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Abstract: Channel modeling is crucial for inter-satellite terahertz communication system design.
The conventional method involves manually constructing a mathematical channel model, which is
labor-intensive, and using a neural network directly as a channel model lacks interpretability. This
paper introduces a channel modeling approach based on symbolic regression. It is the first time that
using transformer neural networks as the implementation tool of symbolic regression to generate the
mathematical channel model from the channel data directly. It can save manpower and avoid the
interpretability issue of using neural networks as a channel model. The feasibility of the proposed
method is verified by generating a free space path loss model from simulation data in the terahertz
frequency band.
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1. Introduction

The vigorous development of satellite communication meets the needs of social de-
velopment. In recent years, with the rise of low earth orbit constellations, the demand for
data exchange between satellites is increasing, thus there is a great demand for spectrum re-
sources. The L, S, C, X, Ku, and Ka frequency bands for traditional satellite communication
are very scarce. As an undeveloped band of the electromagnetic spectrum, the terahertz
band has a frequency between 0.1~10 THz, which has a high spectrum bandwidth to realize
high-speed data transmission, and has great application value in satellite communication.
At present, International Telecommunication Union has completed the frequency division
of satellite services in the frequency range of 100~275 GHz and has made a simple division
of the terahertz frequency band above 275 GHz. At the same time, the development of tera-
hertz devices is progressing steadily. The terahertz frequency band has been preliminarily
qualified for application in satellite communication.

The modeling of inter-satellite terahertz channel is the basis for realizing the appli-
cation of inter-satellite terahertz wireless communication. The channel through which
terahertz waves are transmitted from the transmitter antenna to the receiver antenna is the
terahertz wireless channel, and the characteristics of the channel determine the performance
of satellite communication systems. The terahertz channel model is the foundation for
the design and optimization of terahertz communication systems. Channel modeling is
based on data measured by existing channel measurement platforms, using mathematical
formulas to characterize various parameters of the channel.

There have been many researches on the modeling of terahertz channel in terrestrial
communication [1–4]. Tian et al. [1] provided a detailed explanation of the characteristics of
ground terahertz channels. The terahertz frequency is large and the wavelength is short, so
the terahertz channel has different channel characteristics compared with the low-frequency
channel. As terahertz travels through the atmosphere, molecules such as water vapor, clouds,
ice crystals, and dust increase path losses. Han et al. [2] analyzed the existing terahertz
channel models and introduced channel simulators based on these models. Including
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NYUSIM, Cloud RT, EDX Advanced Promotion, etc. These models are mainly applied in
ground communication scenarios such as indoor offices and outdoor environments.

However, to our knowledge, there is currently a lack of research on channel modeling for
inter-satellite terahertz communications, therefore it is necessary to conduct relevant research.

In addition, in terms of channel modeling methods, channel modeling methods include
deterministic modeling and statistical modeling. The deterministic channel modeling
method is based on the analysis of optical and electromagnetic propagation theories in
current application scenarios to establish a wireless channel model. Priebe et al. [5] used
ray tracing technology to model a 300 GHz indoor environment and used a free space path
loss formula to model large-scale fading of line-of-sight links. For small-scale fading, the
line-of-sight links delay is modeled as τ = d

c , recursively calculating the delay of each order
of reflection path. The line-of-sight links phase is modeled as the first-order function of
the delay φ = −2π f τ, the phase on the reflection path is uniformly modeled within −180◦

and 180◦. And model the horizontal angle of arrival (AOA) uniformly, and calculate the
horizontal angle of departure (AOD) by adding a difference value on the AOA, which is
equal to a multiple of 180◦. The advantage of the deterministic channel modeling method
is that it does not require actual measurement, but its disadvantage is that it requires very
detailed application scenario information and high computational complexity. Sometimes,
in order to make the modeled channel model more concise and practical, deterministic
channel modeling methods may have certain trade-offs and idealization of the parameters
that affect the channel during modeling. Therefore, some scholars use statistical modeling
methods for channel modeling.

Statistical channel modeling uses a measurement platform to measure channel data in
actual application scenarios and fits the actual data to obtain the empirical distribution and
statistical characteristics of each channel parameter. Finally, the channel is reconstructed
based on statistical characteristics.

