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Abstract: In this study, a sensorimotor controller is designed to characterize the required muscle
force to enable a robotics system to perform a human-like circular movement. When the appropriate
muscle internal forces are chosen, the arm end-point tracks the desired path via joint-space feedback.
An objective function of the least-change rate of muscle forces is determined to find suitable feedback
gains. The parameter defining the muscle force is then treated as a learning parameter through
an adaptive neuro-fuzzy inference system, incorporating the rate of change of muscle forces. In
experimental section, the arm motion of healthy subjects is captured using the inertial measurement
unit sensors, and then the image of the drawn path is processed. The inertial measurement unit
sensors detect each segment motion’s orientation using quaternions, and the image is employed to
identify the exact end-point position. Experimental data on arm movement are then utilized in the
control parameter computation. The proposed brain–motor control mechanism enhances motion
performance, resulting in a more human-like movement.

Keywords: sensorimotor control; adaptive neuro-fuzzy inference system; human-like movement

1. Introduction

In recent decades, there has been significant interest in developing robotic systems
capable of mimicking human movements [1]. The main motivation behind designing
such systems is to enhance the versatility and adaptability of robotic systems in various
environments, especially those involving human engagement [2]. Applications involving
the mimicking of human movements are numerous and range from from human–robot
collaboration [3] to rehabilitation [4]. Research on human activities, such as object manipu-
lation [5] and walking [6], requires collaboration across various fields, including kinesiology,
physiology, and robotics [7]. Despite advancements in these fields, ongoing research con-
tinues to explore the mechanisms that enable human beings to execute such sophisticated
movements smoothly.

The human body is supervised by the central nervous system (CNS), comprising
the brain, the spinal cord, and the nerves [8]. Single nerve cells in the spinal cord estab-
lish connections and convey messages between the brain and the human body [9]. Any
spinal cord injury-induced damage results in changes in strength, sensation, and other
human body functions below the injury site. The injured spinal cord is unable to trans-
mit and receive messages between the brain and the human body [10]. Individuals with
spinal cord injuries can benefit from robotic exoskeleton systems to assist with mobility
and movement [11]. Such systems stabilize the patient’s hands, arms, torso, core, legs,
and feet, assisting individuals with motion disabilities in regaining motor function through
rehabilitation training [12].

In rehabilitation, integrating human-like movements is essential to empower pa-
tients in recovering their ability to perform daily activities, ensuring the rehabilitation
process is practical, functional, and personalized to each individual’s unique needs [13].
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The importance of incorporating these natural movements is particularly apparent in using
rehabilitation robots. Accordingly, the control mechanisms for these robots require knowl-
edge of natural human activity. However, while applications of human movements have
been explored, performing human-like actions remains considerably challenging [14]. A sig-
nificant factor contributing to the challenge is the complexity of ill-posed problems arising
from the inherent joint and muscle redundancies. Moreover, the coupling between the
muscle and joint spaces in the human body presents an additional obstacle. The nonlinear
properties of muscles also add another complexity to the control of human-like actions [15].
In order to handle such challenges and perform human-like movements, model-free and
model-based control approaches have been developed for the musculoskeletal systems.

Several model-free control designs are addressed in the literature [16–19]. To generate
the muscle activation, deep neural networks (DNNs) are trained with inverse dynamics
and optimal control for the point-to-point reaching movements [16]. A biomimetic senso-
rimotor structure is developed in [17] to control a human musculoskeletal model. Based
on visual information, the authors partition the human body into separate modules that
regulate muscle activations for specific body regions. Then, they generalize the method to
encompass a comprehensive human biomechanical simulation with a sensorimotor control
system comprising connected DNNs. In addition to the supervised learning techniques
discussed in [16,17], there have been efforts to apply reinforcement learning algorithms
for the reaching movements, as studied in [18,19]. In the study by Huang et al. [18],
a learning rule employing a recurrent neural network (RNN) is introduced for high-level
motor control in a musculoskeletal robot. Meanwhile, Chen et al. [19] proposes a motion
learning framework inspired by human movements for a musculoskeletal system, which
involves identifying muscle synergies and implementing an iterative learning controller.
However, while model-free controllers offer benefits such as simplicity and adaptability,
their lack of a precise model can lead to challenges in predicting system behavior, requiring
extensive data for training and potentially resulting in less precise control in complex
musculoskeletal systems.

