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Abstract: This article provides a general overview of the communication protocols used in the
IEC61850 standard for the automation of electrical substations. Specifically, it examines the GOOSE
and R-GOOSE protocols, which are used for exchanging various types of information. The article
then presents real cases of cyber attacks on the industrial sector, highlighting the importance of
addressing cybersecurity in the IEC61850 standard. The text presents security drawbacks of the
communication protocols mentioned earlier and briefly explains two algorithms defined in the
IEC61850 standard to address them. However, the authors suggest that having only a couple of
algorithms may not be sufficient to ensure digital security in substations. This article presents a
study on the cryptographic algorithms ChaCha20 and Poly1305. The purpose of the study is to
experimentally verify their adaptation to the strict time requirements that GOOSE must meet for their
operation. These algorithms can operate independently or in combination, creating an Authenticated
Encryption with Associated Data (AEAD) algorithm. Both algorithms were thoroughly reviewed and
tested using GOOSE and R-GOOSE frames generated by the S-GoSV software. The computational
time required was also observed. The frames were analysed using the Wireshark software. It
was concluded that the algorithms are suitable for the communication requirements of electrical
substations and can be used as an alternative to the cryptographic algorithms proposed under the
IEC61850 standard.

Keywords: IEC61850; IEC62351; Generic Object-Oriented Substation Events (GOOSE); R-GOOSE;
ChaCha20; Poly1305; AEAD

1. Introduction

Technological fields have evolved exponentially in recent decades. In the area of elec-
trical power systems (EPSs), the basic structure of the electricity network was maintained
for more than 80 years without significant changes [1]. Less than two decades ago, the old
substations, automated through point-to-point copper connections, were migrating towards
fiber optic communication networks through Ethernet LAN networks and also through
WAN networks for communication between distant substations. Fiber optic communi-
cations use an infrastructure made up of network equipment, such as routers, switches,
servers, etc. This technology is commonly called ICT (information communication technol-
ogy). When ICT is applied to any electrical power system, the concept of a “smart grid”
is born. IEC61850 [2] is an international standard which defines different communication
protocols between various field equipment located in automated substations. It was de-
veloped by the International Electrotechnical Commission (IEC) in 2003 with the intention
of modernizing and optimizing the automation of substations so that they are suitable for
the energy demands of the 21st century. Furthermore, to achieve interoperability between
hardware from different suppliers, different standardized communication protocols were
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developed, preventing each supplier from having their internal protocols and causing any
incompatibility between equipment.

The communication protocols of the IEC61850 standard define how information is ex-
changed between the different levels of automation within the substation. The information
from field-level equipment, such as switches, disconnectors, and transformers, is digitized
through devices called merging units [3]. The exchange of information in IEC61850 is
subject to demanding latency times that must be met. The design of the different functions
and equipment within the substation is object-oriented, which means that each element or
function is described in a well-defined way to achieve the desired interoperability between
hardware from different vendors. IEC61850 has the ability to report many relevant data
and much information almost instantly. Thanks to these qualities, its object-oriented design
approach, and its interoperability features, IEC61850 has become by far the most popu-
lar standard for the automation of electrical energy services and not only for substation
automation systems, for which it was invented, but also for other areas of smart network
communication such as those existing in electric vehicles (EVs) [4]. However, these great
qualities and attributes of the IEC61850 standard are diminished due to the vulnerabilities
to cyber attacks that originate when using standardized communication protocols that use
equipment such as LAN switches and routers that can be exposed to a public network such
as the Internet. Standardized semantics make it much easier for a cyber attacker to launch
different types of attacks that can be catastrophic for the operation of the substation [5,6].
This is why various types of attacks have been carried out on these systems, which have
generated considerable operational, economic, and even human losses [7].

The paradigm that cybersecurity problems would not affect electrical power systems
had to change. In 2007, WG15 launched the IEC62351 standard, which complements
the IEC61850 standard and other standards under the jurisdiction of TC57 by proposing
different cybersecurity methodologies using cryptographic algorithms [8]. IEC62351 has
successfully prevented different attacks on the IEC61850 communication protocols [9].

The investigative work requires the development of different IEC61850 communication
models, their implementation in a laboratory environment, the exchange of real information
using the communication protocols of the standard, and observing the communication
performance to study the impact on the operation of the electrical power system.

Since GOOSE messages have a 3 ms delivery time as a priority requirement, IEC
62351-1 specifies that encryption algorithms should not be used, as the processing times for
encrypting GOOSE messages would be longer due to the limited computing capacity of
intelligent electronic devices (IEDs). In addition, the standard does not specify message
confidentiality as a fundamental requirement. However, GOOSE messages contain sensitive
information related to the electricity market or energy administration, which would create a
serious management problem if these messages were obtained and decrypted by attackers.
Therefore, given this new perspective, GOOSE messages need to be encrypted to add the
confidentiality requirement but still meet the 3 ms timing requirement.

Based on the above, the main contribution of this article is to provide a comprehensive
investigation of the ChaCha20 and Poly1305 algorithms, both individually and together as
components of an AEAD algorithm, to achieve the confidentiality and integrity of GOOSE
and R-GOOSE messages, which in turn meet the stringent requirements of the IEC61850
standard, thus establishing them as valid alternatives to the AES algorithm specified
in the IEC62351-1 standard, an algorithm that has been thoroughly studied by various
cryptanalyses, which is currently the only recommended algorithm in the standard.

Through experimental validation, the paper shows its ability to meet the strict timing
constraints of the IEC61850 standard for frame transmission, specifically in the context of
the GOOSE and R-GOOSE protocols. As a result, this study positions these algorithms as
credible alternatives to the existing ones described in the standard.

The structure of this article unfolds as follows: Section 2 provides details of the GOOSE
and R-GOOSE communication protocols, shedding light on the prevailing cybersecurity
challenges within the IEC61850 standard. Section 3 delves into fundamental cybersecurity
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concepts, examining notable attacks targeting the aforementioned protocols, and scru-
tinizing the cryptographic algorithms endorsed in the IEC62351 standard to fortify the
sector against diverse threats. Lastly, Section 4 meticulously expounds on the algorithms
proposed herein—ChaCha20 and Poly1305—alongside their experimental validation, either
in isolation or in tandem as an AEAD algorithm. This section meticulously demonstrates
their ability to adhere to the stringent time constraints mandated by the IEC61850 standard
for transmitting GOOSE and R-GOOSE frames. Furthermore, it includes a comprehensive
comparative analysis between the proposed algorithms and those stipulated in the standard.