He et al. [6] conducted channel measurements from 220 GHz to 340 GHz using a
vector network analyzer and proposed a propagation channel model for the terahertz band.
It is represented by a logarithmic model:

αtrans = 20lg
(

c
4π f

)
− APET − 20lg(d) (1)

According to the measurement results, it was found APET = 1.97dB.
Traditional statistical methods rely on manually constructing mathematical channel

model from data, which is time-consuming. In order to solve this problem, some researchers
use neural networks to directly fit the channel model. On the one hand, for the existing
wireless channel models, it is only necessary to train the neural network with the data
generated by the corresponding models, so that the neural network can approximate the
actual channel model under the minimum mean square error criterion. On the other hand,
for wireless channels without channel models, neural network-based channel modeling
uses measured data for training and does not need to determine the propagation path of
electromagnetic waves, so it is not constrained by the environment and is more suitable
for various complex scenarios. When the actual wireless channels are nonlinear/non-
stationary, neural networks have a good performance in simulating nonlinear systems.
Neural networks can train high-dimensional nonlinear data, and solve many problems that
are difficult to be solved by traditional modeling methods.

Bai et al. [7] proposed a 3D MIMO indoor channel modeling method targeting the
millimeter wave frequency band. Based on the convolutional neural network model, the
input data are the coordinates of the transmitter and receiver, and the output characteristic
parameters include the received power, delay, transmission azimuth, transmission elevation,
arrival azimuth, and arrival elevation.

Ferreira et al. [8] used neural networks to improve the prediction of outdoor signal
strength in the ultra-high frequency (UHF) band. The diffraction loss and transmitted
signal strength are fed into the neural network and the strength of the received signal will
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be output at the output layer. The results show that the neural networks can improve the
prediction of outdoor signal strength in the UHF band.

However, these methods of using neural networks as a channel model make it difficult
to reveal the mathematical characteristics and physical mechanism of the channel because
of the interpretability issue of neural networks.

Xue et al. [9] noted the interpretability issue of using neural networks as a channel
model and proposed a scheme to use causal neural networks for channel modeling. How-
ever, this method still uses neural networks directly as the channel model, although it
enhances the interpretability of neural networks, it is not intuitive enough. In order to
solve the problem of insufficient interpretability of neural network channels, Lee et al. [10]
first used channel data to train the neural networks as a channel model, and then used
a genetic algorithm to generate a symbolic regression formula from the neural network
channel model. This is the indirect use of the symbolic regression method to generate the
channel model. This indirection may be unnecessary.

Given the analysis of the above factors, this paper proposes a transformer symbolic
regression-based inter-satellite terahertz channel modeling method which is based on the
symbolic regression method PhySO [11]. It uses a transformer neural network as a tool to
directly fit the mathematical channel model from the measured channel data, avoiding the
laborious problem of establishing a mathematical channel model by traditional statistical
methods and the interpretability issue caused by using a neural network as a channel
model, and can reveal the mathematical relationship and physical mechanism between
channel parameters. Figures 1 and 2 show the difference between using neural networks
directly as channel model and using deep neural network as a symbolic regression tool to
generate channel model.
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The main contribution of this paper are:

• To the best of our knowledge, it is the first time to establish a mathematical channel
model directly from data by using a symbolic regression method. As a new channel
modeling method, it may help researchers to establish a channel model easily.

• The PhySO method is improved to be more suitable for channel modeling tasks.

The method proposed in this article may have important application prospects in the
field of channel modeling. Although this article takes the terahertz frequency band as an
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example, it has a wide range of applications and can be used as a data-fitting tool for other
frequency bands and more complex communication scenarios.

This paper is organized as follows: Section 1, introduces the important role of channel
modeling in the future inter-satellite terahertz communication systems, expounds on the
shortcomings of the traditional channel modeling scheme and the use of neural network as
the channel model scheme, and proposes a channel modeling scheme based on symbolic
regression. Section 2, introduces the symbolic regression method, especially the PhySO
symbolic regression method in detail, and the corresponding improvement to PhySO,
which makes it more suitable for the channel modeling task. Section 3, simulates the fitting
effect of the improved PhySO symbolic regression method on the free space path loss
model and verifies the feasibility of the proposed method. In Section 4, it summarizes the
characteristics of the proposed method and points out the next research plan.

2. Transformer Symbolic Regression
2.1. Symbolic Regression

Symbolic regression is a technique aimed to automatically discover mathematical
expressions or functions from data sets [12].

Set target dataset X = {x1, x2, x3, . . . , xn} and label Y = {y1, y2, y3, . . . , yn}, symbolic
regression aims to find a function f (·) so that f = argmin(eval( f (X))) where eval(·)
indicates the evaluation of formula f (·). For example, eval(·) = [ f (X)− Y]2.

