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Abstract: This paper introduces a novel deep learning approach for intraday stock price direction
prediction, motivated by the need for more accurate models to enable profitable algorithmic trading.
The key problems addressed are effectively modelling complex limit order book (LOB) and order flow
(OF) microstructure data and improving prediction accuracy over current state-of-the-art models. The
proposed deep learning model, TrioFlow Fusion of Convolutional Layers and Gated Recurrent Units
(TFF-CL-GRU), takes LOB and OF features as input and consists of convolutional layers splitting
into three channels before rejoining into a Gated Recurrent Unit. Key innovations include a tailored
input representation incorporating LOB and OF features across recent timestamps, a hierarchical
feature-learning architecture leveraging convolutional and recurrent layers, and a model design
specifically optimised for LOB and OF data. Experiments utilise a new dataset (MICEX LOB OF) with
over 1.5 million LOB and OF records and the existing LOBSTER dataset. Comparative evaluation
against the state-of-the-art models demonstrates significant performance improvements with the
TFF-CL-GRU approach. Through simulated trading experiments, the model also demonstrates
practical applicability, yielding positive returns when used for trade signals. This work contributes a
new dataset, performance improvements for microstructure-based price prediction, and insights into
effectively applying deep learning to financial time-series data. The results highlight the viability of
data-driven deep learning techniques in algorithmic trading systems.

Keywords: limit order book; order flow; time-series analysis; stock prediction; deep learning;
intraday trading

1. Introduction

Throughout the history of the stock capital markets, investors have sought to predict
share price movements. However, in the early days, the data available to them were limited,
and their methods for processing these data were rudimentary. As time has passed, the
amount of available data has grown exponentially, and new techniques for analysing these
data have been developed. Despite significant technical advancements and sophisticated
trading algorithms, accurately predicting stock price movements remains extremely chal-
lenging for most investors and researchers. Traditional models based on fundamental
analysis (e.g., [1–3]), technical analysis (e.g., [4–6]), and statistical methods (e.g., [7–9]) have
been used for decades, but they often fail to capture the complexity of the problem at hand.
Specifically, these methods are not well suited to handling high-cardinality data, such as
those found in limit order book (LOB) data. Studies, including [10–12], have highlighted
the inadequacy of traditional models in handling the complexity of high-dimensional LOB
data. This complexity arises from the sheer volume and granularity of data present in
the LOB, which encapsulates a multitude of orders and transactions. Traditional models
struggle to navigate and interpret this high-dimensional information, leading to a failure to
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discern subtle patterns and relationships crucial for accurate predictions. The impact of this
limitation is substantial, as it hinders the models’ ability to provide nuanced insights into
the intraday dynamics of stock prices, resulting in suboptimal predictions and potentially
missed trading opportunities. The prediction of intraday stock price movements, the central
focus of this paper, introduces additional challenges, including the need for high-frequency
input data and the capability to process these data by distinguishing noise from signals in
order to accurately predict tick-by-tick price fluctuations.

Deep learning approaches have emerged as promising solutions to address the limita-
tions of traditional methods. In particular, the use of deep learning models to analyse LOB
and order flow (OF) data has shown great potential in predicting stock price movements,
as seen in the work by Zaznov I. et al. [11]. LOB data contain information about all the
buy-and-sell orders for a particular stock at a given time, including the price, volume, and
time of each order. These data are updated in real time, making them exceedingly high-
dimensional and dynamic. By applying deep learning techniques, such as Convolutional
Neural Networks (CNNs) [13–15] and Recurrent Neural Networks (RNNs) [16–18] to LOB
data, researchers can extract valuable features from these complex data and make accurate
predictions about future price movements.

Furthermore, order flow data provide additional insights into the market by tracking
the actual trading executed by market participants. These data can provide valuable
information about the supply-and-demand dynamics of the market and can be used to
develop more accurate models for predicting future price movements. Attention-based
neural networks [19–21] have shown great promise in extracting relevant features from
order flow data and using these features to make accurate predictions.

In summary, the use of deep learning models to analyse LOB and OF data has the
potential to greatly improve the accuracy of intraday stock price predictions. By leveraging
the power of deep learning models, researchers and investors can overcome the limitations
of traditional methods and better understand the complex dynamics of the stock market.
The goal of this study is to develop a new approach to intraday stock price movement
prediction based on machine learning methods, leveraging tick-by-tick LOB and OF data.
We hypothesised that LOB and OF data, when processed into an appropriate set of fea-
tures, would contain enough information to predict intraday stock price movements. We
further hypothesised that introducing a new deep learning architecture could improve the
predictive power of this approach compared to existing models. Our analysis successfully
confirmed both hypotheses. The work carried out in this research has contributed to all the
major stages of the experimental pipelines, as designed and evaluated, to arrive at the final
results. Overall, this paper makes the following contributions:

• We introduce a new dataset containing both LOB and OF data, as the current widely
used benchmark dataset in the research field contains only LOB data. This new dataset
was made available to other researchers to test their models.

• We propose a novel deep learning model for stock price prediction using LOB and OF
data, which achieves higher predictive power compared to the state-of-the-art models
in the research field.

• We provide insights into effectively applying deep learning techniques to complex
market microstructure data.

• We demonstrate the proposed model’s real-world viability via trading simulations.

Several innovative concepts were introduced in the course of the iterative optimisation
of the building blocks of the system, from data processing and feature selection to the
supervised deep learning model architecture. In particular, the key innovations are:

• A tailored input representation that incorporates LOB and OF features across recent
timestamps to capture time dependencies. In addition to the LOB price and volume
features typically used by researchers in the field, 30 order flow features were added
for the 10 latest transactions at each LOB timestamp: price, volume, and direction
(buy/sell).



Appl. Sci. 2024, 14, 2984 3 of 26

• A hierarchical feature-learning architecture that uses convolutional layers to auto-
matically learn spatial features, followed by recurrent GRU layers to learn tempo-
ral patterns.

• The model architecture, hyperparameters, and experimental design were specifically
tailored for the LOB and OF feature set developed, resulting in superior performance
compared to the state-of-the-art models in the research field.