In model-based control methods, computing muscle force mostly relies on inverse
kinematics, inverse dynamics, and muscle-force optimization approaches. Various model-
based control designs have been examined to find the required muscle force, allowing the
robotics systems to perform human-like movements. Arimoto et al. [20] demonstrate that
a redundant planar robot can achieve human-like multi-joint reaching movement. They
employ a feedback approach from task space to joint space to accomplish a motion task,
incorporating linear joint angular velocity feedback without solving inverse kinematics.
Tahara et al. [21] design a task-space feedback controller including the nonlinear muscle
model characteristics for the reaching movements. The desired trajectory is formulated
within the task space, and the controller is designed using muscle-space parameters, such
as muscle length and contractile velocity. These muscle-space variables are obtained by
performing inverse kinematics, transitioning from the task space to the muscle space. Since
the motion of the musculoskeletal system can be represented in various spaces, including
muscle space, joint space, and task space, the effectiveness of the controller is impacted by
the choice of the space in which the controller is designed.

In order to improve the control design performance of the approach suggested in [21],
as well as its robustness against possible noise sources, an iterative learning control algo-
rithm using plural space variables is introduced in [22]. Two studies [23,24] introduce
adaptive robust control designs for the humanoid robot arms with biarticular muscles to
handle the effects of the uncertain dynamic parameters and disturbances. The adaptive
algorithms introduced in [23,24] update the dynamics parameters online and handle the
dynamic parameter perturbation and disturbance during the movement. An adaptive
optimal multi-critic based controller is designed in [25] for a multi-input multi-output
musculoskeletal arm model. The fundamental concept behind the design of the adaptive
optimal control is to possess the ability to adapt to dynamic parameter changes while
determining the muscle force optimized in real-time. Because of the real-time respon-
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siveness and robustness against the uncertainties in sliding mode control architectures,
Zhao et al. [26] employ a trajectory tracking control utilizing a switched sliding mode con-
troller in a manipulator powered by pneumatic artificial muscles and Xiuxiang et al. [27]
introduces an adaptive fuzzy sliding mode control approach to track the elbow joint and
endpoint of the human arm. It is important to remark that most existing model-based
controllers have used a simplified version of the musculoskeletal system and such model
simplification might not replicate the full range of human movements with high fidelity.
For details on musculoskeletal control, the reader is referred to [28].

The main objective of this paper is to outline an effective control strategy that mimics
human movement. This paper proves that the developed controller identifies the necessary
muscle activation that minimizes the force discrepancy between muscle and arm movement
models about the null-space vector. A Hill-type muscle model is employed in a three-link
musculoskeletal model with nine muscles in a curved arrangement, including six monoar-
ticular muscles that cross multiple/two joints and three biarticular muscles responsible
for shoulder, elbow, and wrist joint movement. The calculation of muscle activation has
two components: the model-based joint space controller term and the null-space term,
determined via a model-free learning algorithm. The null-space term plays a significant role
in rendering the movement more human-like, and it is typically considered as a constant
rather than being calculated from real-time motion data. The approach in this study to
ascertain the suitable null-space term involves reducing the force difference between the
muscle and arm movement models using the Adaptive Neuro-Fuzzy Inference System
(ANFIS). An assemblage of exemplars with a three-link arm has been incorporated to illus-
trate the application of the developed control algorithm. The simulation results have also
been included to corroborate the performance quality of the proposed control methodology.

The rest of this work is organized as follows. Section 2 introduces a kinematic and
dynamic model of the musculoskeletal arm model. Section 3 presents the sensorimotor
control architecture for human-like arm movement. Section 4 introduces the experimental
design, materials, and methods. Section 5 summarizes the main results. Section 6 concludes
the article.

2. Musculoskeletal Modeling

This section introduces a musculoskeletal arm’s kinematic and dynamic modelling,
including analyses of the arm’s joint, task, and muscle spaces.