Symbolic regression is considered an extension of traditional regression methods, tra-
ditional regression methods need to assume that the data follows a polynomial distribution
or some other distribution while symbolic regression doesn’t have to. Symbolic regression
can automatically discover nonlinear and higher-order relationships in the data, and can
also be applied to multivariable problems to discover interactions between multiple vari-
ables. It can be used to uncover underlying patterns behind data to help researchers find
real models and mechanisms.

Symbolic regression is mainly realized by genetic algorithm and deep reinforcement
learning algorithm.

Traditional symbolic regression algorithms mainly use genetic algorithms to search
for feasible mathematical expressions.

The specific steps of using the genetic algorithms to search for the optimal formula are
as follows:

1. Set the initial space of arithmetic variables, operations and end conditions during the
running process;

2. Initial formula set as population;
3. Evaluate the formulas based on evaluation eval(·) such as the mean square error

between the predicted values of formulas and the data labels;
4. Generate a new population by replication, crossover, and mutation operations;
5. Repeat steps 3 and 4 until the end condition is met, and sort the generated formula

set based on the evaluations to choose the best formula.

Symbolic regression based on genetic algorithm has some problems, it cannot take
advantage of the inherent characteristics of the dataset to search for suitable formula, so
the search process will be too long, the search is too inefficient, and it is easy to fall into
local optimal.

In recent years, deep reinforcement learning has made great progress in the field of
optimization solutions. Many studies have applied deep reinforcement learning to solve
symbolic regression problems. This kind of method can search symbols from the symbol
space (the space of variables and operations), construct a mathematical expression from
the symbols, and get a reward according to the fitness of the mathematical expression to
optimize the strategy function. Deep reinforcement learning can achieve very good results
in symbolic regression problems [13].

Deep learning-based symbolic regression methods often model formulas as binary
trees, the nodes of the tree are called symbols which are divided into variables in green
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and operations in blue of mathematical, as shown in Figure 3, the binary tree can be
converted into mathematical formulas by depth-first search of mid-order traversal, and it
is cos(x × y) + tan(x)/ ln(x + y). Therefore, the problem of symbolic space exploration is
regarded as the generation problem of a formula binary tree.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 14 
 

the search process will be too long, the search is too inefficient, and it is easy to fall into 
local optimal. 

In recent years, deep reinforcement learning has made great progress in the field of 
optimization solutions. Many studies have applied deep reinforcement learning to solve 
symbolic regression problems. This kind of method can search symbols from the symbol 
space (the space of variables and operations), construct a mathematical expression from 
the symbols, and get a reward according to the fitness of the mathematical expression to 
optimize the strategy function. Deep reinforcement learning can achieve very good results 
in symbolic regression problems [13]. 

Deep learning-based symbolic regression methods often model formulas as binary 
trees, the nodes of the tree are called symbols which are divided into variables in green 
and operations in blue of mathematical, as shown in Figure 3, the binary tree can be con-
verted into mathematical formulas by depth-first search of mid-order traversal, and it is 

( ) ( ) ( )cos tan / lnx y x x y× + + . Therefore, the problem of symbolic space exploration is re-
garded as the generation problem of a formula binary tree. 

+

cos

tan ln

+

( )cos x y×

x y× ×

x x

x

y

y

x y+

( )ln x y+( )tan x

/ ( ) ( )tan / lnx x y+

( ) ( ) ( )cos tan / lnx y x x y× + +

 
Figure 3. Binary tree of formula. 

2.2. PhySO 
Thanks to Tenachi et al., they proposed PhySO [11], a powerful deep reinforcement 

learning-based symbolic regression method. It builds a mathematical expression starting 
from the most basic physical units and automatically detects and corrects combinations of 
symbols that may lead to violations of physical unit constraints, ensuring that unit cor-
rectness is maintained throughout all computations. This avoids generating irrational 
mathematical expressions and greatly reduces the size of the expression search space, so 
the search process of PhySO is more efficient and can find the best solution faster. 

In the implementation, PhySO models mathematical expressions as binary trees, 
where variables and coefficients are terminal nodes, operation symbols are non-terminal 
nodes, monadic operators have only 1 child node, and binocular operators have 2 child 
nodes. Variables and operators are called tokens in PhySO, and the space they make up is 
called Library, for example, Library = {a, b, c, +, −, /}. Tokens in the Library such as “a, b, 
c, +, −, /” are encoded by one-hot for subsequent processing by the neural network. 