These innovations address several key challenges in modelling complex limit order
book (LOB) and order flow (OF) microstructure data. Firstly, the high dimensionality and
complexity of LOB and OF microstructure data make it challenging to identify the features
with the highest predictive power. The tailored input representation incorporates features
across recent timestamps, capturing the time-series nature of the data in a way that is
compatible with deep learning, allowing the model to better navigate and interpret relation-
ships in the vast amount of data. Secondly, previous works often presented a disintegrated
representation of LOB and OF data. By developing an integrated input representation of
LOB and OF features, this study effectively models these complex microstructure data in
a unified manner. Lastly, the noise inherent in high-frequency data makes it difficult to
extract meaningful patterns. A carefully tailored model with specific hyperparameters
and experiments for the LOB and OF feature set ensures that the approach is optimised to
leverage insights within these financial data. The hierarchical feature-learning architecture,
utilising convolutional and recurrent layers, directly tackles the challenge of extracting
meaningful patterns. Convolutional layers learn spatial features, while Gated Recurrent
Unit (GRU) layers learn temporal dependencies to discern trends.

Before elaborating further on the methodology employed, the pipelines implemented,
and the results achieved, the next section outlines the background for this study, so as to
place this study within the broader context of previous works in this area.

2. Preliminaries

This section provides the relevant background by introducing key preliminary con-
cepts in financial markets and machine learning. These preliminaries contextualise the
stock price prediction problem and establish relevant techniques and data.

2.1. Financial Markets Perspective

Based on the analysis of prior works in the field, as described by Zaznov et al. [11],
the decision was made to concentrate on market data as the primary source of features for
the stock price prediction model. Specifically, the focus is on high-frequency market data
characterised by low latency. This low-latency characteristic implies that the time interval
between data points in intraday market data can be a fraction of milliseconds. It is also
referred to as tick-by-tick data, where a tick denotes any market event for a particular stock.
These events can occur with varying frequencies, and as a result, the time interval between
two ticks can fluctuate. This represents a significant departure from classic market data,
which maintain a constant time span between data points, such as daily intervals.

The ultimate source of high-frequency market data is a stock exchange. All modern
exchanges record trading activity data and provide access to these data for interested
parties. These data may include the following:

• Price data;
• Volume data;
• Time information (timestamp);
• Stock identification information;
• Direction of trade (e.g., buy/sell).

There are two commonly recognised archetypes of high-frequency market data: limit
order book data and order flow data. Each of them is described separately in the follow-
ing subsections.
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2.1.1. Limit Order Book Data

Most stock exchanges nowadays operate based on the double-auction principle [22].
In this system, buyers submit bid orders, and sellers submit ask orders with specified prices,
while the exchange or designated market makers determine the prevailing best bid and
offer prices. There are two fundamental types of orders: market orders and limit orders.
Market orders are executed at the best bid/ask price if there is sufficient volume; otherwise,
they are executed at the next best bid/ask price, and so forth. On the other hand, limit
orders can be submitted at any price. If the price is less favourable for potential sellers
or buyers, it is unlikely to be immediately executed but is instead recorded in the limit
order book. The limit order book comprises volume and price information for the limit
orders submitted by market participants. It can be partitioned into the bid side (orders
from potential buyers) and the ask side (orders from potential sellers). The number of
levels is contingent on the number of limit orders submitted at distinct prices, with each
order contributing an additional level on either the bid or the ask side.

Table 1 illustrates an example of a limit order book fragment.

Table 1. Illustrative example of a limit order book fragment.

Level 1 Level 2 . . .

Ask Bid Ask Bid . . .

Price Quantity Price Quantity Price Quantity Price Quantity . . .

12.4000 100 12.2400 50 12.5000 30 12.1500 20 . . .
12.4000 150 12.2400 100 12.5000 50 12.1500 10 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

2.1.2. Order Flow Data

While the limit order book offers valuable information about the current trading
situation at a specific timestamp (measured in microseconds from the start), it lacks data
that could elucidate the reasons for price changes from the prior state to the current one.

For instance, if the best bid or the ask volume has changed from its value at the
previous timestamp, relying solely on the limit order book data does not clarify whether
the change occurred due to a market order to buy/sell the respective volume or if one of
the limit orders was simply cancelled.

To provide a comprehensive understanding of stock price and volume fluctuations,
crucial insights are found in the order flow. The order flow encompasses a list of transac-
tions, detailing their price, volume, and direction (buy/sell). Each transaction involves two
sides: buyer and seller. The direction is determined based on the counterparty that initiated
the trade. This market participant, also known as the aggressor or taker, takes liquidity
through a market order or matches a limit order provided by the other party, referred to as
the liquidity provider. An illustration of an order flow segment is presented in Table 2.

Table 2. Illustrative example of an order flow segment.

Timestamp Price Quantity Direction

1275386347813 12.4000 100 Buy
1275386347879 12.2000 150 Sell

2.2. Machine Learning Perspective

Machine learning algorithms can be broadly classified into three types: supervised
learning, unsupervised learning, and reinforcement learning. In this study, our specific
focus is on supervised learning, which stands out as the most widely employed approach
for predicting stock prices. The preference for supervised learning is attributed to its
capability to train models on labelled data, including historical market data, particularly
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limit order book (LOB) and order flow (OF) data, thereby enabling the prediction of future
stock price movements.

The supervised learning models employed in this work serve as fundamental com-
ponents within a more intricate deep supervised learning architecture. This approach
aligns with both the recommendations from this study and other state-of-the-art works
in the field. The details of these supervised learning models are expounded upon in
subsequent subsections.

2.2.1. Convolutional Neural Network

A Convolutional Neural Network (CNN) is a type of neural network that is well
suited for learning features from grid-like data like images [23]. CNNs have convolutional
layers that learn features by sliding filters over the input data. This results in feature maps
that capture different patterns in the data at different scales and locations. Pooling layers
downsample the feature maps. Fully connected layers perform the final prediction based
on the learned features.

CNNs have been successful in applications like image classification, object detection,
and stock price forecasting. They are effective at learning hierarchical features, where
lower-level features are combined into higher-level ones. For stock prediction, CNNs could
learn features from historical LOB and OF data.

2.2.2. Long Short-Term Memory

Long Short-Term Memory (LSTM) networks are a type of Recurrent Neural Network
(RNN) that can effectively capture long-term dependencies in sequential data. They were
introduced by Hochreiter and Schmidhuber in 1997 [24].

LSTM networks have a structure similar to standard RNNs but with an additional
memory cell and three gates that control the flow of information into, out of, and within
the cell. The three gates are the input gate, the forget gate, and the output gate.