2.1. Relation Between Task and Joint Space

The proposed musculoskeletal model has three biarticular and six monoarticular
muscles in a curved arrangement and a structure of three links, as shown in Figure 1. We
define the end-point arm position p = [px, py]T ∈ R2 in terms of the joint variables of the
arm θ = [θ1, θ2, θ3]

T ∈ R3. The coordinates of the end-point p without any orientation are
described in Cartesian space as follows:

p =

[
L1 cos(θ1) + L2 cos(θ1 + θ2) + L3 cos(θ1 + θ2 + θ3)
L1 sin(θ1) + L2 sin(θ1 + θ2) + L3 sin(θ1 + θ2 + θ3)

]
(1)

where L1, L2, and L3 denote the lengths of the shoulder, elbow, and wrist links, respectively,
θ1 is the shoulder angle relative to the x-axis coordinate, θ2 is the elbow angle in reference
to the shoulder, and θ3 is the wrist angle with regard to the elbow. By differentiating
Equation (1), we establish a relationship between the end-point velocity and the angular
velocities of the links as

ṗ = Jθ̇ (2)

where J ∈ R2×3 represents the Jacobian matrix that maps the joint space to the task space,
ṗ = [ ṗx, ṗy]T is the end-point linear velocity, and θ̇ = [θ̇1, θ̇2, θ̇3]

T is the angular velocity.



Appl. Sci. 2024, 14, 2974 4 of 20

The Jacobian matrix J is also employed to find the relationship between the joint torques
τ ∈ R3 and the end-point forces in task space F ∈ R2 as

τ = JTF. (3)
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Figure 1. Human arm model with nine muscles. mij represents the distance between the insertion
point of i-th muscle and j-th joint center, and (i = 5, 6, 9) and (i = 1–4, 7–8) indicate biarticular and
six monoarticular muscles, respectively. L1, L2, and L3 denote the lengths of the shoulder, elbow, and
wrist links, respectively. It is assumed that the trunk link is fixed, not moving. θ1 is the shoulder
angle, θ2 is the elbow angle, and θ3 is the wrist angle. The end-point arm position is (px, py).

2.2. Relation Between Joint and Muscle Space

The proposed musculoskeletal arm (see Figure 1) is transformed into nine possible
muscle connections with the rigid links to calculate the i-th muscle length li in terms of
the joint positions based on the descriptive kinematic analysis (see Figure 2). The existing
models often simplify muscle paths as straight lines rather than following curved paths.
This study, however, considers that muscles connect to the links via curved paths, provid-
ing a more accurate representation of the muscles’ actual anatomical and biomechanical
properties.
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Figure 2. Descriptive geometric kinematic analysis of each muscle utilized in the musculoskeletal
arm model.
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Figure 2 illustrates the connection of each muscle to the links and allows the mus-
cle length with respect to the reference frame {O} to be calculated using the geometric
relationships. Finding the length of each muscle, as shown in Figure 2, requires calcu-
lating the angles at which the muscles connect to the links. The muscle length vector
l = [l1, l2, · · · , l9]T ∈ R9, formulated through the law of cosines, is expressed as:

l =



m10[π − θ1 − arccos(
m10

m11
)] +

√
m2

11 − m2
10

m20θ1 +
√

m2
20 + m2

21

m31[π − θ2 − arccos(
m31

m32
)] +

√
m2

32 − m2
31

m41[
π

2
+ θ2 − arccos(

m41

m42
)] +

√
m2

42 − m2
41

m50[
π

2
− θ1] + m52 + [

π

2
− θ2]

√
L2

1 + (m50 − m52)2

m60θ1 + m62θ2 +
√

L2
1 + (m60 − m62)2

m72[π − θ3 − arccos(
m72

m73
)]

m82[
π

2
− arccos(

m82

m83
) + θ3] +

√
m2

83 − m2
82

m93(
π

2
− θ3) + m91(

π

2
− θ2) +

√
L2

2 + (m91 − m93)2



(4)

where mij denotes the distance between the insertion point of i-th muscle, j-th joint center,
i = 5, 6, 9 corresponds to the biarticular muscles, and i = 1–4, 7–8 represents the monoar-
ticular muscles. The model parameter values are presented in Table 1 and established
in [29]. The time derivative of the muscle length vector l̇ = [l̇1, l̇2, · · · , l̇9]T ∈ R9 results in
the following:

l̇ = Jm θ̇ (5)

where Jm ∈ R9×3 represents the muscle Jacobian matrix, which maps the angular velocity
of the joints θ̇ = [θ̇1, θ̇2, θ̇3]

T ∈ R3 to the change rate of the length of muscles l̇.

Table 1. The muscle model parameter values based on [29].