Figure 3. Binary tree of formula.

2.2. PhySO

Thanks to Tenachi et al., they proposed PhySO [11], a powerful deep reinforcement
learning-based symbolic regression method. It builds a mathematical expression starting
from the most basic physical units and automatically detects and corrects combinations
of symbols that may lead to violations of physical unit constraints, ensuring that unit
correctness is maintained throughout all computations. This avoids generating irrational
mathematical expressions and greatly reduces the size of the expression search space, so
the search process of PhySO is more efficient and can find the best solution faster.

In the implementation, PhySO models mathematical expressions as binary trees, where
variables and coefficients are terminal nodes, operation symbols are non-terminal nodes,
monadic operators have only 1 child node, and binocular operators have 2 child nodes.
Variables and operators are called tokens in PhySO, and the space they make up is called
Library, for example, Library = {a, b, c, +, −, /}. Tokens in the Library such as “a, b, c, +, −,
/” are encoded by one-hot for subsequent processing by the neural network.

As a deep reinforcement learning method, PhySO sets the observations as parent nodes
and their units, sibling nodes and their units, previous node and its unit, dangling nodes
and the unit of the current node, and the initial observations are all zero tensor. The action
is to select the tokens in the Library to build the mathematical expression. By prioritizing
the output of the action by the neural network and performing the mask operation, it masks
out unnecessary actions to generate better mathematical expressions. The reward is:

R =
1

1 + NRMSE
(2)

σy =

√√√√ 1
N − δN

N

∑
i=1

(
yi −

1
N

N

∑
i=1

yi

)2

(3)

NRMSE =
1
σy

√√√√ 1
N

N

∑
i=1

(yi − f (xi))
2 (4)
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where R is the reward, σy is the standard deviation of the target value, N is the number
of sampling points, δN is Bessel’s correction and δN = 1, xi, yi are data points and target
values, and f (·) is the function generated by the neural network.

The optimization strategy used by PhySO is risk-seeking policy gradient [14], entropy
regularization [15], and Adam optimizer is adopted. When the reward is big enough and the
expression is meaningful, the algorithm will stop iterating and output the corresponding result.

The network architecture used by PhySO is Long Short-Term Memory (LSTM) which is a
classical neural network architecture for processing sequence data. After the observations data
is input into the LSTM network, the network will output the probability distribution of each
action, adjust the probability distribution of the action by masking the actions that do not meet
the constraint conditions, and then sample the action according to the probability. Then, based
on the action, the new mathematical expression is obtained, and the observations are updated.
It will be repeated until the final mathematical expression is obtained.

By deep reinforcement learning technology, the PhySO method can adaptively adjust
learning strategies, and automatically select the most appropriate mathematical expression
to describe data by using physical constraints and avoid meaningless symbol combinations.
This method can greatly improve the search efficiency and reliability of the model, and can
better adapt to different types of physical data.

2.3. Improved PhySO Algorithm

In the PhySO project, the authors used LSTM as a neural network architecture, and only
the optimal 5% of candidate solutions were rewarded. However, LSTM has the problem of
poor parallel performance, and each LSTM cell has four fully connected layers, if the LSTM
network is very deep, the computational load will be large and time-consuming. And only
the optimal 5% candidate solution is rewarded, when the channel mathematical model
is relatively complex, such as when there are mixed operations of logarithm, exponent,
fraction, and trigonometric function in mathematical expressions, there are problems
of poor exploration performance and slow convergence. In addition, in the process of
generating a channel model with PhySO, multilayer fractions, and multilayer exponents
often appear, which are not common in the channel model. In order to solve these problems,
the PhySO method is improved to make it more suitable for channel modeling tasks.

In this paper, the LSTM architecture is changed to transformer architecture [16] to increase
the parallel performance and feature extraction capability of the algorithm. The self-attention
mechanism in the transformer architecture enables the calculation of each time step to only rely
on the input vector, thus achieving completely parallel computation. Moreover, the self-attention
mechanism can directly calculate the dependency relationship between any two positions in the
sequence, making the model better able to capture long-distance dependencies. The structure of
the transformer model is very flexible and can be adjusted according to the needs of specific
tasks, such as increasing or decreasing the number of layers and adjusting the number of
attention mechanism heads. Its architecture diagram, as shown in Figure 4, includes the input
layer, transformer layer, and output layer. Both the input and output layers are linear layers,
and the transformer architecture used contains only the Encoder part, which is used to extract
the features of mathematical expressions.
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In the process of exploration, the optimal 5% candidate solution is changed to the optimal
candidate solution decreasing from 10–5% to increase the exploration effect of the model.

