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Abstract: Neurodegenerative diseases (NDs), including Parkinson’s and Alzheimer’s disease, pose a
significant challenge to global health, and early detection tools are crucial for effective intervention.
The adaptation of online screening forms and machine learning methods can lead to better and
wider diagnosis, potentially altering the progression of NDs. Therefore, this study examines the
diagnostic efficiency of machine learning models using Montreal Cognitive Assessment test results
(MoCA) to classify scores of people with Parkinson’s disease (PD) and healthy subjects. For data
analysis, we implemented both rule-based modeling using rough set theory (RST) and classic machine
learning (ML) techniques such as logistic regression, support vector machines, and random forests.
Importantly, the diagnostic accuracy of the best performing model (RST) increased from 80.0% to
93.4% and diagnostic specificity increased from 57.2% to 93.4% when the MoCA score was combined
with temporal metrics such as IRT—instrumental reaction time and TTS—submission time. This
highlights that online platforms are able to detect subtle signs of bradykinesia (a hallmark symptom
of Parkinson’s disease) and use this as a biomarker to provide more precise and specific diagnosis.
Despite the constrained number of participants (15 Parkinson’s disease patients and 16 healthy
controls), the results suggest that incorporating time-based metrics into cognitive screening algorithms
may significantly improve their diagnostic capabilities. Therefore, these findings recommend the
inclusion of temporal dynamics in MoCA assessments, which may potentially improve the early
detection of NDs.

Keywords: machine learning (ML); Montreal Cognitive Assessment (MoCA); diagnostic accuracy;
Parkinson’s disease (PD); rough set theory (RST); time-based measurements; web-based cognitive
testing; IRT; TTS

1. Introduction

Neurodegenerative disorders (NDs) are conditions characterized by the progres-
sive loss of specific neuron populations. The most common of these disorders include
Alzheimer’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis, and Huntington’s
disease. These diseases are a significant challenge for clinicians due to their diverse clinical
presentations and shared molecular pathology [1].

Despite significant progress in understanding the NDs, particularly in the areas of
pathology and pharmacology, the translation of preclinical innovations into effective clinical
therapies has been challenging [2].

This study focuses on Parkinson’s disease. PD primarily affects older individuals and
is associated with a range of motor and nonmotor symptoms [3]. This is a neurodegen-
erative disorder characterized by the loss of dopaminergic neurons, particularly in the
substantia nigra (a small region in the middle of the brain) [4]. In neurological terms, in
Parkinson’s disease, there is a specific pattern of neuronal loss; the dopaminergic neurons
of the midbrain that project to the striatum are selectively and primarily destroyed [5,6].

Appl. Sci. 2024, 14, 2979. https://doi.org/10.3390/app14072979 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14072979
https://doi.org/10.3390/app14072979
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0993-4630
https://doi.org/10.3390/app14072979
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14072979?type=check_update&version=1


Appl. Sci. 2024, 14, 2979 2 of 16

The result of this neuronal damage is the manifestation of neurological symptoms.
Neurological symptoms of Parkinson’s disease primarily include tremors, muscle stiffness,
slowed movement (bradykinesia), and impaired balance and coordination. Cognitive
changes, such as difficulties with memory and problem solving, can also occur as the
disease progresses.

Despite the fact that this damage is significant, it often goes unnoticed at first. This is
partly because the brain has mechanisms to compensate for the damage. Keeping in mind
that neuronal degeneration is a normal part of aging, in NDs, this process occurs much more
rapidly and is initially masked by the brain’s compensatory responses. That makes it difficult
to identify specific biomarkers for early detection, diagnosis, and disease progression [7].

Therefore, the lack of a cure for Parkinson’s disease can be attributed to several factors
and challenges in hidden manifestations across various domains (including genetic, clinical,
and pathophysiological).

1.1. The Intersection of PD and AD

The most common neurodegenerative condition is Alzheimer’s disease (AD). In this dis-
ease, another small and specific area of the brain is damaged. Research suggests that the early
stages of Alzheimer’s disease are characterized by changes in the entorhinal–hippocampal
system, particularly in the entorhinal cortex (EC) and the hippocampus [8].

The hippocampus is essential for the formation of new memories. It helps in consol-
idating short-term memory to long-term memory, a process that involves making these
memories stable and stored efficiently for later retrieval. The entorhinal cortex, particularly
its medial aspect, contains grid cells, which are critical for spatial navigation and mapping
environments. This region suffers the most severe neuronal loss among the affected areas
in this disease.