# Muscle Value (m)

l1 m10 = 0.055, m11 = 0.08
l2 m20 = 0.055, m21 = 0.08
l3 m31 = 0.03, m32 = 0.12
l4 m41 = 0.03, m42 = 0.12
l5 m50 = 0.04, m52 = 0.045
l6 m60 = 0.04, m62 = 0.045
l7 m72 = 0.035, m73 = 0.01
l8 m82 = 0.05, m83 = 0.01
l9 m91 = 0.04, m93 = 0.01

2.3. Muscle Model

This study adopts a muscle model developed by Hill [30] and subsequently refined
by [31]. This well-known muscle model calculates the muscle tensile force with the mus-
cle activation level. Muscle length and velocity are the variables employed for precise
calculation of the muscle tensile force, and each muscle force Fim is found by:

Fim = αi fia(li, vi)Fimax + fip(li)Fimax (6)

where fia and fip denote active and passive scaling functions, Fimax is the maximal isometric
muscle force, vi denotes the muscle length velocity, and αi ∈ [0, 1] indicates the muscle
activation level. The contraction at constant length and zero muscle activation (αi = 0),
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where the velocity of muscle shortening is zero, called the passive muscle force, is calculated
from the force–length relationship. The maximum exerted muscle force is generated with
αi = 1 when the force of contraction remains constant, and the velocity of contraction
becomes progressively less with regards to the force–velocity relationship. The muscle
model is written in a compact form as follows:

Fm = Faα + Fp (7)

where Fa = diag(Fa1, · · · , Fa9) ∈ R9×9 is the active muscle force term, Fp = [Fp1, · · · , Fp9]
T ∈ R9

is the passive muscle force term, and α = [α1, · · · , α9]
T ∈ R9 is the muscle activation vector.

The relationship between muscle tensile force Fm = [F1m, F2m, · · · , F9m]
T ∈ R9 and joint

torques τ = [τ1, τ2, τ3]
T ∈ R3 is defined as:

τ = WmFm (8)

where Wm = JTm ∈ R3×9 is transpose of the muscle Jacobian matrix. The number of
muscles is larger than the degrees-of-freedom (DoFs) of the link arm, resulting in the
infinite admission solutions. The solution can be expressed as follows:

Fm = (Wm)
†τ + (I − (Wm)

†(Wm))ϑ (9)

where W†
m = WT

m(WmWT
m)

−1 ∈ R9×3 is called the pseudo-inverse matrix of Wm, and
I ∈ R9×9 is the identity matrix. The first term of Equation (9) defines a minimum two-norm
solution vector, and, therefore, the muscle force might be negative. The second term
of Equation (9) is an arbitrary vector from the null space of Wm, depending on ϑ ∈ R9.
Equation (9) is rewritten as

Fm = (Wm)
†τ + Nh (10)

where Nh equals an arbitrary muscle force vector that balances the redundant muscles
among all the muscles without affecting the end-point pose (internal muscle forces). Thus,
the second term represents the internal muscle force generated by the redundant muscles.
Note that this term is employed to keep all muscle tensions positive. N ∈ R9×6 represents
the null space or kernel of Wm, and h ∈ R6 needs to be determined to ensure that all muscle
forces are positive. The problem lies in determining a unique value or values for h under
the condition Fim ≥ 0 ∀ i = 1, 2, · · · , 9. Assuming unrestricted joint forces are applied to
the muscles to support any arbitrary wrench, the force-closure condition is satisfied when
the homogeneous term of Wm remains strictly positive, that is

∀ N ∈ null(Wm), ∃ Nh ∈ R9
+. (11)

Moreover, muscle forces are bound by both lower and upper limits. Lower force limits
ensure muscles remain taut, establishing a minimum stiffness for the arm. Meanwhile,
upper force limits prevent extreme muscle deformations. The minimum two-norm solution
is employed to select h, minimizing the tensions among all muscles while keeping all
muscle forces within bounds. Simply stated:

minimize Fm = (
9

∑
i=1

F2
im)

1/2 (12)

subject to τ = WmFm and 0 < Fi,min ≤ Fim ≤ Fi,max ∀i = 1, 2, · · · , 9.
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The feasible wrenches are those constant static forces/moments applied to the end-
point that are balanced by all positive muscle forces, subject to a set of muscle-force limits.
To ascertain the feasibility of a wrench balance, we consider the following condition

∃{Fm|Fm = W†
mτ + Nh, Nh ∈ R9

+} ∩ {Fm|0 < Fi,min ≤ Fim ≤ Fi,max ∀i = 1, 2, · · · , 9}.