The input gate controls the flow of information from the input to the memory cell.
The forget gate controls the flow of information from the previous memory cell state to
the current memory cell state. The output gate regulates the flow of information from the
memory cell to the output. By using these gates to selectively allow or block information
flow, LSTM networks can store and access relevant information over extended periods,
making them well suited for tasks such as language translation, text generation, and
time-series predictions, including stock prices.

2.2.3. Gated Recurrent Unit

A Gated Recurrent Unit (GRU) is a type of Recurrent Neural Network (RNN) that was
introduced by Cho et al. in 2014 [25]. It is similar to a Long Short-Term Memory (LSTM)
network but has a simpler structure with fewer gates and parameters.

GRUs have two gates: the update gate and the reset gate. The update gate controls
the flow of information from the previous state to the current state, and the reset gate
controls the flow of information from the input to the current state. By using these gates
to selectively allow or block the flow of information, GRUs are able to effectively capture
long-term dependencies in sequential data.

GRUs have a number of advantages over the more commonly used LSTMs:

• Simpler structure: GRUs have a simpler structure with just two gates (reset and update
gates), whereas LSTMs have three gates: input, output, and forget gates. This makes
GRUs easier to implement and compute.

• Faster training: Due to their simpler structure, GRUs typically train faster.
• Less prone to overfitting: This simplified structure also means fewer parameters,

which reduces the risk of overfitting.
• Require less memory: GRUs require less memory since they have fewer parameters to

store during training. This enables building larger networks.
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• Easier gradient flow: The simpler structure of GRUs allows gradients to flow more
easily during backpropagation, reducing the vanishing gradient problem.

The empirical confirmation that GRUs can outperform LSTMs in stock price prediction
is presented in [26]. Considering the aforementioned factors, it was decided to use GRUs
instead of LSTM units as a building block of the proposed neural network. In this work,
GRU cells are combined with the earlier described CNN layers in the complex architecture
applied for stock price movement prediction.

3. Prior Works

In the exploration of related works, we delve into the existing literature and research
with the aim of identifying the state-of-the-art model for intraday stock price prediction
using limit order book (LOB) data and using it as a benchmark for comparison with the
model proposed in this work.

As discussed in [11], extensive research has been dedicated to predicting stock price
movements using diverse data sources and modelling techniques. Earlier studies exhibited
a wide range of variations in datasets, experimental setups, and metrics for assessing model
performance, rendering them nearly incomparable. Additionally, the poor reproducibility
of many experiments stemmed from the limited public availability of datasets and code.
A pivotal improvement occurred with the introduction of the first public benchmark
limit order book (LOB) dataset in 2017 [27]. This initiative provided a shared foundation
for research in the field, facilitating greater standardisation in experimental setups and
performance metrics, complementing the benchmark LOB dataset itself. Consequently,
the review of prior works focuses on models trained specifically on this benchmark LOB
dataset. The most notable among them are summarised in Table 3.

Table 3. Performance of state-of-the-art stock price prediction models on the benchmark LOB dataset.

Archetype Model Ref. Date Accuracy Precision Recall F1

Linear Classification RR [27] 09/2017 48.00 41.80 43.50 41.00

Nonlinear Classification SVM [16] 09/2017 - 39.62 44.92 35.88

Multi-linear Classification MTR [28] 12/2017 86.08 51.68 40.81 40.14
WMTR [28] 12/2017 81.89 46.25 51.29 47.87

Image Classification BoF [28] 12/2017 57.59 39.26 51.44 36.28

Dimensionality Reduction
LDA [28] 12/2017 63.82 37.93 45.80 36.28
MDA [29] 10/2017 71.92 44.21 60.07 46.06

MCSDA [29] 10/2017 83.66 46.11 48.00 46.72

Neural Network MLP [16] 09/2017 - 47.81 60.78 48.27

Deep Learning

N-BoF [28] 12/2017 62.70 42.28 61.41 41.63
CNN-LSTM [17] 08/2020 - 56.00 45.00 44.00
HeMLGOP [30] 03/2019 83.06 48.57 50.67 49.43

CNN [13] 06/2017 - 50.98 65.54 55.21
LSTM [16] 09/2017 - 60.77 75.92 66.33

DAIN-MLP [31] 02/2019 - 65.67 71.58 68.26
aTABL-IS1 [32] 04/2023 80.31 73.13 66.26 69.73
aTABL-IS2 [32] 04/2023 80.56 75.80 66.47 70.00
C(TABL) [33] 09/2018 84.70 76.95 78.44 77.63

BiN-C(TABL) [34] 03/2020 86.87 80.29 81.84 81.04
DeepLOB [10] 03/2019 84.47 84.00 84.47 83.40
TransLOB [35] 02/2020 87.66 91.81 87.66 88.66

As evident from Table 3, the performance metrics, including F1 score, accuracy, preci-
sion, and recall, exhibited gradual enhancements as progressively more complex models
were applied. For the fundamental linear and nonlinear classification models, namely
Ridge Regression (RR) [27] and Support Vector Machine (SVM) [16], the F1 score hovered
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around 40 percent. The introduction of shallow neural network architectures, such as Mul-
tilayer Perceptron (MLP) [16], elevated the F1 score to nearly 50 percent. Further increases
in the F1 score to around 70 percent were achieved with deep learning models like Long
Short-Term Memory (LSTM) [16]. The best performance among those deep learning models
was demonstrated by the DeepLOB [10] and TransLOB architectures [35]. According to
their respective authors, each of them demonstrated accuracy and F1 scores well in excess
of 80%. However, since the reproducible code was available only for DeepLOB [10], it was
chosen as a benchmark for comparison with the proposed model.

4. Stock Price Prediction Model Methodology and Research Design
4.1. General Approach to Stock Price Movement Prediction

The stock price movement prediction task that is the focus of this study can be solved
in many different ways. The key questions addressed were:

• Which input data to use?
• How to process the input data as a time series?
• Whether to aim to achieve the prediction objective as a classification or

regression problem?
• Which model archetype could provide the optimal solution to the problem?

Below, the alternatives considered for each of the above questions are outlined, and
justification for the selected options is provided. Based on the analysis of prior works
in the field, as described earlier, the decision was made to focus on market data as the
primary source of features for the stock price prediction model, particularly high-frequency
market data. These data are characterised by low latency and are particularly crucial for
intraday price movement prediction. In contrast, fundamental data are less suitable for
intraday trading due to their low-frequency nature. Key business performance metrics,
such as sales, EBITDA, and net profit, are sourced from financial statements, which are
typically published on a quarterly basis at best. This limited frequency would restrict
trading opportunities based on such data to only one day in a quarter.