2. Communication Protocols GOOSE and R-GOOSE and Disadvantages of the
IEC61850 Standard

Within the electrical substations under the standard, the field level is distinguished,
where the voltage and current transformers, disconnectors, switches, and merging units
that digitize the voltage and current values of the transformers are located. The bay level,
where the IEDs are located, applies control and protection over the field-level equipment
and sends reports to the next higher level, the station level. There are three distinct types
of messaging or information exchange, including GOOSE, SV, and MMS. The other two,
R-GOOSE and R-SV, are used when this messaging must be sent to other networks [10,11].
The protocol stack of IEC61850, shown in Figure 1, contains the different types of messages
mapped to different layers of the OSI model.
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Figure 1. Mapping of the communication protocols of the IEC61850 standard.

2.1. GOOSE

GOOSE (Generic Object-Oriented Substation Events) allows bay-level equipment
(IEDs) to exchange information with each other if they are within the same network through
a publisher–subscriber configuration using a multicast system, where a selected group
of IEDs (subscribers) receive all the information simultaneously and act if required. This
information comes from another IED called a publisher. GOOSE carries out the exchange
of information between the process level and the bay level since if a failure occurs the IEDs
must send GOOSE messages to the elements that must clear the failure. Due to the low
transmission latency required by the GOOSE messages of 3 ms maximum, they are mapped
directly to the link layer of the OSI model, which avoids the overhead of higher levels of
network abstraction [12].
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2.2. R-GOOSE

With the development of smart grids, the concept of WAMPAC (wide area monitoring,
protection and control) applications was developed. WAMPAC makes use of synchrophasor
technology. A synchrophasor is the calculation of a phasor concerning an absolute time
reference. With this measurement, the absolute relationship between the phases (angles) of
phasors in different locations of the electrical power system can be determined. The time
reference is usually a Global Positioning System (GPS). WAMPAC is based on PMUs
(phasor measurements units) and PDCs (phasor data concentrators).

PMUs are units of synchrophasor measurements that allow the observation of the
static and dynamic behavior of an electrical power system, through the variables of current
(amplitude and angle), voltage, frequency, and rate of change of frequency (ROCOF), and
are then sent to PDCs through a communication network. There are two PMU communi-
cation frameworks: IEEE C37.118 and IEC61850-90-5. To achieve compatibility between
IEEE C37.118-based synchrophasor data transfer with the IEC61850 substation automation
standard, IEC61850-90-5 was introduced [13,14].

Since synchrophasor-based technology normally requires transmitting data over a
WAN, IEC61850-90-5 specifies the use of UDP as a transport protocol, and thus, the
R-GOOSE and R-SV messaging type was born. IEC61850-90-5 also defines the digital security
requirements that R-GOOSE and R-SV must have, indicating that authentication and integrity
of messages are mandatory, while confidentiality (encryption) is optional. This point is very
relevant because IEEE C37.118 does not specify cybersecurity requirements to protect data
communication over an insecure network, which is supplemented by IEC61850-90-5.

Synchrophasor technology plays a key role in the monitoring, control, and protection
of electrical power systems and any failure in this field can have serious consequences such
as blackouts. To achieve authentication and integrity of R-GOOSE and R-SV messages,
IEC61850-90-5 specifies the use of Message Authentication Code (MAC) algorithms, such
as HMAC-SHA256 or AES128-GMAC. Although confidentiality is optional, the technical
report specifies AES-128 and AES-256 algorithms as an encryption method to ensure
confidentiality. Figure 2 shows an R-GOOSE/R-SV message, including fields with digital
security specifications that implements IEC61850-90-5 [15].
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Figure 2. Session PDU field of an R-GOOSE/R-SV frame.

2.3. Disadvantages of the IEC61850 Standard

Although the IEC61850 standard offers numerous advantages, it does not cover an
important aspect: cybersecurity. This aspect is generally not relevant to those working in
electrical substations or the power systems field, particularly in Latin America where the
majority of substations are still conventional.
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However, due to the standardization of communication protocols, staff can no longer
ignore the threat of cyber attacks. Attacks on electrical systems already exist, as demon-
strated by the Stuxnet virus. This virus infected a large number of computers worldwide
through pen drives, with the specific objective of infecting Siemens PLCs of a particular
model that controlled centrifuges responsible for stirring uranium in the form of gas to
enrich it. The ultimate goal was assumed to be the creation of nuclear weapons. It is
important to note that this information is presented objectively and without any subjective
evaluations. It is estimated that the virus caused damage to over a thousand centrifuges by
altering the speed of their motors [7].

Another example of a cyber attack on the electrical industry is Dragonfly, which specif-
ically targets industrial control systems (ICSs) used in the energy sector. This advanced
persistent threat (APT) had a significant impact on European countries in 2014. Dragon-
fly uses several remote access tool (RAT) components to infect and remotely control the
affected computers [16].

In 2017, Ukraine was hit by another malware called CrashOverride. This malware
targeted organizations that use IEC101, IEC104, IEC61850, and OPC protocols. It has
modules that are specific to ICS protocol stacks, as well as non-ICS-specific modules, such
as a Wiper that removes files and processes from the running system. The malware exploits
switches driven by RTUs and IEDs, forcing them into an infinite loop and keeping circuit
breakers open, even if operators try to close them [17].

Figure 3 shows the malware that has been found in different industrial control systems,
with emphasis on CrashOverride, which was made especially to attack power networks
that use IEC61850 communication protocols [18].

• STUXNET
• TRISIS
• CRASHOVERRIDE
• BLACKENERGY2/3
• HAVEX

ICS-TARGETING
MALWARE

ICS DISRUPTIVE
EVENTS

GRID TARGETING
MALWARE

• 2010: STUXNET
• 2014: GERMAN STEEL

MILL ATTACK
• 2015: UKRAINE

BLACKENERGY2/3
• 2016:UKRAINE

CRASHOVERRIDE
• 2017: SAUDI ARABIA

TRISIS

• CRASHOVERRIDE

Figure 3. Malware with attacks on industrial control systems.

3. Cybersecurity in the IEC61850 Standard

Information security is defined as the set of preventive and reactive measures of orga-
nizations and technological systems that allow for safeguarding and protecting information,
seeking to maintain the reliability, availability, and integrity of the data.

In the cybersecurity community, the acronym “CIA” stands for confidentiality, in-
tegrity, and accessibility, also known as the CIA triad. It is important to define these three
concepts to have a general notion of what cybersecurity seeks:

• Confidentiality : Property that prevents the disclosure of information to unauthorized
individuals, entities, or processes. Ensures access to information only to those people
who have proper authorization;

• Integrity: Property that seeks to keep the data free of unauthorized modifications,
that is, integrity seeks to accurately maintain the information as it was generated,
without being manipulated or altered by unauthorized people or processes;

• Availability: Property that ensures that networks, systems, and applications are fully
operational. Ensures that users have timely and reliable access to resources when they
need them.
Some other relevant concepts in the field of cybersecurity are:
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• Authenticity: The sender of the message is who they say they are;
• Non-repudiation of origin: The sender cannot deny what they sent because the recipi-

ent has proof of the sending;
• Destination non-repudiation: The receiver cannot deny that they received the message

because the sender has proof of receipt.

