
Citation: An, K.; Wu, Z.; Shangguan,

Q.; Song, Y.; Xu, X. Robust Learning

from Demonstration Based on GANs

and Affine Transformation. Appl. Sci.

2024, 14, 2902. https://doi.org/

10.3390/app14072902

Academic Editors: Giovanni Boschetti,

Matteo Bottin and Riccardo Minto

Received: 9 March 2024

Revised: 23 March 2024

Accepted: 26 March 2024

Published: 29 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Robust Learning from Demonstration Based on GANs and
Affine Transformation
Kang An †, Zhiyang Wu † , Qianqian Shangguan, Yaqing Song * and Xiaonong Xu *

The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University,
Shanghai 201418, China; ankang526@foxmail.com (K.A.); 1000512056@smail.shnu.edu.cn (Z.W.);
shangguan@shnu.edu.cn (Q.S.)
* Correspondence: yqsong@shnu.edu.cn (Y.S.); seuxxn@shnu.edu.cn (X.X.)
† These authors contributed equally to this work.

Abstract: Collaborative robots face barriers to widespread adoption due to the complexity of pro-
gramming them to achieve human-like movement. Learning from demonstration (LfD) has emerged
as a crucial solution, allowing robots to learn tasks directly from expert demonstrations, offering
versatility and an intuitive programming approach. However, many existing LfD methods encounter
issues such as convergence failure and lack of generalization ability. In this paper, we propose:
(1) a generative adversarial network (GAN)-based model with multilayer perceptron (MLP) archi-
tecture, coupled with a novel loss function designed to mitigate convergence issues; (2) an affine
transformation-based generalization method aimed at enhancing LfD tasks by improving their
generalization performance; (3) a data preprocessing method tailored to facilitate deployment on
robotics platforms. We conduct experiments on a UR5 robotic platform tasked with handwritten digit
recognition. Our results demonstrate that our proposed method significantly accelerates generation
speed, achieving a remarkable processing time of 23 ms, which is five times faster than movement
primitives (MPs), while preserving key features from demonstrations. This leads to outstanding
convergence and generalization performance.

Keywords: collaborative robots; learning from demonstration; imitation learning; generative
adversarial networks

1. Introduction

Contemporary manufacturing endeavors are heavily focused on enhancing efficiency,
with industrial robots garnering significant attention for their potential to revolutionize
various industry sectors [1,2]. These robots possess the capability to replace humans in
numerous tasks [3], thereby alleviating workers from repetitive, hazardous, or physically
taxing responsibilities [4,5]. In collaborative environments, it is imperative for humans to
have an intuitive means of programming robots to assist with tasks [6]. Learning from
demonstration (LfD) or imitation learning (IL) has emerged as a pivotal technique, allowing
robots to replicate tasks based on human demonstrations, thereby facilitating direct manual
instruction for industrial robots [7,8]. A fundamental objective of LfD is to enable learned
movements to adapt seamlessly to diverse task environments.

LfD is currently categorized into three mainstream algorithms. The first category is
behavior cloning (BC), which trains policy networks and other machine learning algorithms
to mimic expert behavior. However, BC faces challenges due to the discrepancy between
the distribution of states generated by the trained policy and the distribution of states in the
training data. This inconsistency can lead to suboptimal actions, especially in unfamiliar
or novel scenarios, ultimately deviating from the correct trajectory. In sequential decision-
making problems, this discrepancy causes errors to accumulate, resulting in trajectories
deviating from the correct path.

Appl. Sci. 2024, 14, 2902. https://doi.org/10.3390/app14072902 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14072902
https://doi.org/10.3390/app14072902
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0008-1383-6962
https://orcid.org/0000-0003-0914-0395
https://doi.org/10.3390/app14072902
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14072902?type=check_update&version=2

Appl. Sci. 2024, 14, 2902 2 of 15

Therefore, while BC offers a simple learning process without the need for environment
interaction, it suffers from limitations such as single-step decision-making, inability to
decide on unfamiliar states, and error accumulation. Expert datasets are also limited,
requiring continuous expansion to cover all possible states, which increases costs. Com-
mon BC algorithms used in collaborative robotics include dynamic movement primitives
(DMP) [9,10], Gaussian mixture regression (GMR) [11,12], stable estimation of dynamical
systems (SEDS) [13], and kernelized movement primitives (KMP) [14].