Alternative data for trading, although potentially valuable, are often either not avail-
able to the general public or prohibitively expensive. For instance, satellite photos of
parking areas near stores could be useful in predicting the sales and, consequently, the
stock price of a retail company. However, the cost to obtain this information is unaffordable
for the majority of investors. Therefore, the decision was made to use high-frequency
market data as the primary source for features in the stock movement prediction model for
this work.

The abundance of high-frequency market data provides the advantage of enabling
effective training, especially with a deep learning architecture. However, it also makes the
experiment more computationally intensive. To overcome this computational challenge,
the model architecture was designed considering the utilisation of a GPU for training. More
details on the market data used in this research are presented in Section 4.2.

In the realm of high-frequency trading, especially when dealing with tick-by-tick
market data characterised by minimal changes from timestamp to timestamp, it has become
a prevalent practice in the research field to address stock price movement prediction as a
classification task rather than a regression task. This paradigm shift is substantiated by
several key factors.

Firstly, the sheer frequency and granularity of high-frequency data, with updates
occurring at a sub-second level, present challenges for predicting precise price changes.
The negligible variations between consecutive timestamps make it arduous to discern
meaningful trends amidst the noise of the market. Empirical evidence from various studies
shows that attempting to predict exact price changes in such a high-frequency environment
can lead to overfitting and capturing short-term noise rather than genuine trends.

Moreover, the inherent noise and volatility present in high-frequency markets con-
tribute to the complexity of predicting precise price movements. Classifying the direction
of price changes—whether up, down, or no change—provides a more robust and inter-
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pretable framework for traders seeking actionable signals. This aligns with the practical
requirements of decision making in trading scenarios, where clear guidance on buying,
selling, or holding positions is essential.

The time sensitivity associated with intraday trading further underscores the suitability
of the classification approach. Intraday traders require rapid decision making due to short
holding periods, and classifying stock price movements offers timely signals that match the
fast-paced nature of high-frequency market data. This approach is not only more practical
but also aligns with the efficient utilisation of computational resources, as the simplicity of
classification models makes them computationally less intensive compared to regression
models that predict exact price changes.

Lastly, the success of classification models in prior works within the field serves as a com-
pelling argument for adopting this methodology. Numerous instances of effective applications
demonstrate the reliability and utility of classification-based approaches [10,33–35] in extracting
meaningful insights from high-frequency market data.

Considering these factors, framing the stock price movement prediction objective as a
classification problem was deemed more sensible than approaching it as a regression problem.

As highlighted in Section 2, deep supervised learning algorithms, exemplified in state-
of-the-art research [10,35], surpass conventional statistical and machine learning models in
predicting stock price movements.

Deep neural networks offer the advantage of effectively handling high-dimensional
data and, when trained optimally, can replicate any function, regardless of its complexity,
by defining outputs based on inputs. However, there are two complications associated
with using deep learning. Firstly, these models necessitate significantly larger datasets for
training compared to traditional statistical or machine learning models. To address this,
the dataset utilised in this experiment comprises more than 1.5 million records in total,
which should be adequate for training the most well-known deep learning models. The
second complication is the heightened computational intensity of these models compared to
simpler ones. In fact, training some of these models on standard personal computers would
be impractical due to prohibitively long processing times. To surmount these challenges,
the experiment was conducted on a computer cluster equipped with a Tesla V100 GPU.

Given the above-mentioned advantages and ability to address the related challenges,
it was decided to use deep supervised learning to address the stock price direction classifi-
cation problem outlined above.

More details on the proposed deep supervised learning model are presented in
Section 4.3.

Figure 1 presents a schematic diagram outlining the proposed methodology. The
detailed description of the methodology is presented in the following subsections.

4.2. Data Preparation

As mentioned above, the data used in this research experiment are high-frequency
stock market data. Before feeding these data to the neural network, we need to perform
three main steps:

• Data sourcing;
• Feature selection;
• Normalisation.

Each of the above-mentioned steps is described in detail in the respective subsec-
tion below.
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Data Collection: Limit order book and order flow
data were collected from the Moscow Stock Ex-

change and NASDAQ for six stocks spanning dif-
ferent time periods with over 2 million records.

Data Normalisation: Numerical features
were normalised using z-score normalisation
to account for different scales across features.

Feature Engineering: Features included price and
volume from the top 10 bids/asks (40 features), and

price, volume, and direction of the latest 10 transactions
(30 features) across the 100 most recent timestamps.

Data Splitting: Data were split into 60% training,
20% validation, and 20% test sets for each stock.

Model Architecture Design: A hierarchical model (TFF-
CL-GRU) was designed, combining convolutional layers

to learn spatial patterns and max-pooling and GRU layers
to capture temporal dependencies from input features.

Model Training: The model was trained for 200 epochs
on the training set using categorical cross-entropy loss.

Model Validation: Model performance was evaluated on
the validation set after each epoch to fine-tune the model.

Model Testing: Final model perfor-
mance was evaluated on an unseen test set.

Model Performance Benchmarking: Final
model performance was compared with the
state-of-the-art baseline model using the F1
score, accuracy, precision, and recall metrics.

Trading Simulation: A trading simulation was
conducted to test the practicality of the model.

Figure 1. Schematic diagram of the methodology.
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4.2.1. Data Sourcing

An open-source benchmark LOB dataset was presented in the work by
Ntakaris et al. [27]. It is widely used in the research area and could potentially be leveraged
for this work as well. However, it has several limitations:

• It is more than ten years old, which can make it non-representative of the current
situation in the dynamically evolving stock market.

• Prices for five stocks are provided, but they are all combined in a single dataset,
making the individual stocks indistinguishable.

• It contains only limit order book data but not order flow data.

Due to the aforementioned reasons, it became imperative to generate a dataset that
addresses the limitations outlined above. Experimental validation in the study conducted
by Doering et al. [15] confirmed that incorporating order flow data alongside limit order
book data can enhance the predictive capabilities of a model. Consequently, the decision
was made to utilise both types of data as sources for feature extraction. Order flow and
limit order book data were collected from the Moscow Stock Exchange through the QUIK
workstation for three stocks:

• Sberbank;
• VTB;
• Gazprom.

Considering the focus of this paper on high-frequency intraday trading, even just a few
weeks of tick-by-tick data can yield millions of timestamps, ample for training practically
any deep learning model in this context. While collecting tick-by-tick data from the market,
we set a minimal threshold of 100,000 timestamps for each of the stocks.