The outcome of the neurodegeneration in different brain regions is that patients with
Alzheimer’s primarily exhibit memory loss, while those with Parkinson’s are more likely
to suffer from movement disorders. Unfortunately, there can be an overlap in symptoms
between these two neurodegenerative diseases. However, the mechanisms underlying the
disease, including the role of misfolded proteins and the interaction between dopamine
and acetylcholine, remain unclear [9,10].

1.2. The Hidden Progression of the Disease

This complexity and hidden progression make NDs one of the major causes of neu-
rological disability and mortality worldwide. Despite technological advancements, we
still pessimistically estimate the number of people with dementia is expected to increase
from 57 million cases globally in 2019 to 152 million cases globally in 2050, notably with a
three-fold increase projected in China [11,12]. Therefore, we urgently need to address the
gap in understanding of these diseases, particularly in terms of the complex interplay of
factors that contribute to these conditions.

To bridge this gap, there is a need for more effective screening and diagnostic methods.
These should not only facilitate widespread diagnosis but also accurately identify indi-
viduals at risk of these diseases. With this objective, we selected the Montreal Cognitive
Assessment (MoCA, a pen-and-paper test considered as the gold standard for cognitive
evaluation), and we transformed it into an online version. Here, we present the results of
applied machine learning algorithms to determine the reliability of this approach.

1.3. The Cognitive Assessment

The Montreal Cognitive Assessment (MoCA) is a brief test used by doctors to find
early signs of problems with thinking and memory, which can be linked to Parkinson’s dis-
ease. MoCA is a one-page 30-point test that includes tasks such as visuospatial/executive
functions, naming, memory, attention, language, abstraction, delayed recall, and orienta-
tion. It is designed to quickly assess cognitive functioning and screen for mild cognitive
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impairment. This test is usually carried out face-to-face in a clinical setup and takes around
15 min to complete.

Despite this, checkups of cognitive state are rare exceptions, as they generate addi-
tional workload to the budget of healthcare systems. This leads to the underdiagnosis of
neurodegenerative conditions. Because of this challenge, it makes sense to use the web and
machine learning models to support the process diagnosis. This removes the geographical
and economical constraints, making it possible to screen wider populations, providing
valuable data.

However, transitioning to an online environment poses its own set of challenges,
especially for elderly users who may struggle with digital tasks that differ from their paper-
based counterparts, such as drawing. Difficulty with the technology might result in lower
test scores that inaccurately reflect a person’s cognitive abilities rather than their familiarity
with computers.

Therefore, while the prospects are promising, there are challenges to consider, includ-
ing ensuring the privacy and security of sensitive medical data, addressing digital literacy
and accessibility issues among older populations, and validating the efficacy of machine
learning models across diverse populations. Thus, further research is needed to ensure
their reliability, accuracy, and integrate them into clinical practice.

Hence, to evaluate available methods, we created an online platform in which partici-
pants can solve a self-administered version of the MoCA test. The platform is accessible via
web browsers, ensuring ease of access for users from the comfort of their homes. It features a
simple, intuitive interface that guides users through the screening or diagnostic process step
by step. Given the sensitivity of medical data, the platform adheres to privacy and security
standards, such as data encryption, secure data storage, and anonymization techniques.

Then, we analyzed the results, we used machine learning models to classify our
participants according to their health status, and we compared our findings with the
existing literature.

2. Methods

Taking these challenges into account, we created the online version of the MoCA test.
Then, we compared multiple machine learning methods in the task of classification of
healthy subjects and patients with Parkinson’s disease. Each experiment measured the
effectiveness and reliability of selected machine learning algorithms in detecting signs of
the disease.

2.1. The Montreal Cognitive Assessment

MoCA is a cognitive health evaluation tool, primarily used for detecting mild cognitive
impairment [13]. This test covers a range of cognitive domains, including short-term mem-
ory recall, visuospatial abilities, and executive functions. This ability to evaluate various
cognitive aspects in a short (around 15 min) time makes it a practical and comprehensive
screening tool.

MoCA has proven to be more effective than some other cognitive tests, such as the Mini-
Mental State Examination (MMSE), especially in the context of Parkinson’s disease [14,15].
Here, research indicates that MoCA is more sensitive in detecting cognitive impairments in
PD patients.

Furthermore, it is helpful in predicting cognitive decline in the early stages of PD, with
scores of 26 or lower marking a significant risk for progressive cognitive deterioration [16].
This sensitivity to early-stage cognitive issues in PD highlights MoCA’s clinical importance.

Additionally, MoCA’s adaptability for remote administration is particularly beneficial
for patients with movement disorders [17]. This enhances its accessibility in varied clinical
settings. MoCA’s effectiveness extends to reflecting cognitive reserve, with emphasis on
the influence of education and work activity [18].