This condition affirms the existence of a solution to Equation (10) that intersects the
convex set delimited by the muscle-force limits. In essence, this convex set represents a
hyperbox in R9

+. Substituting Equation (3) into Equation (9), we obtain:

Fm = (Wm)
†JTF + (I − (Wm)

†(Wm))ϑ. (13)

2.4. Robot Dynamics

The dynamic equation of the musculoskeletal model for the three-joint arm in joint
space is formulated as

τ = M(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) (14)

where τ = [τ1, τ2, τ3]
T ∈ R3 is the joint torque/force vector, M(θ) ∈ R3×3 denotes the

inertia matrix, C(θ, θ̇) ∈ R3×3 represents the vector of centrifugal and Coriolis terms,
θ̈ = [θ̈1, θ̈2, θ̈3]

T ∈ R3 is the angular acceleration vector, and G(θ) = [g1, g2, g3]
T ∈ R3 is the

gravity force. In transverse plane motion, the effect of gravity is considered negligible.

3. Control Architecture for Human-like Arm Movement
3.1. Muscle-Activation

A muscle-activation input, incorporating both the arm and muscle terms, is introduced
as follows:

α =− W̄†
mJTτ + (I − (W̄m)

†(W̄m))ϑ

where α is the muscle-activation input, W̄m = FaWm, τ = Kpe + Kd ė, e = p − pd is the
tracking error between p actual position and pd ∈ R2 desired position, ė = ṗ − ṗd is the
velocity error, Kp = diag(kp, kp) ∈ R2×2 denotes the feedback gain of the position where
kp is a scalar constant value, Kd = diag(kv, kv) ∈ R2×2 stands for the feedback gain of the
velocity where kd is a scalar constant value, and W̄†

m is the pseudo-inverse matrix of W̄m.

3.2. Muscle-Force Change Cost Function

We introduce a cost function to minimise the difference between muscle forces cal-
culated using the arm movement kinematics and those generated by the control method
using muscle activation. Subtracting Equation (9) from Equation (6) yields

min
ϑ∈R

EF(ϑ) = ∥W†
mτ + (I9 − W†

mWm)ϑ − Faα − Fp∥2

subject to 0 ≤ α ≤ 1,

τ = M(θ)θ̈ + C(θ, θ̇)θ̇.

(15)

Here, the objective is to minimize EF(ϑ) = [E f 1, E f 2, · · · , E f 9]
T ∈ R9 with respect

to ϑ. The results of this minimization process are subsequently applied to the follow-
ing ANFIS structure to identify the null-space parameters, thereby making the motion
more human-like.

3.3. Adapt the ANFIS Architecture for Human-like Movement Problem

The proposed ANFIS structure comprises two soft-computing methods: Artificial
Neural Network (ANN) and fuzzy logic. A single input variable E f , obtained from the
force difference, is selected as the input for the ANFIS. The null-space vector ϑ is expected
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to have an output vector of the ANFIS. We express rule sets with a fuzzy if-then rule for
the system as

Rule 1 = IF E f is SMALL, THEN z1 = a1E f + a0

Rule 2 = IF E f is LARGE, THEN z2 = b1E f + b0

where a0, a1, b0, and b1 are the consequent linear parameters. The proposed ANFIS structure
is shown in Figure 3. The ANFIS structure comprises five layers: fuzzy layer, product layer,
normalized layer, de-fuzzy layer, and total output layer. The process begins by selecting the
input and output variables. For each input variable, fuzzy sets are defined, and fuzzy rules
are established for each set. The membership functions of the fuzzy system are then tuned
using a hybrid learning algorithm based on neuro-adaptive inference. Finally, the ANFIS
model is constructed and trained.

N

Layer 1 Layer 2

N

Layer 3

Layer 4

Layer 5

Figure 3. The proposed ANFIS structure.

Layer 1 (fuzzy layer): The main function of the first layer is to fuzzify the input
variable. Illustrated in Figure 3, the nodes are denoted by squares and labeled A1 and
A2. Here, A1 and A2 represent the linguistic labels as SMALL and LARGE, respectively.
The node function for each rule is given by

O1,1 = µA1(E f ) and O1,2 = µA2(E f ) (16)

where O1,1 and O1,2 denote the output functions of each rule, and µA1 and µA2 are the
membership functions.

Layer 2 (product layer): This layer’s main role is to calculate the firing strength of each
fuzzy rule. The node in this layer performs a multiplication operation on the membership
grades received from Layer 1. The nodes are denoted by circles in Figure 3.