To achieve information security and ensure that these concepts are carried out correctly,
one of the most effective ways is the use of algorithms based on cryptography. A cryptog-
raphy algorithm modifies the data of a document to achieve some of the characteristics
mentioned above, such as authentication, integrity, and/or confidentiality.

One of the most used algorithms currently, and proposed by IEC62351 for the R-
GOOSE/R-SV protocols, to guarantee confidentiality, due to its high level of security
with attacks, is AES (Advanced Encryption Standard). AES is a symmetric cryptography
algorithm which uses the same key to encrypt and decrypt messages between a sender and
a receiver. The two parties must agree in advance on the key to use. AES has a fixed block
size of 128 bits and key sizes of 128, 192, or 256 bits. Most of the AES algorithm calculations
are performed in a given finite field, called the Galois field [19–22].

To ensure integrity and authenticity, digital signature cryptographic algorithms and
MAC (Message Authentication Code) cryptographic algorithms are used. Digital signatures
employ asymmetric cryptography algorithms (public–private key pair) and pseudo-random
hash algorithms, while MAC algorithms use symmetric cryptography algorithms (the same
key to generate and verify the authenticity and integrity of messages) and pseudo-random
hash algorithms. A hash function is a mathematical function that converts an input
string of any length into a fixed-size output, which is a pseudo-random representation
of the input. Even a small change in the input string will result in a completely different
output hash. If the same input string is used again, the output of the hash function will
always be the same, which appears to be random. Hash functions can be thought of
as the digital fingerprint of the message. SHA256 is one of the most commonly used
pseudo-random algorithms today. It belongs to the SHA-2 (Secure Hash Algorithm) family.
The SHA256 algorithm, developed by the National Security Agency (NSA), processes
512-bit message blocks by performing various operations such as addition, logical AND,
logical OR, exclusive OR, shift right, and rotate within an internal state of bits. The number
of these bits is equal to the number of output bits of the function. These operations are
performed 64 times (iterations or loops) in the case of SHA256, resulting in a 256-bit string
as output.

The HMAC algorithm ensures message authenticity and integrity by using a hash
algorithm, such as SHA256, and a symmetric key. The output of the HMAC algorithm is a
fixed string value that represents the message’s authenticity and integrity [23].

3.1. Vulnerabilities in the GOOSE Protocol

Cyber attacks on GOOSE messaging can cause catastrophic problems within an elec-
trical substation, for example, irreparable damage to field equipment such as switches
or disconnectors. GOOSE messaging works at layer 2 of the OSI model and there are
several known attacks for this layer in particular, such as STP attacks, MAC spoofing, CAM
table overflows, and VLAN hopping. Below are some attacks that can be performed on
GOOSE messaging:

• stNum attack: After inspecting GOOSE messages, malware proceeds to send a GOOSE
message with a high number of stNum to the subscribing IEDs. They will think
that an event has occurred in the substation and will proceed to process the false
GOOSE message.

• GOOSE flood attack: Once the malware manages to obtain a GOOSE frame, it floods
the network by sending in a very short period the same GOOSE frame that it obtained,
but with the APDU field modified and filled in such a way as to reach the maximum
supported by the GOOSE frame (approximately 1500 bytes). This attack has the
purpose of compromising the processing capacity of the IEDs and the network.
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• Semantic spoofing GOOSE attack: After encountering a GOOSE message on the
network, reproducing the original message, but with false information, the malware
checks and manipulates the boolean (for example, the state of a switch) or analog
information of the APDU. The malware also simulates message transition mechanics
by incrementing stNum and zeroing sqNum. The intention is to deceive the IED
through a false message.

• Goose replay attack: It uses the injection of an old but real GOOSE message from the
substation having an event, for example, an overcurrent fault, through some open
port. This open port could be an unconfigured switch port or a test port with access to
all network traffic.

The GOOSE flood attack was performed by [6,12] , and the stNum attack and semantic
spoofing GOOSE attack by [12], where all attacks on GOOSE messaging were successfully
performed. More details of the semantic spoofing GOOSE attack can be reviewed in [9].

3.2. IEC 62351-6: Security for GOOSE

The challenges of securing GOOSE and SV messaging, by verifying message authenti-
cation, integrity, and encryption, are much more difficult to achieve than in other systems,
since these protocols differ greatly in network latency compliance requirements.

In 2007, WG15 developed the IEC62351 standard that addresses cybersecurity is-
sues of power system communication standards under the jurisdiction of TC57, such as
IEC61850. IEC62351-1 stipulates that GOOSE and SV messages must have two mandatory
security measures, the authenticity and integrity of the messages. While for confidentiality,
IEC62351-1 stipulates that encryption algorithms cannot be applied due to the difficulty
that IEDs would have in processing said algorithms due to their limited ability to perform
computing functions. With these security measures, it is possible to counteract unautho-
rized modification of data, its manipulation and reproduction, and to avoid MiTM and DoS
attacks where, for example, malware could simulate a false IED. To achieve these security
requirements in GOOSE and SV messages, IEC62351 has developed two recommendations,
IEC62351-6:2007 (currently obsolete) and IEC62351-6:2020. To ensure the authenticity and
integrity of the messages, the use of different MAC (Message Authentication Code) algo-
rithms is suggested. Table 1 shows the algorithms proposed by IEC62351-6:2020 to secure
the GOOSE and SV protocols [10].

The MAC implementation requires a key pre-shared by both the publisher and the
subscribing IEDs. HMAC can provide message authentication using a shared secret instead
of using digital signatures with asymmetric cryptography, such as the algorithms proposed
by IEC62351:2007. HMAC uses two hash calculation steps. The secret key is first used
to derive two keys: internal and external. The first step of the algorithm produces an
internal hash derived from the message and the internal key. The second pass produces
the final HMAC code derived from the result of the internal hash and the foreign key.
Therefore, the algorithm provides better immunity against length extension attacks, so the
security of HMAC is guaranteed by the secure distribution of the symmetric key and its
unpredictability [24].

Table 2 shows the computational times required by the IEDs and the end-to-end
communication time of the different MAC algorithms proposed in IEC62351-6:2020 for
the exchange of GOOSE messages with their secure extended frame. As can be seen in
Table 2, the end-to-end message exchange, in any of the proposed algorithms, meets the
requirement of the IEC61850-5 standard that says that GOOSE messages cannot take more
than 3 ms. Therefore, the proposed MAC algorithms to ensure integrity and authenticity
can be successfully applied for both GOOSE and SV messaging.



Appl. Sci. 2024, 14, 2964 8 of 20

Table 1. MAC algorithms proposed by IEC62351-6:2020.