It is important to acknowledge reported limitations, as for example, cultural and
educational biases present a significant challenge. The MoCA’s performance can vary across



Appl. Sci. 2024, 14, 2979 4 of 16

diverse cultural and educational backgrounds, potentially leading to misinterpretation of
results. Moreover, individuals with lower education levels may score lower on the MoCA,
not necessarily due to cognitive impairment but due to the test’s design, which might favor
those with higher educational and cultural backgrounds [19]. However, Gagnon (2013)
cautioned that adjusting the MoCA for education could decrease its sensitivity, leading to
an increased number of false negatives [20].

Another noteworthy concern is its susceptibility to practice effects, especially between
the first and second administrations. This could potentially skew results and requires
consideration in clinical interpretation [21].

In summary, while the MoCA is a valuable tool for detecting cognitive impairment,
it is essential to be aware of its limitations. These include cultural and educational biases,
the potential for overdiagnosis, difficulty in distinguishing between different cognitive
disorders, language barriers, and time constraints in clinical administration. Awareness
and consideration of these factors are crucial for ensuring appropriate use of the MoCA in
nuanced contexts.

2.2. Development of the Online Platform

The development of an online Parkinson’s disease screening platform is guided by
earlier research demonstrating the effectiveness of online tools in neurological assessment.
For example, Youngmann (2019) presented a machine learning algorithm specifically
designed for Parkinson’s screening through a web platform, showing the feasibility and
effectiveness of online tools in diagnosing PD [22]. Furthermore, Kim (2020) developed
a more advanced point-of-care platform, which is geared towards the early diagnosis of
Parkinson’s disease [23]. These studies highlighted the growing trend and potential of
using web platforms for various aspects of Parkinson’s research, including data collection,
patient monitoring, and early diagnostic procedures.

To conduct remote experiments and confirm this method’s feasibility and performance,
we created a controlled web environment. This validation is important in understanding
and improving cognitive assessment tools. We developed the platform using open-source
components of React 16.14.0 and Bootstrap 4.5.2, PHP8 API, and MySQL database. This
choice allowed us to develop a user-friendly interface with adjustable fonts and contrasts,
enhancing accessibility and ensuring the quality of data. This is an important component
for participants with cognitive challenges.

The test begins with a supervisor registering a participant. The participant receives a
unique URL, including a unique token, to start the test. During the test, we present screens
with instructions that the participant should follow. Each of their responses was stored in
the database. The test automatically scores simpler MoCA tasks. However, complex tasks
like the clock drawing test were evaluated manually, according to established standards.

2.3. Inclusion Criteria for Patients and Healthy Subjects

To evaluate data aggregated by this platform, we invited two groups of people.
Our approach is targeted to establish a distinction between individuals with varying

stages of PD and a generally healthy population. This method allowed us to explore and
identify patterns related to PD’s impact on health status.

(1) The first group included people with Parkinson’s disease. All of them had a confirmed
Parkinson’s disease diagnosis, and they were receiving treatment and advice from
neurologists at UMass Chan Medical School. Eight participants had UPDRS III scores
between 10 and 29 (indicative of mild symptoms of PD), and seven participants had
UPDRS III scores above 30 (indicative of advanced symptoms of PD).

(2) For reference, we selected students from the Polish Japanese Academy of Information
Technology. This approach was based on the lower likelihood of young people having
PD. These individuals did not undergo neurological examination to confirm the
absence of PD.
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In this study, we applied disease-specific criteria for the patient group and combined
convenience, demographic, and health status criteria for selecting healthy subjects. The
sample size (n = 31) allows for preliminary comparisons and insights into the differences
between patient and reference groups. We plan a study with a larger group to confirm
these findings and explore other variables that may influence the results.

Before the study, the plan was reviewed and approved by two groups: the Institutional
Review Board at UMass Chan Medical School (protocol code: IRB H0008962) and the Ethics
Committee at the Polish Japanese Academy of Information Technology (protocol code:
OKE-02-06-2022) to ensure compliance with the Declaration of Helsinki.

2.4. Implementation of Time-Based Measures

Currently, there is a debate in Parkinson’s disease research whether digital methods
can yield more detailed and precise data than traditional assessment methods, especially in
detecting invisible cognitive and motor changes [24,25].

Interestingly, eye-tracking studies in Parkinson’s disease confirmed that it is possible
to capture these subtle changes with digital technologies [26,27]. In these studies, we can
detect if patients show increased saccadic and antisaccadic delays compared to healthy
controls. This suggests that certain subtle motor impairments in PD, such as delays in eye
movements, can be measured using digital tools.