Inverse reinforcement learning (IRL) [15,16] assumes that expert behavior is (approxi-
mately) optimal and aims to interpret it by reverse-engineering a reward function. This
approach avoids the manual setting of a reward function by recovering it from expert tra-
jectory data, allowing reinforcement learning to extract policies from this reward function.
However, IRL demands substantial data to accurately deduce the reward function, making
it computationally intensive. Additionally, its iterative nature in reinforcement learning
processes can lead to slow training speeds and high time costs. Moreover, IRL may struggle
to generalize to unseen states or environments, restricting its practical utility.

Generative adversarial imitation learning (GAIL) [17,18] aims to directly learn the
policy from expert behavior without significant computational overheads associated with
learning cost functions. By introducing generative adversarial networks (GANs) into IRL,
GAIL leverages adversarial training to generate expert data distributions, improving the
ability to imitate complex behaviors in large-scale, high-dimensional environments [19,20].
However, GAIL may encounter issues like mode collapse [21] and distributional mis-
matches between generated and expert data, particularly in complex environments.

As previously mentioned, approaches combining LfD and semantic information de-
mand substantial computing resources that are often impractical for industrial environ-
ments. Traditional methods relying on clustering, model fitting, and regression necessitate
meticulous tuning of hyperparameters [22], hindering the efficient generation of the target
trajectory. Moreover, probability-based methods like the Gaussian mixture model (GMM)
struggle with generalization when faced with new task requirements.

To enhance the performance of LfD and simplify operation, particularly for individ-
uals lacking programming expertise, this paper proposes a robust LfD method with the
following key attributes:

• Enhanced feature extraction performance with GANs: We harness the power of
GANs to efficiently capture the distribution of expert demonstration trajectories.
This approach facilitates the integration of information from multiple demonstration
trajectories, leading to a more nuanced and comprehensive feature representation.

• Enhanced convergence performance with additional loss functions: We introduce
novel loss functions, including DILATE [23] loss and Jerk [24] loss, to augment the
learning process of GAN networks. These additional loss functions serve to further
drive the convergence of the model and mitigate the occurrence of model collapse,
thereby enhancing the stability and robustness of the learning process.

• Superior generalization ability: Our proposed method incorporates a geometric-based
LfD generalization algorithm. Through the utilization of affine transformations, this
approach adeptly addresses the challenge of trajectory generalization. By dynamically
adjusting the trajectory through affine transformations, our method facilitates seamless
adaptation to diverse and complex environments, showcasing superior generaliza-
tion capabilities.

Our article is structured as follows: Section 2 provides background information on our
work, focusing primarily on the MP method and GANS. Section 3 elaborates on the data
preprocessing method, GAN-based trajectory learning method, and affine transformation-
based generalization method. Section 4 presents experiments, where we apply our method
to the Lasa handwriting dataset and the UR5 robotic arm under simulation. Finally, our
conclusions and directions for future work are outlined.

Appl. Sci. 2024, 14, 2902 3 of 15

2. Background
2.1. Movement Primitives

Methods rooted in machine learning, such as reinforcement learning (RL), and tra-
jectory planning techniques like GMR and movement primitives (MPs), play a pivotal
role in implementing such tasks. While RL boasts a plethora of applications, its utiliza-
tion in industrial settings is often hindered by the substantial computational resources
it demands. Traditional trajectory planning methods such as GMR, SEDS, and MPs re-
main predominant in LfD algorithms, particularly given the computational limitations of
mobile platform-based industrial robots. MPs, in particular, show promise as an LfD frame-
work for adapting learned movements to diverse task scenarios, owing to their capacity
to capture demonstration variability. This variability elucidates how movements can be
adjusted to accommodate different task environments. MPs can be succinctly denoted by
the following equation:

..
y = αy

(
βy(g − y)− .

y
)
+ f , (1)

where y is our system state, g is the goal, α and β are gain terms, and f is an additional
nonlinear system that represent the force over time to obtain the desired behaviors.

