mm/s, while
the laser power (LP) and focal position (FP) were selected as variable process parameters.
The laser power was increased from 2 to 2.8 kW at intervals of 0.4 kW, and the focal position
was increased from 20 to 30 mm at intervals of 5 mm.

Table 2. Welding conditions used for three-step laser stitch welding.

Welding Condition
Step

1 2 3

Laser power, LP (kW) 1.6 0.8 2.0, 2.4, 2.8
Focal position, FP (mm) 20, 25, 30 20, 25, 30 20, 25, 30
Welding speed (mm/s) 30 60 35

Bead length (mm) 20
Shielding gas (L/min) 10

Focal length (mm) 265
Pitch (mm) 40

2.3. Evaluation Method of Weld Characteristics

In this study, we evaluated the characteristics of the weld bead, including its appear-
ance and cross-section, to analyze how different process parameters affect welding during
laser stitch welding. Additionally, we conducted tensile–shear and Vickers hardness tests to
evaluate the mechanical properties. The tensile–shear test was conducted using a hydraulic
tensile test machine (SHIMADZU, EHF-EG200KN-40L, Kyoto, Japan) at a loading speed of
2 mm/min. The hardness distribution was measured across the transverse direction of the
weld cross-section using a micro-Vickers hardness tester (AKASHI, HM-112, Tokyo, Japan).
A 500 g load was applied with a dwell time of 10 s, at intervals of 0.2 mm, starting from the
welded specimen’s upper surface. To validate the pore control effect in the three-step laser
stitch welding process, we conducted SEM-EDS (Scanning Electron Microscopy-Energy
Dispersive Spectroscopy) analysis. The FE-SEM equipment used was the SU5000 from
HITACHI, Tokyo, Japan, and the EDS equipment was the c-nano from Oxford Instruments,
Oxford, UK. Additionally, internal inspection was performed using radiographic testing
with the XXG-3005 unit from Dandong Huari, Dandong City, China.

3. Results and Discussion
3.1. Bead Characteristics

The vaporizing point of zinc (about 907 ◦C) is much lower than the melting point of
the steel material (about 1500 ◦C) [18,19]. Therefore, when fusion welding is performed
on the overlap joint of the galvanized steel sheet, zinc remains in the welds due to the
high viscosity of the molten pool and solidification starting from the surface of the welds,
leading to welding defects due to the formation and growth of pores caused by the zinc
vapor [20,21]. Figure 3 shows a cross-section image of the bead surface and the conventional
laser welds that has not gone through the pretreatment step for the galvanized steel sheet.
In the bead surface image, it was confirmed that the appearance quality deteriorated due
to a higher number of spatters generated by the eruption of zinc vapor in the molten pool.
In the cross-sectional image, internal pores that had not yet escaped from the molten pool
were identified.
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red line.

Figure 4 shows a cross-section image of each step in the three-step laser welding
process that has gone through the pretreatment step for the galvanized steel sheet. In the
cross-sections of the first and second step processes, it was confirmed that heat input was
applied to the surface of the lower sheet in accordance with the purpose of removing the
galvanized layer. In the cross-section image of the third step process, the main welding
process was executed, and it was confirmed that complete penetration to the back side of
the lower sheet material was achieved.
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Table 3 shows the weld bead appearances (front bead and back bead) of the three-
step laser stitch welding, along with cross-sectional images for each condition. Under
all conditions, the weld beads demonstrate a more aesthetic appearance than those of
traditional laser stitch welding shown in Figure 2. This is believed to result from the
pre-removal of the galvanized layer, which causes spatter in steps 1 and 2 of the three-step
process. Looking at each condition in detail, sufficient penetration was not secured under
the laser power of 2 kW, and notably, the unwelded condition was verified at a focal
position of 30 mm. In the case of the 2.4 kW laser power, a sound back bead was formed
under the 20 mm focal position, but as the focal position increased, sufficient penetration
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was not secured. Under the 2.8 kW laser power, sufficient penetration was secured under
all conditions with a focal position of 20–30 mm, and it was confirmed that a sound back
bead was formed.

Table 3. Bead appearance and cross-section of three-step laser welds.