For this, we included two types of time measurements in the online MoCA test:
Instrumental Reaction Time (IRT) and Time to Submit (TTS). Specifically, we measured the
time taken to interact with the interface (IRT) and to complete and submit answers (TTS)
for each MoCA test question.

IRT and TTS were tracked for each question, presented individually. IRT measures
the time from the presentation of a stimulus to the initiation of a response, capturing the
cognitive processing period, and TTS records the total time from stimulus presentation to
the completion and submission of a response. By design, both measures reflect cognitive
decision-making and motor execution abilities.

IRT and TTS are measured in the front-end layer (closest to the user). Both values
are on a millisecond scale, captured without network delays using a JavaScript method
performance.now. These measures were integrated into the digital platform, tracking the
response times of each participant as they interacted with the MoCA test.

2.5. Statistical Analysis

To analyze aggregated data, we used the IBM SPSS 29 software. We examined variables
such as age, gender, UPDRS group scores, and MoCA scores. We compared these variables
between healthy individuals and patients with Parkinson’s disease, with a p-value below
0.05 marked as significant.

2.6. Rough Set Theory

For data modeling, we used a method called rough set theory (RST). This is because
earlier research shows that RST can be better than other machine learning methods for
classifying diseases [28].

Rough set theory (RST), introduced by Zdzisław Pawlak in the 1980s, is a mathematical
approach to data analysis that deals with vagueness and uncertainty [29,30]. RST is
particularly effective in identifying patterns within imprecise or incomplete information. It
operates on the principle of approximating sets by a pair of lower and upper bounds, which
represent the crisp sets of all definitely and possibly belonging elements, respectively.

The fundamental operations of RST are based on the concepts of lower and upper
approximations. Given a set X within the universe U, the lower approximation (Lx) is the
set of elements that are certainly in X based on the available information, while the upper
approximation (Ux) includes elements that could possibly belong to X.

(Lx) = {x ∈ U : [x]R ⊆ X}
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(Ux) = {x ∈ U : [x]R ∩ X ̸= ∅}

where [x]R denotes the equivalence class of x under the equivalence relation R, exposing
indiscernibility between objects in the context of available attributes.

Decision rules generated from RST analysis are in the form:

IF(condition) THEN (decision)

Decision rules derived from lower approximation sets (Lx) represent certain conclu-
sions, and decision rules derived from upper approximation sets (Ux) represent uncertain
conclusions. These rules can be directly interpreted, providing insights into the data’s
underlying structure and decision-making logic.

Interestingly, RST is like the way primates, like humans, visually understand complex
objects they have not seen before [31]. When we see something new, our brain uses what it
knows about other objects to guess what this object might be. Sometimes the new object
may have features that do not match our existing knowledge, yet our brain gradually
recognizes it using rule-based processes similar to RST. Likewise, RST-like mechanisms
enable our brains to sort and interpret confusing or conflicting information, gradually
narrowing down the gap between concepts of objects to their crisp images.

Intriguingly, this approach often yields better results than other classical machine
learning approaches. An added value of RST is that the generated rules, unlike those from
classical ML methods, can be easily interpreted by humans. Here, we used Rough Set
Exploration System (RSES) 2.2.2 [32]. In this software, we used a 3-fold cross-validation
method to test 10 objects per iteration. This means that the data were split into three parts,
where a classifier is built on the basis of the training set (random 21 objects) and evaluated
on 10 independent and unseen objects.

2.7. Machine Learning Approach

To challenge the Rough Set Exploration System results, we implemented three classic
machine learning models in Python using the scikit-learn (sklearn) library, which facilitates a
range of machine learning tools. Additionally, we utilized complementary Python libraries
for data manipulation and visualization, including pandas, seaborn, and matplotlib [33–36].

Here, we employed a train_test_split approach, allocating 30% of the data for testing
before modelling. This split was performed randomly to ensure that 21 subjects were used
for training and 10 independent subjects for testing.

We note that a small dataset generates a higher risk of overfitting, where the model
learns the noise and specific details of the training data too well and performs poorly
on new, unseen data. Therefore, to mitigate the risk of overfitting, we also implemented
cross-validation techniques during the model training phase. This approach allowed us
to assess the model’s performance more accurately and ensure its generalizability to new,
unseen data.

Moreover, due to the risk of overfitting, we avoided more complex solutions like deep
neural networks. Thus, we considered simpler models with regularization (e.g., L2). Specifi-
cally, we selected Logistic Regression, Support Vector Machine (SVM), and Random Forest
models. The application of L2 regularization indirectly influences feature selection by shrink-
ing the less important feature’s coefficients closer to zero, which helps in identifying more
significant predictors. However, L2 regularization does not perform explicit feature elimina-
tion but rather adjusts the scale of contribution of each feature.