For Sberbank stock, the dataset spans the period from 22 November 2021 to 26 Novem-
ber 2021, encompassing more than 750,000 timestamps in total. The trajectory of the
stock during this period is illustrated in Figure 2. Observing the chart reveals that the
Sberbank stock experienced growth only on November 23rd; subsequently, it followed a
downward trend.

Figure 2. Sberbank stock price. Source: Moscow Stock Exchange.
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For VTB stock, the dataset encompasses the period from 3 August 2021 to 17 August
2021, comprising more than 550,000 timestamps in total. The trajectory of the stock during
this period is illustrated in Figure 3. Examining the chart reveals a robust upward trend,
with a corrective phase observed between August 11th and 13th.

Figure 3. VTB stock price. Source: Moscow Stock Exchange.

For Gazprom stock, the dataset spans the period from 12 October 2021 to 20 October
2021, encompassing around 410,000 timestamps in total. The trajectory of the stock during
this period is illustrated in Figure 4. Observing the chart indicates that after an initial
decline, the price returned to almost the same level.

Figure 4. Gazprom stock price. Source: Moscow Stock Exchange.
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Additionally, to ensure that the model generalises well, we also trained and tested it
on three stocks traded at NASDAQ from the existing LOBSTER dataset [36], namely Apple,
Amazon, and Google. The data for all three stocks are for 21 June 12.

For Apple stock, the dataset encompasses around 400,000 timestamps in total. The
trajectory of the stock during this period is illustrated in Figure 5. As can be seen from this
chart, the stock was in a downward trend.

Figure 5. Apple stock price. Source: LOBSTER/NASDAQ.

For Amazon stock, the dataset encompasses around 270,000 timestamps in total. The
trajectory of the stock during this period is illustrated in Figure 6. As can be seen from this
chart, the stock was in a downward trend.

Figure 6. Amazon stock price. Source: LOBSTER/NASDAQ.

For Google stock, the dataset encompasses around 150,000 timestamps in total. The
trajectory of the stock during this period is illustrated in Figure 7. As can be seen from this
chart, the stock was in a downward trend.
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Figure 7. Google stock price. Source: LOBSTER/NASDAQ.

4.2.2. Feature Selection

As elucidated by Gould et al. [37], limit orders at deeper levels are deemed less relevant
to price movements. Consequently, it is a common practice to restrict the analysis to the first
10 levels of the limit order book, as demonstrated in the works by
Wallbridge et al. [35] and Zhang et al. [10]. This same approach was applied in the
current work. We experimented with including additional LOB levels and more transac-
tions but found no significant improvement in model performance. Including too many
inputs can overwhelm the model and degrade performance due to increased noise and
redundancy in the data.

As confirmed by Doering et al. [15] and through our own experiments, OF data offer
additional insights and can enhance the model’s predictive capability by tracking the actual
trades executed by market participants. However, to ensure consistency and feasibility
in input data tensors for the neural network, it was necessary to limit the number of OF
transactions added to the feature space at each timestamp. The alternative, allowing for
a variable number of transactions at each timestamp, would result in input data tensors
with variable shapes, rendering them incompatible with the neural network. Preliminary
analysis revealed that the majority of limit order book timestamps exhibit fewer than
10 OF transactions occurring since the previous timestamp. Consequently, this number
was chosen as a practical limit. We acknowledge that further research on this matter could
be beneficial.

Thus, at each training iteration, input data are represented by data tensors of shape
[100, 70]. In these R100 × R70 tensors, R100 corresponds to the 100 most recent timestamps,
R[1-40] pertain to the limit order book features, namely price and volume data for the
10 best bids and the 10 best asks, resulting in 40 features, and R[41-70] represent the order
flow features—price, volume, and direction (buy/sell)—for the 10 latest transactions at
each limit order book timestamp, contributing 3 × 10 = 30 features.

The LOBSTER dataset has a slightly different representation of the order flow. It has
only one order between each consequent LOB timestamp, but in addition to the direction,
price, and volume, it also contains event types:

1. Submission of a new limit order;
2. Cancellation (partial deletion of a limit order);
3. Deletion (total deletion of a limit order);
4. Execution of a visible limit order;
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5. Execution of a hidden limit order;
6. Cross-trade, e.g., auction trade;
7. Trading halt indicator.

For the experiments with the LOBSTER data, input data are represented by tensors
of shape [100, 44]. In these R100 × R44 tensors, R100 corresponds to the 100 most recent
timestamps, and R[1-40] relate to the limit order book features, namely price and volume
data for the 10 best bids and the 10 best asks, resulting in 40 features. The rest, R[41-44],
represent the order flow features: price, volume, direction (buy/sell), and event type for
the latest transaction at each limit order book timestamp.

The input representation was a key factor in the model’s strong predictive power.
By incorporating both LOB and OF data, as well as their temporal characteristics, the
model was able to capture diverse patterns from these different but complementary sources
of market information. This allowed it to outperform models using only LOB or static
input representations. The hierarchical feature-learning architecture was also important for
extracting meaningful patterns from this representation.

4.2.3. Normalisation

It is considered best practice to normalise data before feeding them into a neural
network. If this is not done, features could have different scales, whereby features with
higher values may have excessive weights associated with them during training, while
those with smaller values would be neglected. To avoid this and ensure faster learning,
normalisation was carried out for the above-described order flow and limit order book data.

Commonly used methods of normalisation were considered to find the one most
suitable for the input data used in the experiments:

• Min-max;
• Decimal precision;
• Z-score.

Our empirical findings revealed that the dataset employed in the experiments con-
tained a significant number of outliers—values that were exceptionally high or low. As
a result, normalisation methods dependent on maximum or minimum values in their
formulas would be notably impacted by these outliers.

To mitigate this, a min-max normalisation method, as its name implies, takes into account
both the minimum and maximum values in its calculation. In contrast, the decimal-precision
normalisation approach incorporates only the maximum value in the calculation. Simultane-
ously, the z-score normalisation method relies on the deviation from the average, which is less
susceptible to the influence of outliers compared to the two aforementioned approaches.

Thus, normalisation was carried out for the whole dataset using the standard z-score
approach, z = xi−µ

σ , where xi is the value of the feature at the current timestamp, µ is its
mean value, and σ is its standard deviation.