MAC Algorithm Hash Function MAC Value Size in Bytes

HMAC-SHA256-80 SHA256 10
HMAC-SHA256-256 SHA256 16
HMAC-SHA256-256 SHA256 32
AES-GMAC-64 8
AES-GMAC-128 16

Table 2. Times in secure GOOSE messaging exchanges under the different MAC algorithms recom-
mended by IEC62351-6:2020.

Algorithm Total GOOSE Message
Size (bytes)

Publisher Computing
Time (ms)

Subscriber Computing
Time (ms)

Communication
Delay (ms) End-to-End Delay (ms)

Without security 159 0 0 0.0664 0.0664
HMAC-SHA256-80 193 0.0127 0.0141 0.0709 0.0977
HMAC-SHA256-128 199 0.0127 0.0142 0.0722 0.0991
HMAC256-256 215 0.0127 0.0143 0.0757 0.1027
AES-GMAC-64 205 0.0054 0.0066 0.0730 0.0850
AES-GMAC-128 213 0.0055 0.0069 0.0749 0.0873

4. Digital Security Methodologies outside Those Proposed by IEC62351

ChaCha20 is a stream cipher used to ensure confidentiality, while Poly1305 is a MAC
algorithm to ensure the integrity and authenticity of messages. Both algorithms can be
used together to form an AEAD (Authenticated Encryption with Associated Data), which
verifies both the integrity and authenticity of the ciphertext, as well as the integrity of some
extra information.

ChaCha20 is an ARX (add, rotate, mixing columns) of the matrix or smart division of
polynomials. AES relies on the fact that modern CPUs have Galois field arithmetic built in
as real instructions, while ChaCha20 does not need any of that, which makes it especially
useful for low-end electronic devices or those that need great speed [25].

On the other hand, the Poly1305 algorithm is used for the integrity and authenticity of
the message. Poly1305 takes a 256-bit key, a message of arbitrary length, and generates a
128-bit (16-byte) output known as a TAG or MAC.

ChaCha20 and Poly1305 are defined in RFC8439 [26]. The combination of both proto-
cols is part of the new TLS 1.3 version, one of the strongest competitors to AES-GCM [27].

RFC8439 provides the series of steps to follow the Poly1305 algorithm, which is
detailed in Algorithm 1.

As mentioned above, it is possible to build an AEAD algorithm using ChaCha20
and Poly1305 together, which is why AEAD was given greater emphasis than the use of
ChaCha20 and Poly1305 separately, as will be seen below. The algorithm, to perform the
Poly1305 MAC TAG, uses the additional text to be authenticated (AAD) and the ciphertext.
The AEAD algorithm encrypts the APDU using ChaCha20, and then this text and the
additional text are used to calculate the MAC value using Poly1305. To calculate the
Poly1305 MAC, a key is generated using a ChaCha20 block with the 32-bit counter block
being zero. This MAC value is appended to the “extension” field of the secure GOOSE
frame. The length of the “extension” field is reflected in the second byte of the Reserved1
field. The order in which to perform this is detailed in Algorithm 2. Figure 4 shows the
process graphically.
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Algorithm 1 Poly1305 algorithm

1. Split the key in two.
2. Perform the “clamp” process to the “r” part of the 256-bit key.
3. Set the prime number “P” to (2130-5).
4. Set the “accumulator” variable (Acc) to zero.
5. Divide the message into 16-byte blocks, the last block will most likely be shorter.
6. Read the block as a number in little-endian order.
7. Add a bit after the number of octets, for 16-byte blocks, this would be adding 2128,

for the smallest block, adding some power divisible by 8, for example, 2120, 2112 up
to 28.

8. Fill the last block with zeros, this has no effect since the block is treated as numbers.
9. Add this number to the accumulator.
10. Multiply by “r”.
11. Apply modulo P to the result.
12. Seen mathematically: Acc = ((Acc + block)r)% P.
13. Finally, after finishing all the blocks, the value “s” of the key is added and is attached

to the accumulator, and the 128 least significant bits are serialized in little-endian
order, thus forming the TAG or MAC of the message.

Algorithm 2 AEAD Algorithm applied to the GOOSE APDU

1. Data← GOOSE-APDU
2. k← 256-bit pre-shared key
3. Ed ← Encryptk(Data)
4. k1← 256 bits Key for Poly1305
5. h←MACk1(AAD | padding1|Ed|padding2)
6. GOOSE.Extension← h
7. GOOSE.APDU← Ed

ETHERTYPE APPID
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MAC 

ADDRESS
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MAC 

ADDRESS

LENGTH RESERVED 
1

RESERVED 
2

APDU GOOSE
ENCRYPTED EXTENSION FCS

POLY1305

POLY1305 
KEY

CHACHA20 BLOCK 
WITH COUNTER TO 0

256 BITS
KEY

CHACHA20GOOSE 
APDU

TAG POLY1305
VALUE

Figure 4. AEAD ChaCha20–Poly1305 process applied to the GOOSE APDU.

In order to decrypt the APDU, the IED breaker, according to the AEAD ChaCha20/Poly1305
algorithm, must first check the integrity of the Poly1305 MAC TAG, if the calculated value
matches the MAC attached in the extension field, the GOOSE frame is authentic, and
therefore, is decrypted. The series of steps are as follows (Algorithm 3).

Figure 5 shows the decryption process graphically.
The R-GOOSE frame has different fields than the GOOSE frame, according to IEC61850-

90-5, so the following fields have been taken to carry out the AEAD ChaCha20/Poly1305
algorithm (Figure 6). Figure 7 shows the authenticity and integrity verification process of
the R GOOSE frame using Poly1305, and if the frame is authentic, the session PDU field of
the R-GOOSE frame is decrypted using ChaCha20.
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Algorithm 3 Algorithm for Poly1305 MAC Verification and ChaCha20 Decryption

1. Data Received← GOOSE.APDU Encrypted = Ed
2. h← GOOSE.Extension
3. k1← 256 bits Key for Poly1305
4. h1←MACk1(AAD | padding1|Ed|padding2)
5. if h1 = h then
6. k← Pre-shared key 256 bits
7. APDU← Decryptk(Data Received)
8. else
9. return “Invalid TAG, abort decryption process”

ETHERTYPE APPID
DEST.
MAC 

ADDRESS

SOURCE
MAC 

ADDRESS

LENGTH RESERVED 
1

RESERVED 
2

APDU
GOOSE

ENCRYPTED
EXTENSION FCS

POLY1305POLY1305 
KEY

CHACHA20 BLOCK 
WITH COUNTER TO 0

256 BITS
KEY

CALCULATED 
MAC VALUE = 
BUILT-IN MAC 

VALUE

CHACHA20

GOOSE 
APDU

YES

ABORT 
DECRYPTION 

PROCESS, 
INAUTHENTIC 

FRAME

NO

Figure 5. Poly1305 MAC verification and ChaCha20 decryption.
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Figure 6. AEAD ChaCha20–Poly1305 process applied to the session PDU field of the R-GOOSE frame.
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Figure 7. TAG AEAD Poly1305 verification process and decryption applied to R-GOOSE frame.
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4.1. Security for GOOSE and R-GOOSE via ChaCha20 and Poly1305, Proposed Method

Although IEC62351-1 specifies that GOOSE and SV algorithms should not use encryp-
tion algorithms, the rise of substation digitization and the use of GOOSE and SV for other
power applications, such as electromobility, makes it increasingly necessary to have robust
encryption algorithms to prevent third parties from obtaining relevant information and at
the same time, these algorithms do not affect communication performance.