Each of these models has its strengths and weaknesses, and their performance can
vary based on the specific characteristics of the dataset. Therefore, for a better overview of
the performance, we analyzed and compared them side by side.

To address the consideration of hyperparameter tuning, we used GridSearchCV with
cross-validation, and we limited the range and number of hyperparameters. We used a
Stratified K-Fold cross-validation method that ensured the same proportion of classes in
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each fold. The dataset was balanced, meaning there was no need for synthetic oversampling
techniques like SMOTE.

3. Results

The study involved a total of 31 participants, who were divided into two groups: the
Parkinson’s disease (PD) group and the healthy subjects (HS) group.

3.1. Statistical Analysis

The PD group contained fifteen patients (eight females and seven males), with an
average age of 70.8 years (standard deviation [SD] = 5.931). The reference group contained
sixteen healthy subjects: four females and twelve males, with a mean age of 23.26 years
(SD = 0.964).

The PD group had a slightly higher percentage of females, representing 53% of the
participants. However, males were the majority of the reference group (75%) (Table 1).

Table 1. Comparison of the characteristics of patients and healthy subjects.

Variable PD Patients (n = 15) Healthy Subjects (n = 16) p-Value

Age 70.80 ± 5.931 23.26 ± 0.964 <0.001

Gender (0 = M, 1 = F) 0.53 ± 0.516 0.25 ± 0.447 0.115

UPDRS Group (0 = HS, 1 = MILD, 2 = ADV) 1.47 ± 0.516 0 ± 0 <0.001

Web MoCA Score (total) 24.13 ± 3.543 26.69 ± 1.302 0.017

Web MoCA IRT (avg, ms) 5896.27 ± 1514.26 2894.25 ± 646.974 <0.001

Web MoCA TTS (avg, ms) 13,667.00 ± 3445.42 6881.37 ± 1589.145 <0.001

3.2. Data Profiling

The dataset includes thirty-one observations, and each observation has six variables.
Categorical features were managed during preprocessing and modeling stages:

(1) The ‘gender’ variable was encoded as a binary categorical feature, with 0 representing
male (M) and 1 representing female (F). This encoding was straightforward, given the
binary nature of the aggregated data, and was directly utilized in machine learning
models without further transformation.

(2) The ‘is_healthy’ variable was also a binary categorical feature indicating the health
status of the subjects (0 for patients with Parkinson’s disease and 1 for healthy subjects).
This binary encoding was chosen to enable clear distinction and modeling of health
status as a response variable in predictive analyses.

(3) Although the ‘UPDRS Group’ variable was included in our dataset for a general
overview, it was not used during the training of our models. The decision to exclude
this variable from training was made because the UPDRS Group is related to the
diagnosis and severity of Parkinson’s disease, which could introduce bias into the
model when predicting the health status based on broader, non-diagnostic features.
Its primary role was to provide context and depth to the clinical profile of the PD
patients for the readers and was not intended as a feature for prediction.

To suggest potential connections between variables, we used a matrix of Pearson
correlation coefficients, showing that age is strongly negatively correlated with the healthy
status and positively with IRT and TTS (Figure 1).

There was a notable age gap among participants, with a strong correlation between
age and health status. Preliminary analyses indicated that using age as a predictor would
lead to a model that essentially segregates the data into two clusters based solely on age.

Finally, we conducted three experiments on the dataset. The goal was to calculate how
distinguishable the web test results of PD patients and healthy subjects are. Surprisingly,
unsupervised PD participants performed significantly better than we expected. Their
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average MoCA score was higher than noted in the literature, oscillating around 24 points,
creating a challenge for classification methods.
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3.3. Experiment I/III: Predict Health Status Based Solely on MoCA Score

The first experiment targeted the prediction of whether a participant is healthy based
only on the total MoCA score. In predicting PD patients (0) using the MoCA score alone,
the RSES model demonstrated effectiveness with total accuracy of 80% across all cases it
evaluated, presenting its capability to classify individuals accurately (Table 2 and Figure 2).
Specifically, the model’s performance when identifying healthy subjects (1) was perfect,
with a 100% accuracy rate, showing its strength in recognizing individuals without PD.
However, the specificity, or the model’s ability to correctly identify healthy individuals as
healthy, was calculated as 57.13%.

Table 2. Confusion matrix for predicting participant status (is_healthy = 0/1) based on the MoCA
score using the RSES model, detailing the total number of tested objects (10), total accuracy (0.8), and
coverage (1.0).