4.3. Model Architecture

As discussed earlier, deep supervised learning models have demonstrated superior
performance on the benchmark LOB dataset compared to other methods. As confirmed
in the work by Doering et al. [15], convolution layers are very helpful for handling high-
dimensional data such as LOB and OF tensors. They serve to automatically extract the
most relevant features from these data. To fully account for the time-series nature of the
data, recurrent layers are added to the architecture. These layers facilitate the transfer of
hidden state information from prior observations to the next ones. These two types of
layers, in addition to a standard max-pooling layer applied to make the model less sensitive
to small changes in the input data and a dense layer as an output layer, are the key building
blocks of the proposed deep neural network architecture. In Figure 8, the architecture of
the proposed model is depicted at a conceptual level, whereas Figure A1 in Appendix A
depicts the detailed architecture.
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Input layer R100 ×R70

9x Conv2D
layers 32

filters each
+ PReLU

MaxPool2D

2x Conv2D
64 filters
+ PReLU

2x Conv2D
64 filters
+ PReLU

MaxPool2D

Conv2D
64 filters
+ PReLU

GRU 64 units

Dense 3
units +

Softmax

Figure 8. Diagram of the TFF-CL-GRU neural network architecture.

The input layer receives processed and normalised data in the form of tensors with
a shape of [100, 70]. In these R100 “×” R70 tensors, R100 corresponds to the 100 most
recent timestamps, and R70 relates to the limit order book and order flow features. These
input data are transmitted through nine consecutive convolution layers, each with 32 filters,
followed by a max-pooling layer (kernel size = 1 × 8; stride = 1 × 1), forming the first block
of convolution layers.

The kernel size of the first and sixth layers is 1 × 2; the kernel size of the second, third,
fifth, sixth, eighth, and ninth layers is 4 × 1, and the kernel size of the seventh layer is
1 × 10. The second, third, fifth, sixth, eighth, and ninth layers have the same padding. All
the layers in the first block have a standard stride of 1 × 1, except for the first and fourth
layers, which have a stride of 1 × 2. For all the convolution layers, the parametric rectified
linear unit activation function is applied. It was first introduced by He et al. [38] and is
a generalisation of the popular rectified unit activation function originally presented by
Nair et al. [39]. The parametric rectified linear unit activation function multiplies negative
input values yi by coefficient ai to obtain outputs f (yi), while for positive input values, the
output equals the input:

yi > 0 : f (yi) = yi

yi < 0 : f (yi) = ai × yi

The original rectified unit activation function assumes zero output for negative input
values, and the output equals the input for positive input values:

yi > 0 : f (yi) = yi

yi < 0 : f (yi) = 0
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The motivation behind opting for the PReLU lies in its ability to introduce nonlinearity
to the network while addressing certain limitations associated with traditional rectified
linear unit (ReLU) activations. Unlike the standard ReLU, which can suffer from the “dying
ReLU” problem by setting all negative values to zero, the PReLU allows for the adaptation
of the negative slope during training. This adaptability contributes to improved conver-
gence during training and better gradient flow, enhancing the model’s ability to learn
complex representations from financial data. Additionally, the PReLU has demonstrated ef-
fectiveness in mitigating the vanishing gradient problem, which can be especially pertinent
in deep neural network architectures. Although the parametric rectified linear unit function
adds minor extra computation costs to learn parameter ai, it has been demonstrated that it
allows for faster convergence of deep learning models such as TFF-CL-GRU.

The second block consists of three sub-blocks that are concatenated along axis 3. Each
of these three sub-blocks receives the outputs from the max-pooling layer of the first block
as input. The first sub-block consists of two consecutive convolution layers with 64 filters;
stride = 1 × 1; with padding; and with kernel size = 1 × 1 for the first layer and 3 × 1 for the
second one. This selection is based on a nuanced understanding of the financial data, where
the smaller kernel size (1 × 1) allows for focused, localised feature extraction, capturing
fine-grained details critical for discerning subtle patterns in stock price movements. The
larger kernel size (3 × 1) in the second layer broadens the scope to capture more extensive
contextual information. The second sub-block consists of two subsequent convolution
layers with 64 filters; stride = 1 × 1; with padding; and kernel size = 1 × 1 for the first layer
and 5 × 1 for the second one. This choice is grounded in the need for the model to adapt to
diverse scales of features present in financial data. The smaller kernel size (1 × 1) again
prioritises localised details, whereas the larger kernel size (5 × 1) extends the receptive field
to incorporate global context, allowing the model to grasp larger-scale patterns in stock
price movements. The third sub-block consists of a subsequent max-pooling layer with
kernel size = 3 × 1; stride = 1 × 1; and with padding, and a convolution layer with 64 filters;
stride = 1 × 1; with padding; and with kernel size = 1 × 1. The inclusion of the max-pooling
layer serves to downsample the data, reducing dimensionality while retaining essential
features. The subsequent convolution layer with a smaller kernel size (1 × 1) focuses on
further refining the extracted features. The rationale behind these choices lies in optimising
the network’s ability to discern patterns at different scales, facilitating hierarchical feature
learning tailored to the unique characteristics of financial data. The parametric rectified
linear unit (PReLU) activation function is also applied for all the convolution layers in
the second block as was done for the first block. The overarching architectural decisions,
including the specific kernel sizes, number of filters, and strides, are informed by a data-
driven approach and empirical studies, ensuring that the model is adept at extracting
meaningful features for precise and accurate stock price predictions.

The resulting 3D tensor is reshaped to 2D to match the input shape of the consequent
Gated Recurrent Unit (GRU) layer with 64 units. The decision to incorporate a GRU layer
is rooted in the need for the model to effectively capture temporal dependencies and
hierarchical representations in the sequential financial data. This is particularly crucial
in the context of stock price movements, where the historical sequence of prices holds
valuable insights into potential future trends. The GRU’s gating mechanism allows it to
selectively update and memorise information, mitigating the vanishing gradient problem
and facilitating the learning of long-term dependencies.

The GRU layer, in turn, is connected to the final dense layer with three neurons, each
of them corresponding to one of three output classes (“upward”, “flat”, “downward”).
For this final layer, the softmax activation function [40] is used to distribute the outcome
probability among these three classes. The output from this function f (x)i for the i-th
element (xi) of input vector x, consisting of K elements, is defined according to the formula
f (x)i =

exi

∑K
j=1 exj , where K is the number of classes (three in this case).