To send GOOSE frames, the first scenario was carried out, which consists of two lap-
tops that emulate the behavior of a protection IED and a breaker IED, connected through
a switch, therefore, both computers are on the same LAN. The structured cabling used is
category 6. This can be seen in Figure 8.

Protection IED Breaker IED

GOOSE
Message

LAN
Switch

Figure 8. Test scenario for sending GOOSE frames.

In the case of sending R-GOOSE frames, because these must be sent between IEDs
that are on different networks, the LAN switch was changed to a router, maintaining the
laptops and the structured cabling from the previous scenario. This can be seen in Figure 9.

Local
Protection IED

Remote
Breaker IED

R-GOOSE
Message

Network
Router

LAN1 LAN2

Figure 9. Test scenario for sending R-GOOSE frames.

The technical specifications of the scenarios were as follows:

• Virtual machine on laptops with AMD Ryzen 5 (5600X) processor, with a single vCPU
running at 3.7 GHz, 512 MB of RAM with Ubuntu 22 Linux distribution.

• OSI model data link layer switch (2) with eight GigabitEthernet ports (10/100/1000 Mbps).
• OSI model network layer router (3) with two GigabitEthernet ports (10/100/1000 Mbps).
• Structured cabling category 6.

The languages, software, and codes used to conduct the tests were as follows:

• The C programming language was leveraged to implement algorithms enabling
encryption with ChaCha20, MAC generation using Poly1305, and in the development
of an AEAD algorithm that integrated both functionalities.

• To examine the calculation time of the algorithms, the Python time library was used.
• To examine the GOOSE frame fortified with ChaCha20 and Poly1305 as digital secu-

rity measures, the S-GoSV software was employed. This software utilizes network
interface libraries to meticulously construct and transmit the GOOSE message across
the network, ensuring all requisite fields are adequately included [5].
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• The Wireshark software was used to visualize the reception of GOOSE and R-GOOSE
frames by the laptop emulating the local and remote behavior of the IED broker.

• To carry out the encryption and creation of the Poly1305 MAC TAG for GOOSE and
R-GOOSE, the codes from the repository [28] were used, since their operation was
proven by testing the examples of RFC 8439.

All the tests carried out are listed below, both for the first scenario (sending and receiving
GOOSE frames) and for the second scenario (sending and receiving R-GOOSE frames):

1. Calculation of generation times and transmission delay over the network with digital
security measures (Poly1305 versus HMAC-SHA256).

2. Calculation of encryption and decryption times to guarantee the confidentiality of the
APDU of the GOOSE message. (ChaCha20 versus AES128-GCM).

3. Calculation of generation times, AEAD verification, communication delay, and end-to-end
delay with AEAD digital security (ChaCha20/Poly1305 versus AES128/HMAC-SHA256).

Concerning point 3, the R-GOOSE frame could not be contrasted with other research
work, as no articles were found with relevant information.

The presented scenarios include simplified equipment that would typically be found
at the bay and process levels of the IEC61850 standard [29].

4.2. Experiment Results

To observe the performance of these algorithms, concerning the GOOSE frame, the be-
ginning of the APDU field until its end has been used, and for R-GOOSE from the beginning
of the session identifier field to the end of the APDU field has been considered. This is to
compare the results with those obtained by the authors of [30,31], who carried out tests
with AES and HMAC-SHA algorithms.

Figure 10 shows the GOOSE APDU in plain text and encrypted, the Poly1305 MAC
TAG of the 16-byte GOOSE APDU and the calculation times of both algorithms are also
seen. The encryption time for the GOOSE APDU was 0.0033 ms and the TAG generation
time was 0.0066 ms.

APDU in plain text:

b'a\x81\x86\x80\x1aFREA-GoSV-1 /LLN0$GO$gcb01\x81\x03\x00\x9c@\x82\x18FREA-GoSV-1 
/LLN0$GOOSE1\x83\x0bFREA-GoSV-
1\x84\x088n\xbbxF3B\x17(\n\x85\x01\x01\x86\x01\n\x87\x01\x00\x88\x01\x01\x89\x01\x00\x8a\x01\x08\xab 
\x83\x01\x00\x84\x03\x03\x00\x00\x83\x01\x00\x84\x03\x03\x00\x00\x83\x01\x00\x84\x03\x03\x00\x00\x83\x01\
x00\x84\x03\x03\x00\x00'

The GOOSE APDU encrypted with ChaCha20:
 
b'a5:f8:58:d2:48:bf:4e:32:56:0b:97:74:50:af:ba:7b:24:55:98:1c:bd:e6:12:84:e1:1a:0b:c6:c1:4f:6d:5c:e2:dd:cd:dc
:06:aa:be:f3:5d:1f:3f:f9:40:07:41:1a:c2:ee:2a:2a:6b:ad:d5:77:a8:64:ca:61:c3:e5:1e:17:bf:ff:0e:2d:da:f5:ee:53:73:
8a:b0:05:71:85:26:fd:a6:c2:e1:0e:c0:21:e1:85:1b:a1:71:a0:68:9f:eb:38:95:bc:b3:91:0c:80:ad:f8:2f:9b:11:c2:71:4
8:2a:b9:68:5a:00:fb:a8:8f:e1:ee:97:df:f6:9f:86:d1:94:60:ae:23:f3:40:8c:67:97:fb:75’

And the encryption time was:
0.003337860107421875ms
-------------------------------------
The result of the Poly1305 TAG of the GOOSE APDU is:
b'd3:10:3b:e0:a2:72:8d:b6:85:f9:9d:d0:67:47:b7:e5’

And its calculation time was:
0.00667572021484375ms

Figure 10. Encryption and TAG of the GOOSE APDU with ChaCha20 and Poly1305.