O2,1 = w1 = µA1 and O2,2 = w2 = µA2 (17)

where w1 and w2 denote the firing strength of each rule, respectively.
Layer 3 (normalized layer): The third layer normalizes the firing strengths of the rule

obtained from the product layer. The purpose of this layer is to calculate the ratio of the
firing strength of the rule to the sum of all rules’ firing strengths, ensuring that the sum of
all output signals of this layer equals 1.

The output node is computed based on the proportion between the the rule firing
strength and the sum of the firing strengths as
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O3,1 = w̄1 =
w1

w1 + w2
and O3,2 = w̄2 =

w2

w1 + w2
(18)

where w̄1 and w̄2 are the normalized firing strengths.
Layer 4 (de-fuzzy layer): The adaptive node function in the fourth layer is described as

O4,1 = w̄1z1 = w̄1(a1E f + a0) and O4,2 = w̄2z2 = w̄2(b1E f + b0) (19)

where w̄1 and w̄2 are from the third layer, z1 and z2 denote the value of the function in the
consequent part of each fuzzy rule, and O4,1 and O4,2 are the outputs of the fourth layer.

Layer 5 (total output layer): The single node in this layer synthesizes the data from the
fourth layer and calculates the overall output as

ϑ = O5 = w̄1z1 + w̄2z2. (20)

In addition, a hybrid learning algorithm comprised of recursive least square (RLS)
and gradient descent algorithms is used to estimate the unknown constant parameters
in the ANFIS structure. The reader is referred to [32] for the detailed description of the
ANFIS architecture.

4. Experimental Design and Materials and Methods
4.1. Participants

The research included the voluntary involvement of 10 subjects who were fully in-
formed and gave their consent before the beginning of any data gathering in accordance
with the ethical guidelines of the Helsinki Declaration and with the endorsement of the
institution’s ethics committee. The selection of participants was determined by the absence
of any recorded visual, motor, or neurological issues.

4.2. Setup

The experimental setup used for evaluating the proposed method is depicted in
Figure 4. The setup consists of two main parts: image processing and orientation deter-
mination. The image processing to capture the movement patterns is initiated once the
subjects complete the drawing task on the test sheet (see Figure 5). Following the com-
pletion of the drawing, the test sheets are processed using the image analysis to calculate
the radius of the drawing. In order to obtain muscle-force difference used for the ANFIS,
the orientations of the subjects are recorded via the The inertial measurement unit (IMU)
sensors (Shimmer 3) positioned on the subjects’ links, as shown in Figure 6.

Figure 4. The experimental setup used for calculation of the subject radius through image processing
and link orientation determined using IMU sensors during the movement.
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Figure 5. Sample raw test sheet.

Figure 6. The Shimmer sensors attached to the subject links to measure link orientation.

To enhance data quality and participant comfort, we place the sensors on the links
rather than the joints, driven by the need for stability during measurements, minimizing
motion disturbances, and ensuring a consistent sensor orientation. Placing the sensors
on the links also mitigates the impact of skin effects associated with joint movement,
contributing to adequate signal quality. Additionally, the sensor placement allows for more
natural participant movement by avoiding interference with joint motion. Each person
is instructed to sit on the same chair with a shoulder-height about 10 centimetres above
the experiment table, while the relative distance of the test sheet depends on the length
of the person’s arm. The distance is defined to allow the participant to reach the farthest
point of the sheet without moving their trunk while they are leaning on the chair. They are
instructed to put both hands on the table to avoid stability concentrations. Each participant
then completes 10 drawings consisting of large-radius circles (see Figure 7a). The acceptance
criteria for a drawing was a maximum time of 2 s to complete the circle.
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Figure 7. The image analysis protocol used to calculate the radius of the drawing: a raw test sheet is
depicted in (a), a sample of the drawn path on the test sheet is given in (b), and the image processing
algorithm utilized to identify the radius of the drawn path is illustrated in (c).

The task involves using a pen to initiate the circle at the initial point, passing through
a designated way point at the farthest position, and finishing by completing the circle by
returning to the initial point (see Figures 5 and 7a,b for each step, respectively).

4.3. Methods
4.3.1. Offline Measurement Method

The proposed offline measurement method is applied after completing all the draw-
ings. The test sheets are scanned using a simple image processing method, and the im-
ages are processed in the MATLAB (R2018b) environment. The images are converted to
grayscale, and then, using a sharp low pass filter, the dark points are transformed to black
while the rest of the image is changed to white (see Figure 7).