The configuration of the TFF-CL-GRU model, including the determination of the
number of layers, units, filters, kernel sizes, strides, padding, and other characteristics, was
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systematically chosen to optimise its overall performance. This process involved iteratively
fine-tuning these architectural parameters to enhance the model’s capacity to learn intricate
patterns and relationships from the training data.

4.4. Experimental Design

The TFF-CL-GRU model is trained separately for each of the three stocks from our
dataset (Sberbank, VTB, Gazprom) for 200 epochs. The first 60% of the dataset is used for
training, the next 20% is used for validation, and the remaining 20% is used for testing.
The purpose of the validation set is to find the optimal neural network configuration and
fine-tune its parameters while still keeping the test set out of this sample, thus minimising
the risk of overfitting.

The performance of the TFF-CL-GRU model is evaluated against other state-of-the-art
models based on standard statistical measures such as accuracy, precision, recall, and F1
score. These four metrics are defined as follows:

Accuracy = TP+TN
TP+TN+FP+FN

Precision = TP
TP+FP

Recall = TP
TP+FN

F1 score = 2 × Precision×Recall
Precision+Recall ,

where TP represents true positive; TN represents true negative; FP represents false positive;
and FN represents false negative in relation to the comparison of the stock prediction with
the actual price. From these metrics, the fairest picture for this experiment is provided by
the F1 score. Importantly, in this case, accuracy is misleading as the dataset is not balanced
among the three labels. The F1 score is the harmonic mean of precision and recall and
thus can handle unbalanced classes by finding the optimal balance between type I and
type II errors.

As outlined in Section 2, the state-of-the-art DeepLOB model [10] is selected as a
benchmark to gauge the performance of the TFF-CL-GRU model.

Another crucial consideration for stock price prediction is its practicality. Executing a
trading strategy in real market conditions is a complex task, involving numerous considera-
tions. Even the ability to correctly predict the direction of a price change does not guarantee
the profitability of the trading strategy. For instance, if the magnitude of the price increase
or decrease is lower than the bid–ask spread, executing a round transaction with market
orders may lead to losses, even if the price moves as anticipated. Additionally, short sales
may not always be available to investors, and even if they are, additional commissions
might outweigh the potential gains from short-selling falling stocks. Liquidity is another
significant factor, where a limited number of stocks on the ask or the bid side can hinder
investors from buying or selling the required amount of stock. These are just a few of the
factors that must be considered in a real-world trading strategy.

To account for these factors, a decision was made to devise a simple trading strategy
based on the predictions of our model and conduct trading simulations using actual market
data. This strategy executes market buy/sell orders whenever the model outputs the
buy/sell signal, with a confidence level of at least 90%. Short sales are prohibited, and
trading commissions are assumed to be zero, considering that many brokers offer this.
However, the bid–ask spread is considered a trading cost. The amount of each transaction
is limited by the best bid/ask volume. The starting balance is set to 1000 times the share
price, aiming to minimise the market impact of these transactions.

Additionally, a “buy-and-hold” strategy is introduced to provide a basis for compara-
tive performance assessment. Following this strategy, stocks are acquired at the beginning
of each simulation at the best ask price, purchasing the available volume at that price in
each iteration until the full initial balance is invested in stocks. These stocks are then held
until the end of the simulation.

One thousand trading simulations are conducted for each of the three stocks: VTB,
Sberbank, and Gazprom. Each trading simulation contains a randomly ordered sample of
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limit order book (LOB) prices and volumes, with the number of events equivalent to one
trading day. To illustrate the process, one trading simulation for VTB stock is presented in
Figure 9.

Figure 9. Trading simulation for VTB stock.

In order to measure the strategy performance, the returns on investment for each
trading simulation are calculated as follows:

Return on investment = Ending balance+(Number o f stocks acquired×Ending bid price)
Starting balance − 1

To make the results easier to interpret, these daily returns are converted to annual
returns, as follows:

Annual Return = (1 + (Return on investment))260)− 1),

where 260 is the number of working days in a year.

5. Experimental Results

In accordance with the experimental design outlined above, the training and validation
performance for VTB stock from the MICEX dataset for both the state-of-the-art DeepLOB
model and the proposed TFF-CL-GRU model is presented in Figures 10 and 11, respectively.

As observed in Figures 10 and 11, by epoch 200, the F1 score for the validation set
of the state-of-the-art DeepLOB model barely reached 60%, whereas for the TFF-CL-GRU
model, it clearly exceeded it by at least 5pp. The F1 score curves for both the validation
and training datasets did not reach a plateau by epoch 200, indicating the potential for
further improvement with an extended experiment. However, considering that the training
curve started to deviate substantially from the validation curve, signalling an increasing
risk of overfitting, and to maintain the experiment’s time-bounded nature for comparability
with other researchers in this field, the decision was made to conclude the experiment at
this point.

In terms of accuracy, precision, and recall metrics, the TFF-CL-GRU model also out-
performed the DeepLOB model. The experiment was repeated for six stocks, and it can be
seen in Table 4 that the TFF-CL-GRU model consistently outperformed the state-of-the-art
DeepLOB model in terms of the F1 score for each of them.
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The practicality of the TFF-CL-GRU model was also evaluated through trading sim-
ulations. The annual returns for the strategy based on our model’s predictions and the
buy-and-hold strategy for each of the three stocks (VTB, Sberbank, and Gazprom) are
presented in Figures 12–14, respectively.

As depicted in these charts, for all three stocks, the strategy based on our model’s
predictions generated median returns that were higher than those of the buy-and-hold
strategy and in the positive zone, except for Sberbank. The negative returns for Sberbank
stock can be explained by the fact that this stock was predominantly in a declining trend,
and short sales were prohibited. For the same reason, it would not make sense to create
trading simulations for Apple, Amazon, and Google stocks, considering they were all in a
downward trend.

However, the VTB stock exhibited a very strong growth trend, with some days expe-
riencing price increases exceeding 2%, resulting in abnormally high annual returns. This
consistent growth trend likely simplified the task of predicting the direction and contributed
to better model performance in terms of F1 score, accuracy, precision, and recall for this
stock compared to the other two. It is important to note that stocks tend to exhibit mean
reversion, and a period of rapid growth will likely be followed by a significant decline,
leading to more modest annual returns in practice.

Another observation is that the outcomes of the buy-and-hold strategy were much
more volatile. The real-world stock market factors previously discussed, such as the bid–ask
spread, liquidity limitations, etc., could have also negatively impacted the strategy returns
in the simulations.