Figure 11 shows the sending of the GOOSE frame only with authenticity and integrity
security measures to be within the stipulations of IEC62351.
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Sending time in ms = 0.069000

Sending GOOSE message with digital security values:

01:0c:cd:01:03:ff:08:00:27:ba:d3:ed:88:b8:00:01:00:91:00:26:f2:32:61:81:86:80:1a:46:52:45:41:2d:47:6f:53:56:2
d:31:20:2f:4c:4c:4e:30:24:47:4f:24:67:63:62:30:31:81:03:00:9c:40:82:18:46:52:45:41:2d:47:6f:53:56:2d:31:20:2f:
4c:4c:4e:30:24:47:4f:4f:53:45:31:83:0b:46:52:45:41:2d:47:6f:53:56:2d:31:84:08:38:6e:bb:f3:42:17:28:0a:85:01:0
1:86:01:0a:87:01:00:88:01:01:89:01:00:8a:01:08:ab:20:83:01:00:84:03:03:00:00:30:28:a4:26:80:01:01:81:04:5b:f
c:f6:b0:82:01:3c:84:04:00:00:00:0c:85:10:d3:10:3b:e0:a2:72:8d:b6:85:f9:9d:d0:67:47:b7:e5:

Figure 11. Sending secure GOOSE frame with MAC Poly1305 in the extension field.

Figure 12, in red, shows the MAC_Tag field with a hexadecimal value of 0x85 and the
MAC_length field with a value of 0x10, so the length of the MAC is 16 bytes. Then, in blue,
the MAC generated with Poly1305 is seen. When comparing this frame with that of [5], it is
observed that the MAC generated with Poly1305 is smaller. It can be noted that the APDU
is in plain text since no measures are being used to ensure confidentiality.

Figure 12. Secure GOOSE frame with Poly1305 received seen via Wireshark.

To observe and compare the calculation times of Poly1305 with HMAC-SHA256,
the calculation of HMAC-SHA256 is performed with the same virtual machine that gen-
erated the Poly1305 MAC and the calculation time of the authors of [31] is also added.
Figure 13 shows the APDU MAC calculated with HMAC-SHA256. It can see that the calcu-
lation time of the algorithm is 0.018 ms. Table 3 displays the timings obtained solely through
digital security measures intended for verifying the authenticity and integrity of GOOSE
messages. It includes a comparison between the results obtained using HMAC-SHA256 in
this study and those reported in [31] (third row of the table).

APDU in plain text:

618186801a4745446576696365463635302f4c4c4e3024474f2467636230318103008c408218474544657669636
5463635302f4c4c4e3024474f4f534531830b463635305f474f4f5345318408386ebbf34217280a85010186010a87
01008801018901008a0108ab208301008403030000830100840303000083010084030300008301008403030000

HMAC: 

 512056228cb6497cdcf3aa23a35eb6bd008ec30c8d2372e3d5f0d686369ad7f1

HMAC generation time:
0.018000ms

Figure 13. HMAC-SHA256 algorithm and calculation time applied to the GOOSE APDU.
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Table 3. MAC Poly1305 and HMAC-SHA256 computational times.

MAC Algorithm MAC Size (bytes) Reference MAC Generation Time (ms) Network Sending Delay (ms)

Poly1305 16 Virtual machine, 1 vCPU AMD
Ryzen 5 5600X, 512 MB RAM 0.0066 0.069

HMAC-SHA256-256 32 Virtual machine, 1 vCPU AMD
Ryzen 5 5600X, 512 MB RAM 0.018 0.1

HMAC-SHA256-256 32 Intel Celeron, 4 GB RAM 0.0127 0.0757

Subsequently, the GOOSE frame is tested with security measures for authenticity,
but now also with respect to confidentiality. Figure 14 shows the sending of the GOOSE
frame with assurance of authenticity and confidentiality, encrypting the GOOSE APDU
and generating its MAC (APDU in plain text) through ChaCha20 and Poly1305.

Sending time in ms = 0.121000

Sending GOOSE message with digital security values:

fc:61:98:8a:4c:cc:08:00:27:ba:d3:ed:88:b8:00:01:00:91:00:38:f2:32:a5:f8:58:d2:48:bf:4e:32:56:0b:97:74:50:af:b
a:7b:24:55:98:1c:bd:e6:12:84:e1:1:a:0b:c6:c1:4f:6d:5c:e2:dd:cd:dc:06:aa:be:f3:5d:1f:3f:f9:40:07:41:1a:c2:ee:2a
:2a:6b:ad:d5:77:a8:64:ca:61:c3:e5:1e:17:bf:ff:0e:2d:da:f5:ee:53:73:8a:b0:05:71:85:26:fd:a6:c2:e1:0e:c0:21:e1:8
5:1b:a1:71:a0:68:9f:eb:38:95:bc:b3:91:0c:80:ad:f8:2f:9b:11:c2:71:48:2a:b9:68:5a:00:fb:a8:8f:e1:ee:97:df:f6:9f:8
6:d1:94:60:ae:23:f3:40:8c:67:97:fb:75:30:36:a4:34:80:01:01:81:04:5b:fc:f6:b0:82:0b:07:00:00:00:40:41:42:43:44
:45:46:47:84:04:00:00:00:0c:85:10:d3:10:3b:e0:a2:72:8d:b6:85:f9:9d:d0:67:47:b7:e5:

GOOSE FRAME WITH AUTHENTICITY AND CONFIDENTIALITY

Figure 14. Sending secure GOOSE frame, APDU encrypted with ChaCha20 and Poly1305 MAC
embedded in the extension field.

Figure 15 shows the GOOSE frame received on the network with its APDU encrypted
using ChaCha20 and the Poly1305 MAC TAG of the GOOSE APDU. It can be seen that
the content of the APDU is completely unreadable due to the encryption of the APDU,
achieving the confidentiality of the GOOSE message. The MAC TAG of the GOOSE APDU
can also be seen in a blue box.

Figure 15. GOOSE frame received with APDU encrypted with ChaCha20 and Poly1305 TAG viewed
through Wireshark software.

To compare ChaCha20 with AES128, the time it takes AES128 to perform the encryp-
tion is calculated, using the same virtual machine that was used to encrypt the APDU with
the ChaCha20 algorithm. Figure 16 shows the result obtained.
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ENCRYPTED APDU AES128

8e b0 27 07 6c ee f1 b0 b5 ff ea 9d 4b 02 24 7d 47 59 be 5f ba b3 75 81 25 bb 97 65 da 58 c7 
ba d2 c1 ff 1f 8f 2b df 4a 8f 26 4e cd fd e2 7f 0c 11 08 59 86 28 28 99 ac 83 14 4a 9b ae a3 67 
4c 30 d7 cd 5a 9b f8 8d d2 e4 df e2 e9 fc 09 49 cf 4e 8a 76 c2 50 e4 ac 83 24 6c c0 2e 6c d4 
1d cb b4 b6 d0 8e 20 51 96 da c9 c3 43 6b f9 5b 6b c2 8f c9 4b a3 04 e3 5e 96 43 47 40 b5 
36 a8 96 d5 43 3d 89 c1 82 51 71 12 01 e2 cd 7c 0b 5a 21 3f   

PACKET DATA SENT:

:01:0c:cd:01:03:ff:08:00:27:ba:d3:ed:88:b8:00:01:00:91:00:38:d5:4b:8e:b0:27:07:6c:ee:f1:b0:b5:ff:ea:9d:4b:02:2
4:7d:47:59:be:5f:ba:b3:75:81:25:bb:97:65:da:58:c7:ba:d2:c1:ff:1f:8f:2b:df:4a:8f:26:4e:cd:fd:e2:7f:0c:11:08:59:8
6:28:28:99:ac:83:14:4a:9b:ae:a3:67:4c:30:d7:cd:5a:9b:f8:8d:d2:e4:df:e2:e9:fc:09:49:cf:4e:8a:76:c2:50:e4:ac:83
:24:6c:c0:2e:6c:d4:1d:cb:b4:b6:d0:8e:20:51:96:da:c9:c4:43:6b:f9:5b:6b:c2:8f:c9:4b:a3:04:e3:5e:96:43:47:40:b5
:36:a8:96:d5:43:3d:89:c1:82:51:71:12:01:e2:cd:7c:0b:5ª:21:3f:30:36:a4:34:80:01:01:81:04:5b:9c:fd:67:82:01:3c:
84:04:00:00:00:01:85:20:f2:e1:71:89:f5:77:d9:51:0c:fc:14:81:57:b0:cf:5f:3c:f0:64:b2:0f:b2:5b:2e:f4:67:41:4d:76:f
5:63:78:

ENCRYPTED TIME AES IN ms = 0.017000

Figure 16. Encryption and calculation time of the AES128 algorithm applied to the GOOSE APDU.

Figure 17 shows the APDU decrypted with ChaCha20, to decrypt the APDU the same
ChaCha20 algorithm is performed but instead of performing XOR with the plaintext, it is
performed with the ciphertext.

The GOOSE APDU decrypted with ChaCha20:
 
b’61:81:86:80:1a:46:52:45:41:2d:47:6f:53:56:2d:31:20:2f:4c:4c:4e:30:24:47:4f:24:67:63:62:30:31:81:03:00:9c:40
:82:18:46:52:45:41:2d:47:6f:53:56:2d:31:20:2f:4c:4c:4e:30:24:47:4f:4f:53:45:31:83:0b:46:52:45:41:2d:47:6f:53:5
6:2d:31:84:08:38:6e:bb:f3:42:17:28:0a:85:01:01:86:01:0a:87:01:00:88:01:01:89:01:00:8a:01:08:ab:20:83:01:00:8
4:03:03:00:00:83:01:00:84:03:03:00:00:83:01:00:84:03:03:00:00:83:01:00:84:03:03:00:00’

And the decrypted time was:
0.008821487426757812ms
-------------------------------------

Figure 17. GOOSE APDU decrypted with ChaCha20 and calculation time.

Table 4 shows the calculation times of each algorithm to guarantee the confidentiality
of the APDU of the GOOSE message and it compares it with what was obtained in [31] (third
row of the table). The sending of the GOOSE message is encrypted and also authenticated
with a MAC algorithm embedded in the extension field.

Table 4. GOOSE APDU encryption and decryption time.

Encryption
Algorithm Reference Encryption

Time (ms)
Decryption
Time (ms)

Network Sending
Delay (ms)

ChaCha20 Virtual machine, 1 vCPU AMD Ryzen 5 5600X, 512 MB RAM 0.0033 0.0088 0.12
AES128-GCM Virtual machine, 1 vCPU AMD Ryzen 5 5600X, 512 MB RAM 0.017 0.021 0.10
AES128-GCM Intel Celeron, 4 GB RAM 0.00797 0.0932 0.079

With respect to R-GOOSE, there are “security algorithm” and “encryption algorithm”
fields that identify the algorithms that are being used to provide digital security. To use
the ChaCha20 and Poly1305 algorithms, the two bytes of the “security algorithm” field,
“encryption algorithm” could be specified to a value of 0X04 and “MAC algorithm” to 0X06
to specify ChaCha20 and Poly1305, respectively. To use the ChaCha20/Poly1305 algorithm
it could specify “encryption algorithm” and “MAC algorithm” to 0X05 and 0X06. Table 5
shows what was just stated.
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Table 5. Security algorithm and MAC algorithm octets of R-GOOSE frames.

First Octet Value Encryption Algorithm Second Octet Value MAC Algorithm

0 None 0 None
1 AES-128-GCM 1 HMAC-SHA256-80
2 AES-256-GCM 2 HMAC-SHA256-128
3 AEAD AES 3 HMAC-SHA256-256
4 ChaCha20 4 AES-GMAC-64
5 AEAD ChaCha20 5 AES-GMAC-128

6 Poly1305

The images of the analysis carried out with S-GosV and Wireshark for the R-GOOSE
frames can be obtained from the repository available at [32].

Table 6 presents the generation times of the MAC algorithms applied to the R-GOOSE
frame and it compares it with what was obtained in [31] (third row of the table).

Table 6. Calculation times MAC algorithms applied from session identifier until the end of the
R-GOOSE APDU.

MAC Algorithm MAC Size (bytes) Reference Generation Time (ms)

Poly1305 16 Virtual machine, 1 vCPU AMD Ryzen 5
5600X, 512 MB RAM 0.0083

HMAC-SHA256-256 32 Virtual machine, 1 vCPU AMD Ryzen 5
5600X, 512 MB RAM 0.035

HMAC-SHA256-256 32 Intel Celeron, 4 GB RAM 0.008

Table 7 shows the performance comparison of R-GOOSE message encryption with
ChaCha20 and AES256-GCM. Also, it shows the delay in sending the R-GOOSE frame with
embedded security measures. It compares it with the result obtained in [31] (third row of
the table).

Table 7. Encryption performance from the session identifier field to the end of the R-GOOSE APDU.

Encryption Algorithm Reference R-GOOSE Encryption
Time (ms)

R-GOOSE Decryption
Time (ms)

Network Sending
Delay (ms)

ChaCha20
Virtual machine, 1 vCPU
AMD Ryzen 5 5600X,
512 MB RAM

0.0030 0.0035 0.117

AES256-GCM
Virtual machine, 1 vCPU
AMD Ryzen 5 5600X,
512 MB RAM

0.054 0.002 0.114

AES256-GCM Intel Celeron, 4 GB RAM 0.286 0.221 [-]

Although the encryption and decryption times of AES-256-GCM are very good,
ChaCha20 shows low and very stable values.

The images of the analysis carried out with S-GosV and Wireshark for the AEAD
algorithm applied to GOOSE and R-GOOSE frames can be obtained from the repository
available at [32].

Table 8 shows the generation and verification times of the AEAD algorithm of the
GOOSE message plus the communication delay time and the total delay that considers
the processing of the algorithms and the communication delay. In the third row, the times
obtained in [30] are shown.

Finally, Table 9 shows a summary of the generation and verification time of the AEAD
algorithm applied in the R-GOOSE message.
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Table 8. GOOSE frame with AEAD digital security.