In the analysis, the geometric parameters of the drawings are calculated through a
systematic image search protocol. The process starts with identifying the cubes within the
image, which serve as a reference object to establish scale and define the drawing’s features.
The initial and way points of the drawing are pinpointed based on their relative position
to the reference cubes. The center of the image is then approximated by calculating the
midpoint between the detected initial and way points, thus establishing an arbitrary center
for the arc search. Then, utilizing the center, we apply an arc search algorithm across the
image to determine the radius of the drawing.

The algorithm examines the image at one-degree intervals around the center, allowing
extraction of the radius corresponding to each drawing angle. The method provides the
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radius of the circle-like drawing as a function of angle. Finally, a matrix of radii with respect
to angles from 0 to 360 degrees is calculated, defining the trajectory of the movement with
the origin of the arbitrary center point.

4.3.2. Online Measurement Method

In the online method, the sensors are attached to the middle of the links to capture
gyroscope and accelerometer data during the drawing. The measurements are then in-
vestigated using selective orientation corrections with accelerometers. The measurement
data include gyroscope and accelerometer data. The data recording is performed at a fre-
quency of 51.6 samples per second for each tree accelerometer and tri-gyroscope. The initial
orientations are calculated as follows:

V(0) = −a(0)× Z

where V is a horizontal vector of the body frame to reference transformation rotation, Z
defines an arbitrary gravity attitude vector in z-axis, a is the initial acceleration vector, and j
denotes the time. Sign × denotes the standard cross product. The initial orientation vector
Ω is then updated as follows:

Ω(j) = q(j − 1)⊗ (
ω(j)

fr
)⊗ q(j − 1),

Φ(j) = [|Ω(j)|, Ωx(j), Ωy(j), Ωz(j)],

q(j) = Φ(j)⊗ q(j − 1)

where q represents the quaternion of the orientation from the body frame to the reference
frame, fr is the measurement frequency, ω(j) denotes the angular rotation, Φ(j) is the
rotation quaternion of the body frame, and ⊗ represents the quaternion product operator.
The proposed method computes the orientations estimated through quaternion-based
integration of the three-dimensional angular rate of change. The acceleration-based cal-
culation utilizes the same method as the initial orientation definition when ∥w(j)∥ < εw
is satisfied, where εw represents the minimum angular velocity range, which is set to 0.1
degrees per second.

5. Results and Discussion
Measurements

The initial assessment of the subjects’ performance is conducted through the offline
image processing methodology. The distribution of the radii of the drawings obtained from
the image processing indicates the drawing procedure’s correctness. Verifying that the
subject radii exhibit a bell-shaped histogram consistently distributed in line with statistical
expectations is crucial. Therefore, the image processing results are essential in validating
the experimental procedures.

After the participants complete the drawing task, we employ the image processing
procedure to identify the circles’ initial, way, and center points. Figure 8 depicts a sample
result of the implemented method on the test sheet. The green-colored text designates the
initial point, the yellow-colored text indicates the way point, and the center of rotation,
shown in red, represents the midline point location. Subsequently, the extracted data for the
radii of the circle-like drawings are calculated. The results for the sample test are illustrated
in Figure 9. The green, yellow, and red lines in Figure 9 signify the circle-like drawing’s
starting, way, and final points, respectively.

The next step involves determining the angles of each segment based on the online
measurement method. Figure 10 shows a sample recording of the resulting Euler angles
from the joint movements during the circle-drawing task. After collecting each joint angle
from the subjects, the next step is calculating the force difference using Equation (15) for
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the ANFIS architecture. The performance of the ANFIS’s force variation is then compared
to a scenario where a single constant ϑ parameter is not trained through the ANFIS.

In our study, we conducted a comparison between the performance outcomes associ-
ated with two distinct approaches to determining the internal force parameter within the
musculoskeletal arm model. The first approach utilizes the ANFIS to determine the internal
force parameter ϑ. The second approach relies on a single, static internal force parameter
that was predetermined and remained unchanged throughout the control process.

Figure 8. The detected initial, center, and way points of a sample drawing are respectively highlighted
with green, red, and yellow colors.