Predicted

0 1 No. of Obj. Accuracy Coverage

Actual
0 2.67 2.00 4.67 0.607 1.000

1 0 5.33 5.33 1.000 1.000

True positive rate 1.00 0.72

To validate, we used hyperparameter-tuned and cross-validated ML models, including
Logistic Regression, Support Vector Machine (SVM), and Random Forest. Interestingly,
all three models reported a 60% accuracy, which is 20% lower than the RSES model,
showing a lesser ability to generalize the prediction of health status based on MoCA scores
alone. When predicting health status using only the MoCA score, all ML models achieved
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a precision of 50%. This indicates that half of the positive predictions were incorrect,
misclassifying healthy individuals as PD patients.
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The recall of 100% across models suggests that all PD cases were correctly identified,
echoing the RSES’s true positive rate but contrasting with its overall accuracy. The consis-
tent confusion matrix results (2 TN, 4 FP, 0 FN, 4 TP) demonstrate the models’ tendency to
misclassify healthy controls as PD patients, thus presenting specificity issues. The speci-
ficity for the Logistic Regression, Support Vector Machine, and Random Forest models
in Experiment I/III is all 33.3%. This indicates that each model correctly identified 33.3%
of the actual negatives (healthy subjects) as being healthy. This highlights a challenge in
distinguishing between PD patients and healthy controls based solely on the MoCA score
in this experimental setup.

In summary, the RSES model outperformed traditional ML methods in terms of
accuracy in this specific experiment, presenting a potential in handling the predictive
task with a limited set of features (MoCA score alone) (Table 3). High recall across all
methods highlights a common strength in identifying PD cases but also underscores a
shared weakness in specificity, particularly evident in the ML methods where false positives
were a significant issue.

Table 3. Comparison of model performance in Experiment I/III.

Model Name and Hyper Tuned Parameters Accuracy Precision Sensitivity Specificity

RSES 0.8 0.727 0.86 0.572

Logistic Regression {‘C’: 1} 0.6 0.500 1.00 0.333

SVM {‘C’: 0.1, ‘gamma’: 0.01} 0.6 0.500 1.00 0.333

Random Forest {‘n_estimators’: 4} 0.6 0.500 1.00 0.333

3.4. Experiment II/III: Predict Health Status Based on MoCA Score and Gender

The second experiment targeted the prediction of whether a participant is healthy
based on both the (a) MoCA score and (b) gender. This experiment examined whether
the addition of gender as a predictive variable would enhance the model’s performance
compared to using the MoCA score alone.
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By focusing on gender, we wanted to develop models that could potentially identify
health status indicators across more diverse and inclusive demographic profiles. This
approach allows for the exploration of health determinants in settings where age may not
be the primary factor of interest or where age information is not available.

Interestingly, the RSES analysis with the inclusion of gender showed a decrease in ac-
curacy compared to the first experiment (80% to 70%). The detailed results indicate a mixed
accuracy for different classes, with a significant true positive rate (the ability to correctly
identify healthy individuals) but a lower accuracy for classifying PD patients (Table 4). The
specificity for the RSES model in Experiment II/III is approximately 0.875. This indicates
that the RSES model correctly identified 87.5% of the actual healthy individuals as being
healthy, demonstrating a better performance in distinguishing between PD patients and
healthy controls than the model based solely on MoCA scores.

Table 4. Confusion matrix for predicting participant status (is_healthy = 0/1) based on the MoCA
score and gender using the RSES model, detailing the total number of tested objects (10), total
accuracy (0.7), and coverage (1.0).

Predicted

0 1 No. of Obj. Accuracy Coverage

Actual
0 2.33 2.33 4.67 0.389 1.000

1 0.67 4.67 5.33 0.917 1.000

True positive rate 0.67 0.66

Surprisingly, the addition of gender as a predictive variable in Experiment II did not
enhance the classical model’s performance as well. The Logistic Regression model, despite a
high sensitivity (75%), showed a decrease in overall accuracy (50%) and precision (42.86%)
when including gender, compared to its performance in the first experiment. SVM maintained
its sensitivity at 100% but did not show an improvement in overall accuracy (60%) or precision
(50%) with the inclusion of gender. Random Forest showed a significant decrease in perfor-
mance across all metrics (accuracy = 40%, precision = 33.33%, sensitivity = 50%) compared to
the first experiment. The specificity for the Logistic Regression, Support Vector Machine,
and Random Forest models in Experiment II is 0.333, or 33.3%. This indicates that each
model correctly identified 33.3% of the actual healthy individuals (label 1) as being healthy,
highlighting a challenge across all models in this experimental setup (Table 5 and Figure 3).

Table 5. Comparison of model performance in Experiment II/III.