AEAD Algorithm Frame Size
(bytes) Reference

AEAD
Generation
Time (ms)

Verification
Time (ms)

Communication
Delay (ms)

End-to-End
Delay (ms)

ChaCha20
Poly1305 213

Virtual machine, 1
vCPU AMD
Ryzen 5 5600X,
512 MB RAM

0.0145 0.016 0.058 0.0885

AES128
HMAC-SHA256 222

Virtual machine, 1
vCPU AMD
Ryzen 5 5600X,
512 MB RAM

0.114 0.121 0.060 0.295

AES128
HMAC-SHA256 222 Intel Celeron,

4 GB RAM 0.0909 0.1047 0.0779 0.2735

Table 9. R-GOOSE frame with AEAD digital security.

AEAD Algorithm Frame Size
(bytes) Reference

AEAD
Generation
Time (ms)

Verification
Time (ms)

Communication
Delay (ms)

End-to-End
Delay (ms)

ChaCha20
Poly1305 239

Virtual machine,
1 vCPU AMD
Ryzen 5 5600X,
512 MB RAM

0.0147 0.0186 0.11 0.1427

5. Discussion

Cybersecurity in the industrial world is a branch that must constantly evolve, since at
the same time cyber attackers propose new and sophisticated hacking tools against public
infrastructure. It was understandable that cybersecurity was minimal in these industrial
electrical environments, which seemed far away and difficult to attack. However, with the
appearance of the Stuxnet, BlackEnergy and CrashOverride malware, it has become clear
that these cyber attacks are a reality. And even more so in the IEC61850 standard, since
by following communication protocols in a standardized way to achieve interoperability,
the possibilities of attacks are increased if it is understood how the semantics of these
protocols work. It can be seen that changes in the messages can lead to undesirable
openings of breakers.

Cryptography adapts very well to the IEC61850 standard since, thanks to the different
cryptographic algorithms, it is easy to notice a change, even if it is minor, in the messages
sent on the network. The use of both symmetric and asymmetric keys ensures that there is
no one in the middle capable of modifying the messages. These digital security method-
ologies are becoming more relevant every day since IEC61850 is growing rapidly from the
automation of substations towards the complete domain of the administration and control
of electrical power systems, where some sensitive data that requires privacy is sent through
the GOOSE protocol.

With respect to what IEC62351 and IEC61850-90-5 propose for the digital security of
the GOOSE, SV, R-GOOSE, and R-SV protocols, AES algorithms for confidentiality and
HMAC or GMAC for integrity and authenticity of these communication protocols do not
affect the general performance of the communication and their times adapt to the temporal
requirements of maximum 3 ms for these protocols, so confidentiality should be mandatory
as is integrity and authenticity in GOOSE and SV according to IEC62351. Also, it has
become evident that asymmetric key cryptographic algorithms, such as digital signatures,
do not meet these temporal requirements, so they cannot be used. Therefore, using only
symmetrical key algorithms is the option that best suits substation communication under
the IEC61850 standard.

Regarding the comparison of the AES algorithm in its various formats concerning the
ChaCha20/Poly1305 algorithms in their different configurations, the following comments
can be made:
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• AES is suitable encryption for most modern devices, especially those with Intel pro-
cessors, which have AES hardware support, making AES operations efficient.

• AES is not ideal for older devices, as it would require software implementations that
can be expensive, especially in AES-GCM. This type of encryption is particularly
expensive when implemented in software.

• ChaCha20–Poly1305 has been implemented for mobile devices by Google because it is
a fast and secure stream cipher, adding it to TLS1.3. This means that if someone finds
a flaw or vulnerability in AES-based cipher suites at some point in the future, it will
give them a secure and fast option to fall back on. Therefore, the ChaCha20 stream
cipher can come in to fill this situation [27,33].

• AES has been more analyzed cryptographically due to its greater age, while ChaCha20
has a solid foundation available in an RFC standard it has been the subject of less
cryptoanalysis since its creation.

• ChaCha20 offers a similar level of security to AES. The software implementations of
AES can be vulnerable to cache timing attacks, although this is less relevant due to
the wide availability of hardware support. For post-quantum security, a 256-bit key is
generally recommended, as 128-bit keys can leave open the possibility of batch or multi-
target attacks, where multiple users on a system are attacked simultaneously [34,35].

6. Conclusions

The integrity of messages transmitted through GOOSE and R-GOOSE frames is critical
for the proper operation of smart grids. Therefore, it is imperative to protect both the
integrity and confidentiality of this information. To achieve this, the IEC62351 standard
is followed, and AEAD algorithms are considered the most appropriate solution. These
algorithms add an extra layer of security while complying with the IEC61850 standard.
In conclusion, both standards, IEC62351 and IEC61850-90-5, only propose the use of AES
and HMAC algorithms. The assumption that weaknesses are found in these algorithms
seriously affects the digital security of IEC61850 communication protocols, leaving them
once again exposed to cyber attacks. Having backup cryptographic algorithms is important
in continuing to guarantee the digital security of substations under the IEC61850 standard.
The study of the ChaCha20 and Poly1305 algorithms was carried out as they are possible
substitutes for the AES and HMAC algorithms, with the conclusion that both of these
algorithms can satisfactorily adapt to the strict maximum latency requirements that these
protocols must sustain.

In all cases analyzed for both the GOOSE and R-GOOSE frames, it can be concluded
that the ChaCha20 and Poly1305 algorithms, either operating individually or as an AEAD
algorithm, met the strict time requirements (less than 3 ms) set by the IEC61850 standard. It
is worth noting that in several cases, the times obtained were equal to or even shorter than
those obtained using the AES algorithm and its variants. It is concluded that the presented
algorithms are effective due to their simplicity when compared to standard algorithms.

Based on the latest test (Table 9), it was verified that the AEAD algorithm (ChaCha20/Poly1305)
meets the requirements of the IEC61850 standard for R-GOOSE frames. The total time for
generation, verification, communication, and network delay was less than 1 ms, which is a
significant result. This verification has not been previously reported for R-GOOSE frames
with the AES AEAD algorithm.

Of the tests carried out, the AEAD algorithm proposed by RFC 8439 is the most notable.
This algorithm guarantees the confidentiality, integrity, and authenticity of the GOOSE and
R-GOOSE communication protocols within the specified requirements. The performance
on the computer that subscribes to these messages with AEAD ChaCha20/Poly1305 digital
security is optimal because it first verifies the Poly1305 MAC TAG before decrypting. If the
MAC does not match, the frame is immediately discarded without decryption.

S-GoSV is a valuable tool for laboratory testing to observe GOOSE, SV, R-GOOSE,
and R-SV frames with various digital security measures. Future work could combine the
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ChaCha20 and Poly1305 algorithms to send SV and R-SV frames with digital security,
allowing for real-time observation of changes.
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