Figure 9. The image processing results of radius calculation. The start, via, and final points of the
drawing are each represented by lines in green, yellow, and red colors, respectively.
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The comparison results in Figure 11 highlight the performance differences between
the two approaches. As Figure 11 shows, the result demonstrates an improvement in more
human-like muscle force generation with the ANFIS approach. The variance in muscle
force difference when using the constant parameter is 2.692, whereas the ANFIS method
shows a variance of only 0.454. When the variance approaches zero, it indicates that the
model provides an accurate and precise approximation. A smaller variance signifies that
the predicted values are closely clustered around the mean, having a more reliable and
consistent model fit. Therefore, a lower variance in the force difference, as achieved by
the ANFIS method, implies a superior and more precise approximation of the human-like
muscle force compared to the constant parameter model. For a more detailed examination
of the force difference, an enlarged view between 0.4 and 0.8 seconds of Figure 11 is
presented in Figure 12.

Figure 10. The joints Euler angles for the circle drawing task.

Moreover, the peak in Figure 11 at approximately 0.2 s is likely associated with the
movement initiation in human circle drawing due to biomechanical factors and the motor
control involved in such tasks. When the person begins a drawing motion, especially
a circular one, there is a need to overcome inertia and start the movement from a static
position. The initial burst of force may be required to set the hand in motion, mainly if
resistance or the drawing surface offers some friction. In order to evaluate the developed
control approach, the musculoskeletal arm model with a circle-type reaching movement
is performed. The musculoskeletal arm model is constructed using the framework pre-
sented in [29] within the MATLAB environment. The simulation parameters are given in
Tables 1 and 2.

Table 2. Kinematic and dynamic parameters of the developed arm model based on [29].

Wrist Elbow Shoulder

Inertia (kg.m2) 0.001 0.012 0.141
Mass (kg) 0.35 1.32 1.93

Mass center (m) 0.075 0.135 0.165
Length (m) 0.15 0.27 0.31
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Figure 11. Norm of the force difference (δ) of ANFIS method compared to a constant value during
the circle drawing path.

Figure 12. The norm of the force difference (δ), as depicted in Figure 11, is shown with a detailed
view between the 0.4 and 0.8-second interval. The objective is to conduct a detailed examination of
the force difference.

It should be noted that the proposed method’s efficacy lies in the precision of the
underlying muscle model it utilizes. The accuracy of this model is paramount, as it directly
influences the reliability and performance of the method in simulating and understand-
ing muscle dynamics and internal force generation. We perform a circle-like reaching
movement based on the internal force vector defined in the previous section. To prove the
effectiveness of the ANFIS, we compare the performance using ANFIS with that using a
single internal force constant (see Figures 11 and 12). The single internal force constant is
selected as k = 20. For simplicity’s sake, we define the internal force vector ϑ = ku, where
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k is a positive constant and u ∈ R9 is the unit vector. The developed human arm model
and the musculoskeletal arm models in the MATLAB environment are presented in Fig-
ures 13 and 14, respectively. Figure 15 shows the simulation result of the circle-like reaching
movement with feedback constants Kp and Kd. It is observed that the end-point smoothly
approaches the desired point, and its trajectory is curved in line with the ANFIS. Moreover,
when the constant parameter is selected as lower than 20, it can be seen that the trajectory of
the end-point exhibits unusual behavior. The ANFIS-based method demonstrates superior
adaptability and precision, attributed to its ability to continuously refine the internal force
parameter in response to real-time feedback. In contrast, the single internal force parameter
approach exhibits limitations in its capacity to adjust to changing dynamics, leading to
decreased efficiency and accuracy in the task execution.

Figure 13. The human arm model in MATLAB environment.

Figure 14. The musculoskeletal arm model in MATLAB environment.
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Figure 15. Performance of the ANFIS structure for the reaching movement. The locations (A–D)
represents the arm-end points during the reaching movement.

6. Conclusions

This study designs and implements a sensorimotor controller that enables a robotic
system to mimic human-like circular motion. By optimizing the internal forces of the
muscles, we achieve accurate hand trajectory following along the desired path using joint-
space feedback. Utilizing the ANFIS structure, we advance the methodology by treating
muscle-force parameters as learning variables, allowing for dynamic adjustment based
on the muscle’s rate of change. This approach leverages the power of adaptive learning
and fuzzy logic to mimic the control of human motor function. The results underscore
the effectiveness of the proposed sensorimotor controller, demonstrating improvements in
the motion performance. Future work will focus on refining the controller’s adaptability
and exploring its application in more complex movement patterns and different robotic
platforms. Additionally, further investigation into the integration of sensory feedback
mechanisms could enhance the system’s responsiveness and versatility, paving the way for
more intuitive and lifelike robotic assistance in various applications.
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