LP (kW) FP (mm) Front Bead Back Bead Cross Section

2 20
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Table 3. Cont.
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3.2. Tensile–Shear Load

As shown in Figure 5, a comparison of the tensile–shear load between conventional
laser welding and three-step laser welding was conducted under the conditions of 2.4 kW
laser power and focal position of 20 mm, where the best quality of the weld bead was
achieved. It was confirmed that the tensile–shear load improved by approximately 37%
compared to the strength of conventional laser welding. This is considered that welding
defects occurred in the welds of conventional laser welding without the pre-removal step
of the galvanized layer, and these are caused local stress concentration and affected tensile
strength. Figure 6 shows the tensile–shear load of the three-step laser welding according
to the changes in laser power and focal position conditions. As a result of comparing the
tensile strength from each laser power at a focal position of 20 mm, the maximum strength
value of 10.2 kN was obtained under the condition of 2.8 kW due to securing a sufficient
weld area and penetration depth. In the focal position of 25 mm, the difference in tensile
strength according to the laser power was clearly found, and the focal position of 30 mm
was judged to be an unsuitable condition resulting from a significantly low tensile strength
value or non-welding.
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laser welding: (a) focal position 20 mm; (b) focal position 25 mm; (c) focal position 30 mm.

3.3. Hardness Profiles

Figure 7 shows images comparing the hardness distribution of conventional laser
welding and a three-step laser welding under the conditions of 2.8 kW laser power and focal
position 20 mm with the highest tensile–shearing load. The hardness distribution interval
was 0.2 mm, and a total of 20 points were measured, 10 points from the left and right in the
center of the welds, and the welds were divided into the weld zone and heat-affected zone.
As a result of the comparison, the average hardness value of the three-step laser welds
increased only slightly to about 11 HV in the upper sheet and about 27 HV in the lower
sheet compared to the conventional laser welds. It is judged that the increased heat input
compared to the conventional laser welding in the three-step laser welding affected the
crystal grain recrystallization and growth.
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3.4. SEM-EDS Analysis

To confirm the zinc removal effect of the welds, SEM-EDS analysis was performed on
the welds of both conventional and three-step laser welding. Figure 8 shows the location of
the SEM-EDS measurement. Spot analysis was performed at a total of three points from
the center of the welds to the upper sheet weld zone, welded bonding interface, and the
lower sheet weld zone. This was performed under the conditions of the laser power of
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2.8 kW and focal position of 20 mm with the highest tensile–shearing load. The component
analysis results were classified into a, b, and c for each analysis location in Figure 9. For
comparison, the measurement results of the conventional laser welds are shown on the left
side of Figure 6, and the measurement results of the three-step laser welds are shown on the
right side. The amount of zinc content at the bonding interface of the overlap joint on the
galvanized steel sheet was 1.78% in the conventional laser welds and 0% in the three-step
laser welds, indicating that the zinc removal effect could be quantitatively confirmed. In
addition, the upper sheet weld zone, the bonding interface, and the lower sheet weld zone
of the three-step laser welds all had 0% of the zinc content, whereas the amount of zinc
content in conventional laser welds was, respectively, 1.41% of the upper sheet weld zone,
1.78% of the bonding interface, and 0.71% of the lower sheet weld zone. This is considered
to be the case due to the fact that the zinc component melts and remains in the molten pool
during the welding process.
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3.5. Radiographic Testing

The radiographic testing method was utilized as a non-destructive testing technique
to inspect the presence of internal pores among welding defects. The X-ray images of the
conventional laser welds and the three-step laser welds under the conditions are shown in
Tables 4 and 5, respectively. As a result of radiographic testing, internal defects in the form
of pores were observed in P1 and P2 of the conventional laser welds. These defects are
considered to be caused by the difficult discharge of zinc vapor during the welding process.
On the other hand, in the welded specimens to which the three-step laser stitch welding
process devised through this study was applied, sound welds could be consistently secured,
regardless of changes in the focal position. It was confirmed that this process was effective
in controlling the defects caused by zinc vapor. This confirmed that three-step laser stitch
welding process was effective in controlling defects caused by zinc vapor.
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Table 4. X-ray radiograph of conventional laser welds.

Welding Condition Radiographic Testing

LP (kW): 2.4
FP (mm): 20
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4. Conclusions

In this study, the reliability of weld quality was secured by comparing and analyzing
weld bead, mechanical, and metallic characteristics to verify the zinc removal effect during
the three-step laser stitch welding on the overlap joint of galvanized steel sheets.

1. The maximum tensile–shear strength value of 10.2 kN was obtained under the condi-
tions of a laser power of 2.8 kW and a focal position of 20 mm in the three-step laser
welding process. As a result, the tensile–shear strength value increased by about 37%
compared to conventional laser welding. These results are due to the mitigation of
pores in the welds by the introduction of the pre-heating step.

2. As a result of radiographic testing and SEM-EDS analysis, the three-step laser welding
process effectively avoids the generation rate of internal pores due to the first and
second steps of removing the galvanized layer in advance. These results indicate that
zinc was not detected in welds without pores.

3. The result of the hardness profile analysis showed slightly higher at about 11 HV
in the upper sheet and 27 HV in the lower sheet during three-step laser welding
compared to conventional laser welding. However, it does not affect the weld quality.
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