According to the channel model expression, the symbol space is redefined as{
+,−,×, /, exp, log, 1

x , x2,
√

x
}

. By reducing unnecessary operators, search complexity
can be reduced and convergence speed can be accelerated.

Modify the config file of the PhySO project to reduce the occurrence probability of
multiple fractions and exponents. Because in the common channel model, it is unusual
to see the nested fraction and exponential function. By reducing the nesting of fractional,
exponential, and logarithmic operations, the complexity of algorithm search can also be
reduced, resulting in a faster search for the optimal expression.

The logarithmic function used in the PhySO project is changed to the logarithmic form
with base 10, which is more consistent with the dB definition in the channel model.

3. Experiment
3.1. Terahertz Channel Model

Moldovan et al., based on scattering theory and ray-tracing technique, proposed a
deterministic large-scale fading model suitable for terahertz frequency bands. It deter-
ministically models the line-of-sight loss as the sum of free space path loss and molecular
absorption loss [17]:

A( f , d) = Aspread( f , d) + Aabs( f , d) (5)

where A( f , d) represents terahertz deterministic large-scale fading, Aspread( f , d) represents
free space path loss, and Aabs( f , d) represents molecular absorption loss.

Considering that the inter-satellite terahertz communication scenario is located in
space, the molecular absorption loss is very small, so only the free space path loss is
considered for the inter-satellite terahertz channel modeling.

Free space path loss is a classical model of wireless channel transmission, which
plays an important role in satellite communication simulation. In the case of an ideal
omnidirectional antenna, the free space path loss can be expressed as the ratio of the
transmitted and received power of the antenna.

Pt

Pr
=

(4π f d)2

c2 (6)

The logarithmic form is:

LdB = 10lg
(

Pt
Pr

)
= 10lg

(
(4π f d)2

c2

)
= 20[lg

(
4π
c

)
+ lg( f ) + lg(d)]

≈ 92.44 + 20lg( f ) + 20lg(d)

(7)

where, Pt is the transmitting power, in the unit w, Pr is the receiving power, in the unit w, f
is the signal frequency, in the unit GHz, d is the distance, in the unit km. when calculating
the final value of LdB, units shall not be included.

3.2. Experimental Process

As shown in Figure 5, based on the PhySO project, the experimental process of this
article is mainly divided into the following steps:

1. Input the measured channel data. In this experiment, the data was sampled from the
free space path loss Formula (7);

2. Initialize the environment, including batch size, library, priority of operations, dataset, etc.;
3. Initialize the deep neural network, including its size, learning rate, etc.;
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4. Initialize the observations which are composed of parent nodes and their units, sibling
nodes and their units, previous node and its unit, dangling nodes and the unit of the
current node;

5. Input the observations into the neural network model to calculate the action, and use
the action to form the channel model expression;

6. According to the reward Formula (2), calculate the reward using the sampled dataset;
7. After receiving the reward, use the risk-seeking policy gradient [14], and entropy

regulation [15] method to calculate the loss;
8. Backpropagation loss, using Adam optimizer to optimize neural network and update

the observations;
9. Repeat 5–8 until the reward value reaches the set value or the maximum number of

iterations is reached.
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3.3. Experimental Parameter

In this paper, the terahertz frequency band is selected for experiments. 300GHz ≤
f ≤ 3000GHz, and the inter-satellite distance is 100km ≤ d ≤ 1000km. Both frequency
and distance are uniformly sampled.

The transformer network parameters are shown in Table 1, and its learning parameters
are shown in Table 2.

Table 1. Network parameters.

Network Layer Parameters

Input layer Input size: 66 Output size: 128
transformer Input size: 128, Head: 8, Layer: 1
Output layer Input size: 128, Output size: 11

Activation function Relu

Table 2. Learning parameters.

Parameters Value

Learning rate 0.0025
Batch size 1000
Risk factor 10% decays to 5% by epoch

Gamma 0.7
Max epochs 200

Sample 50, 200, and 400 data points from the free space path loss formula as the data
set that the algorithm needs to fit. After the data set is fed into the algorithm model, the
algorithm can automatically generate the best mathematical channel model.