Model Name and Hyper Tuned Parameters Accuracy Precision Sensitivity Specificity

RSES 0.7 0.667 0.500 0.875

Logistic Regression {‘C’: 1} 0.5 0.429 0.750 0.333

SVM {‘C’: 0.1, ‘gamma’: 0.01} 0.6 0.500 1.000 0.333

Random Forest {‘n_estimators’: 5} 0.4 0.333 0.500 0.333

The results highlight the challenge in selecting features for predictive modeling, es-
pecially in small datasets. The inclusion of additional variables does not always lead to
improved performance and may sometimes detract from the model’s accuracy due to
overfitting or the introduction of noise.

To conclude, the addition of gender as a feature alongside MoCA scores does not seem
to significantly improve the models’ performance, especially in the case of Random Forest,
where accuracy decreases. However, the RSES model demonstrates a better balance in
sensitivity when predicting between PD patients and healthy individuals compared to
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the individual ML models, although with a slight drop in overall accuracy compared to
Experiment I/III.
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3.5. Experiment III/III: Predict Health Status Based on MoCA Score and IRT + TTS

The third experiment targeted the prediction of whether a participant is healthy based
the (a) MoCA score, (b) IRT, and (c) TTS. This experiment examined whether the addition
of temporal measures as a predictive variable would enhance the model’s performance
compared to using the MoCA score alone.

Importantly, the RSES analysis with the inclusion of temporal values showed an
increase in accuracy compared to the first experiment (80% to 93%). The detailed results
indicate a high accuracy for different classes, with a significant true positive rate and
higher accuracy for classifying PD patients (Table 6). The specificity for the RSES model
in Experiment III/III is approximately 0.934. This indicates that the RSES model correctly
identified 93.4% of the actual healthy individuals as being healthy, demonstrating a better
performance in distinguishing between PD patients and healthy controls than based solely
on MoCA scores, or MoCA scores together with gender.

Table 6. Confusion matrix for predicting participant status (is_healthy = 0/1) based on the
MoCA score, IRT, and TTS using the RSES model, detailing the total number of tested objects
(10), total accuracy (0.93), and coverage (1.0).

Predicted

0 1 No. of Obj. Accuracy Coverage

Actual
0 4.67 0.33 5 0.933 1.000

1 0.33 4.67 5 0.933 1.000

True positive rate 0.93 0.93

The addition of temporal measures as a predictive variable in Experiment III enhanced
the classical model’s performance as well. The Logistic Regression model achieved perfect
sensitivity (100%) and showed an increase in overall accuracy (93%) and precision (80%).
SVM maintained its sensitivity at 100% and showed an improvement in overall accuracy
(90%) and precision (80%) with the inclusion of IRT and TTS. Random Forest showed a
significant increase in performance across all metrics (accuracy = 90%, precision = 100%,
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sensitivity = 75%) compared to the first and second experiments. The specificity for all
ML models also increased. For the Logistic Regression and Support Vector Machine, this
value increased to 83.3%, and Random Forest achieved a perfect (100%) specificity score.

In summary, Experiment III analyzed the impact of adding Instrumental Reaction
Time and Time to Submit to MoCA scores for prediction of health status. The RSES model
achieved a 93% accuracy and sensitivity rate. Machine learning models like Logistic Re-
gression, Support Vector Machine, and Random Forest also showed marked improvements
in their predictive capabilities (Table 7 and Figure 4). Specifically, Random Forest demon-
strated perfect specificity, suggesting that temporal measures significantly enhance the
model’s ability to correctly identify healthy individuals.

Table 7. Comparison of model performance in Experiment III/III.

Model Name and Hyper Tuned Parameters Accuracy Precision Sensitivity Specificity

RSES 0.933 0.934 0.93 0.934

Logistic Regression {‘C’: 0.01} 0.900 0.800 1.00 0.833

SVM {‘C’: 0.01, ‘gamma’: 0.01} 0.900 0.800 1.00 0.833

Random Forest {‘n_estimators’: 2} 0.900 1.000 0.75 1.000
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Figure 4. Enhanced ROC curves for Logistic Regression, Support Vector Machine, and Random Forest
models predicting health status using MoCA scores, IRT, and TTS. The Logistic Regression curve is
covered by the Support Version Machine curve. The Logistic Regression curve (blue line) is covered
by the Support Version Machine curve. The purple dashed line represents the baseline performance
of a random classifier (random chance line).

The results from Experiment III seem very promising. The AUC values provided
for the models in the ROC curves suggest near-perfect or perfect classification ability.
Understandably, to confirm the model’s predictive accuracy, additional validation using an
independent dataset or through a longitudinal prospective study is recommended. We plan
future studies with larger samples to confirm these findings and explore other variables
that may influence the results.