(a) (b) (c)

(d) (e)

Figure 10. DeepLOB training and validation results for VTB stock: (a) Categorical cross-entropy loss;
(b) Accuracy; (c) F1 score; (d) Precision; (e) Recall.
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(a) (b) (c)

(d) (e)

Figure 11. TFF-CL-GRU training and validation results for VTB stock: (a) Categorical cross-entropy
loss; (b) Accuracy; (c) F1 score; (d) Precision; (e) Recall.

Figure 12. Trading simulation results for VTB.
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Table 4. Performance comparison of the TFF-CL-GRU model and the DeepLOB model for six stocks.

Model Metric VTB Sberbank Gazprom Apple Amazon Google

TFF-CL-GRU

Accuracy 66% 48% 53% 50% 60% 55%
F1 score 65% 45% 51% 49% 60% 55%
Precision 67% 51% 56% 51% 61% 55%

Recall 63% 40% 47% 47% 59% 54%

DeepLOB

Accuracy 62% 49% 52% 41% 40% 42%
F1 score 60% 41% 46% 31% 36% 38%
Precision 66% 54% 57% 42% 40% 42%

Recall 55% 34% 39% 25% 32% 34%

Figure 13. Trading simulation results for Sberbank.

Figure 14. Trading simulation results for Gazprom.

6. Conclusions and Future Work

The primary objective of this research study was to construct a stock price prediction
model utilising deep supervised learning with high-frequency limit order book (LOB) and
order flow (OF) market data. Expanding upon previous investigations in this domain, a
novel deep supervised model, namely the TFF-CL-GRU model, was developed. This model
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combines the strengths of convolutional layers to handle the high-dimensional LOB and
OF features and recurrent GRU layers to accommodate the time-series nature of the data.

The collected high-frequency market data, including order flow and limit order book
data, underwent several steps of data processing, including data sourcing, feature selection,
and normalisation. Feature selection involved considering the 100 most recent events in
the order flow and limit order book data to capture the time-series nature of the stock price
movement. Limiting the analysis to the first 10 levels of the limit order book and setting a
limit on the number of transactions at each timestamp ensured consistency in the input
data tensors.

Datasets for Sberbank, VTB, Gazprom, Apple, Amazon, and Google stocks were used
in the experiment. Based on the analysis of the capabilities of state-of-the-art models
in this field, the DeepLOB model [10] was selected as the benchmark for comparative
assessment. This decision was influenced by its performance on the benchmark LOB
dataset, as demonstrated by Ntakaris et al. [27], and the availability of the code to reproduce
the experiment.

The TFF-CL-GRU model demonstrated markedly better performance in terms of its
F1 score, which was at least 4% higher than that of the DeepLOB model for each of the six
stocks considered. This advantage can be attributed to a combination of feature engineering,
model architecture, and the fine-tuning of its parameters. The F1 score achieved by the
TFF-CL-GRU model was 45% for Sberbank stock; 51% for Gazprom stock; 65% for VTB
stock; 49% for Apple stock; 60% for Amazon stock; and 55% for Google stock. This is much
higher than random prediction (which would have been around 33% for three classes)
and, in theory, should provide a noticeable advantage in trading. In order to confirm if
this was indeed the case, further trading simulations were conducted. The annual returns
for the strategy based on the TFF-CL-GRU model’s predictions were measured for each
of the three stocks (VTB, Sberbank, and Gazprom). While the strategy relying on the
model’s predictions consistently yielded higher median returns for VTB and Gazprom
compared to the buy-and-hold strategy, the results differed for Sberbank. The negative
returns for Sberbank can be attributed to its predominantly declining trend, compounded
by restrictions on short sales.

While the proposed TFF-CL-GRU model demonstrated strong predictive performance
on the test datasets, its complexity and computational demands need to be addressed
to enable practical deployment in real-time trading environments. Future work should
explore techniques for optimising model efficiency without significantly compromising
accuracy. Possibilities include pruning redundant connections, quantizing weights, de-
veloping lightweight variants of the CNN and GRU blocks, and applying techniques like
knowledge distillation, model compression, and multi-task learning to learn a more efficient
model from the existing one.

To enhance the ability of the model to generate profits in real stock market conditions,
it is crucial to optimise it for various other factors, such as bid–ask spread, stock liquidity,
capital limits, etc. However, incorporating these factors within the supervised learning
paradigm poses challenges since the optimal execution strategy, considering specific market
situations and factors, is not observable. To tackle this complex task, reinforcement learning
offers a potential solution. Embedding the existing supervised model within a more
sophisticated reinforcement learning framework can address the limitations and enable the
consideration of additional factors.

It is important to note that the current supervised model remains valuable as it
effectively predicts the stock price direction, which is a critical aspect of trading. By
integrating the supervised model with a reinforcement learning framework, it becomes
possible to account for a wider range of factors and improve the performance of the model
in real-world trading scenarios.

Overall, future work should focus on addressing the limitations identified in the
current study, refining the model’s performance, and exploring new avenues to enhance its
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effectiveness and practical applicability in real-world trading scenarios. One approach to
achieve these goals is by leveraging the reinforcement learning framework.
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aTABL-IS2 Augmented bilinear network second strategy
BiN-C(TABL) Neural network consisting of a bilinear normalisation layer and three temporal

attention-augmented bilinear layers
BoF Bag-of-Features
CNNs Convolutional Neural Networks
CNN-LSTM Convolutional Neural Network-Long Short-Term Memory
C(TABL) Neural network consisting of three temporal attention-augmented bilinear layers
DAIN MLP Deep Adaptive Input Normalisation Multilayer Perceptron
GRU Gated Recurrent Unit
HeMLGOP Heterogeneous Multi-Layer Generalised Operational Perceptron
LDA Linear Discriminant Analysis
LOB Limit order book
LSTM Long Short-Term Memory
MDA Multilinear Discriminant Analysis
MCSDA Multilinear Class-Specific Discriminant Analysis
MLP Multilayer Perceptron
MTR Multi-channel Time-series Regression
MICEX Moscow Stock Exchange
N-BoF Neural Bag-of-Features
OF Order flow
RR Ridge Regression
RNNs Recurrent Neural Networks
SVM Support Vector Machine
TFF-CL-GRU TrioFlow Fusion of Convolutional Layers and Gated Recurrent Units
TransLOB Deep learning architecture based on the Transformer model
WMTR Weighted Multi-channel Time-series Regression
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Appendix A

Figure A1. TFF-CL-GRU model architecture.
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