3.4. Experimental Results
3.4.1. Convergence Effect

Figure 6 shows a typical training process, the blue curve is the average reward of all
exploration results, and the red curve is the reward of the results used in training, that
is, the average reward corresponding to the top 5–10% of the results, the orange curve
is the optimal reward of each training epoch, and the black curve is the optimal reward
of all training processes. It suggests that the average reward increases as the training
continues. As can be seen from the black optimal curve, the best expression is explored in
the 27th epoch, the reward reaches the highest value of 1, and it is confirmed that this is the
optimal solution in subsequent epochs, and the convergence is completed. It reveals that
the algorithm can quickly find the correct solution.
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3.4.2. Fitting Effect

Figure 7 shows the fitting relationship between path loss and frequency. The black
dots are sampled data points, the blue curve is all the explored results during training, the
red curve is the best 5–10% of the results used for training, the orange curve is the best
result of a training epoch, and the black curve is the best result of all epochs. One can see
that the data points fall almost evenly on both sides of the black curve, which means that
the black curve fits the distribution of the data points very well.
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Figure 8 depicts the relationship between the sampled data points and the curved
surface, which is derived from the improved PhySO generated mathematical channel model
Pl = a log

(
a2) log

(
a2d f

)
+ a + b, a = 10.00, b = 42.44, where a, b denote independent

variables acting as coefficients in mathematical formulas. All the data points in red fall on
the green curved surface, indicating that the improved PhySO finally fits the free space path
loss correctly, and the improved algorithm has a good fitting effect on the inter-satellite
terahertz channel model.
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Table 3 depicts some typical free space path loss formulas generated by the im-
proved PhySO. For instance, with 400 data points, the algorithm converges to expres-
sion Pl = b log

(
b
√

ad f
)
, a = 26.17, b = 40.00. Post manual simplification, Pl = 92.44 +

20 log(d f ). This formula corresponds to the free space path loss formula, validating the
algorithm’s precision in deducing the accurate formula for free space path loss from the
communication dataset via symbolic regression.
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Table 3. Typical Channel Expressions.

Number of Sampling Points Expressions (a, b)

50 Pl = a log
(
a2) log

(
a2d f

)
+ a + b (10.00, 42.44)

200 Pl =
√

a + a log(ad f )
2 + 2b (40.00, 27.03)

400 Pl = b log
(
b
√

ad f
)

(26.17, 40.00)

3.4.3. Epochs Effect

Figure 9 shows the average training epochs required for generating the channel model
of the LSTM network and the improved transformer network at 50, 200, and 400 data points.
It can be seen that the transformer architecture requires fewer training epochs than the
LSTM-based architecture, and fits the free space path loss model relatively faster.
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4. Conclusions

Channel modeling is a crucial technology in wireless communication. Traditional
channel modeling methods are time-consuming, laborious, and require manual fitting of
data. The scheme using a neural network directly as a channel model has the problem
of interpretability, which makes it difficult to provide more insight into channels for
researchers. The channel modeling method proposed in this paper based on symbolic
regression uses a neural network as a tool to automatically generate a channel model, which
not only saves labor costs but also avoids the “black box” characteristic of neural networks
channel model. As a new channel modeling method, this paper successfully generates the
free space path loss model based on the terahertz band from simulation data using the
improved PhySO symbolic regression method and verifies the effect of symbolic regression
on channel modeling. When the channel data is collected, the channel formula can be
automatically obtained from the data by the proposed method, that is why the proposed
method has an important application prospect in the field of channel modeling.

Of course, the project is not perfect, it still has problems such as the failure to get
the final mathematical expression at one time, the unstable training epochs required for
different random samples, and the need to retrain the network to establish the channel
model each time facing new data sets. Therefore, further research will be conducted on the
following topics:

1. To establish a usable inter-satellite terahertz channel model, it is necessary to use
actual measured channel data for modeling by the proposed method in the future.

2. To expand the practicality of the proposed method, the channel modeling research
will be further carried out from the aspects of path loss, delay power distribution,
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multipath angle spatial distribution, Doppler frequency shift, and other aspects of
terahertz communication.

3. To provide more concise and unified expressions, more efficient neural networks and
deep reinforcement learning algorithms will be studied.

4. To reduce algorithm training times and improve symbol regression performance
when using new data sets, the method based on pre-trained models is a worthwhile
research direction.
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