4. Discussion

We examined the predictive accuracy of health status based on MoCA scores. Exper-
iment I focused solely on MoCA scores, Experiment II added gender as a variable, and
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Experiment III included IRT and TTS, alongside MoCA scores. The inclusion of temporal
variables, as presented in Experiment III, highlighted how behavioral and temporal data
can significantly refine the models’ predictive capabilities.

Initially, experiments revealed surprising specificity issues, especially when models
were relying solely on MoCA scores. Interestingly, this aligns with the findings about
the specificity issues of the Montreal Cognitive Assessment. The literature specifically
mentions that while MoCA is good at detecting dementia (high sensitivity), it also produces
a high number of false positives (low specificity). This means it often incorrectly identifies
people as having dementia when they do not.

This issue was particularly raised by Davis et al. (2021), in their systematic review.
They analyzed the accuracy of the MoCA test in detecting dementia across seven studies
involving 9422 participants [37]. Their findings highlighted a significant concern; over
40% of non-demented individuals were falsely identified as having dementia at the MoCA
cut-off of less than 26 points. These findings are in line with the trends we saw in this study.

Furthermore, Rosenblum et al. (2020) highlight the challenges in accurately identifying
mild cognitive impairment in Parkinson’s disease (PD-MCI) using MoCA [38]. They
emphasize that factors such as age, gender, and education significantly influence the test’s
accuracy, complicating the early-stage diagnosis of PD-MCI. This reinforces the notion that
MoCA, while useful, has limitations in distinguishing between PD-MCI and normal aging
or other conditions, especially when demographic variables are significant.

Collectively, insights from the literature validate the patterns we observed in this study
and suggest a potential limitation of MoCA’s effectiveness, particularly in diverse settings
and populations, including the described web-based approach.

Hence, this research advocates for the integration of additional assessment tools
or parameters alongside MoCA to enhance diagnostic accuracy. This is significant in
advancing the field of cognitive assessment, encouraging a more comprehensive approach
that accounts for individual differences.

The findings are particularly crucial for PD-MCI identification, and they show the need
for a nuanced approach that considers demographic and behavioral factors. Accordingly,
this research suggests that relying solely on MoCA may lead to misdiagnoses or overlooked
cases in PD patients.

Importantly, the insights gained from this study can extend to other cognitive as-
sessment tools. They prompt a re-evaluation of current practices and encourage the de-
velopment of more inclusive and accurate assessment strategies, particularly in digital
health platforms.

Furthermore, this study underscores the limitations of MoCA in accurately diagnosing
cognitive impairment across different age groups and in web-based settings. This is
significant because it challenges the one-size-fits-all approach to cognitive assessment and
calls for more personalized or adaptable testing methods.

It is important to acknowledge the limitations of this study. These include the small
size of the research groups, potentially limiting the generalizability of these findings.
The demographic diversity of the described sample may not fully represent the broader
population, particularly in terms of age, gender, ethnicity, and education. The use of a web-
based platform for MoCA assessment has its constraints and may not accurately replicate
the nuances of an in-person testing environment.

The study’s focus on a single tool, MoCA, may not encompass the multifaceted nature
of cognitive impairments. The absence of longitudinal data prevents us from observing
changes over time. External variables that could affect cognitive performance were not fully
controlled. Finally, interpreting interactions in a web-based format poses unique challenges
in understanding the complete cognitive assessment scenario.

Therefore, research should aim to address these limitations by including larger, more
diverse study groups, employing a combination of cognitive assessment tools, and poten-
tially incorporating longitudinal designs to track cognitive changes over time. Further, more
detailed research is crucial for progress in the prevention of neurodegenerative diseases.
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5. Conclusions

The advancement of this field of research can be achieved with the integration of
time-based measurements and rough set theory. These methods significantly enhance the
precision of the Montreal Cognitive Assessment in differentiating between individuals with
Parkinson’s disease and healthy subjects. This enhancement is shown by an improvement
in diagnostic accuracy (80.0% to 93.4%) and precision (57.2% to 93.4%). The use of RST
allowed for the development of rule-based models that are more adaptable and sensitive to
the nuances in cognitive assessment.

An important insight from this research is the role of movement slowness associated
with PD in cognitive assessment. This suggests that cognitive assessments, particularly for
conditions like PD, should not be isolated from other symptom dimensions.

In conclusion, the results of this study advocate for a more integrative approach
in cognitive assessments, where temporal dynamics and other symptomatic features are
considered alongside traditional cognitive measures. Future research should explore similar
integrative approaches in other neurodegenerative conditions and different assessment
settings, including more extensive web-based platforms.
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