Several variants of MPs have been proposed. Sebastian et al. proposed probabilistic
movement primitives (ProMPs) [25] to learn from multiple demonstrations using prob-
abilistic method, Li et al. proposed the ProDMP [26] method using neural network for
the learning of DMP, and Xu et al. proposed the EditMP [27] method using GANs for
the learning of high covariance demonstrations. These MPs efficiently learn movements
from numerous demonstrations and adeptly adapt learned movements to task scenarios
featuring varying target positions. Additionally, Huang [14] proposed an algorithm that
amalgamates GMM and MPs, enhancing the adaptability of MPs to multiple demonstra-
tions. However, this technique is constrained to a limited range of conditions, as MPs
can only address specific skill types and encounter challenges in generating circular tra-
jectories. Consequently, the DMP method necessitates not only demonstrations but also a
corresponding skill segmentation model [28].

2.2. Generative Adversarial Networks

GANs [21,29] are a novel way of training neural networks such as convolutional
neural networks. In contrast to discriminative models, generative models are unsupervised
learning tasks in machine learning that focus on capturing the joint probability distribution
from data. Once the probability has been estimated, more data can be sampled from the
distribution represented by generative models. GANs, on the other hand, are an abstract
alternative to mean square loss that makes the models more general.

As shown in Figure 1, GANs consists of two opposing networks whose main role is to
construct a derivable procedure to optimize the following functions [29]:

min
G

max
D

V(D , G), (2)

where V(D , G) has the following form:

V(D , G) = Ex∼pdata(x)[logD(x)] +Ez∼pz(z)[log(1 − D(G(z)))], (3)

where x is a real sample and z is a random noise vector sampled from the latent space.
The first term of V(D, G) is the entropy by which data from real distribution pdata passes
through the discriminator. The discriminator tries to maximize this to 1. The second term is
entropy by which data sampled from input pz passes through the generator, which we call
a fake example. The discriminator tries to identify the fakes, which are represented by the
−log() term. Thus, overall, the discriminator is trying to maximize the function V(D, G),
but the generator is exactly the opposite; i.e., it tries to minimize the function.

Appl. Sci. 2024, 14, 2902 4 of 15Appl. Sci. 2024, 14, x FOR PEER REVIEW 4 of 16

Figure 1. Overview of GANs. GANs take a latent vector as input and generate desired data. These
generated data are then compared with real data by the discriminator, guiding their subsequent
updates.

3. Proposed Method
3.1. Overview

The organization of the proposed method is illustrated in Figure 2. Initially, raw data
is collected from the UR5 robotic arm, followed by the application of the proposed pre-
processing method to process the data. Subsequently, we train the proposed GANs using
the previously collected data and fine-tune the hyperparameters until the model achieves
stability. Finally, the generator component of the GANs is employed for trajectory gener-
ation, coupled with affine transformation to represent the task parameters.

Figure 2. Overview of the proposed method. We outline a data acquisition approach for collecting
data, setting the stage for training a GAN-based trajectory learning module. Subsequently, an affine
transformation module is applied to ensure optimal generalization performance.

Figure 1. Overview of GANs. GANs take a latent vector as input and generate desired data. These
generated data are then compared with real data by the discriminator, guiding their subsequent updates.

3. Proposed Method
3.1. Overview

The organization of the proposed method is illustrated in Figure 2. Initially, raw
data is collected from the UR5 robotic arm, followed by the application of the proposed
preprocessing method to process the data. Subsequently, we train the proposed GANs
using the previously collected data and fine-tune the hyperparameters until the model
achieves stability. Finally, the generator component of the GANs is employed for trajectory
generation, coupled with affine transformation to represent the task parameters.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 4 of 16

Figure 1. Overview of GANs. GANs take a latent vector as input and generate desired data. These
generated data are then compared with real data by the discriminator, guiding their subsequent
updates.

3. Proposed Method
3.1. Overview

The organization of the proposed method is illustrated in Figure 2. Initially, raw data
is collected from the UR5 robotic arm, followed by the application of the proposed pre-
processing method to process the data. Subsequently, we train the proposed GANs using
the previously collected data and fine-tune the hyperparameters until the model achieves
stability. Finally, the generator component of the GANs is employed for trajectory gener-
ation, coupled with affine transformation to represent the task parameters.

Figure 2. Overview of the proposed method. We outline a data acquisition approach for collecting
data, setting the stage for training a GAN-based trajectory learning module. Subsequently, an affine
transformation module is applied to ensure optimal generalization performance.

Figure 2. Overview of the proposed method. We outline a data acquisition approach for collecting
data, setting the stage for training a GAN-based trajectory learning module. Subsequently, an affine
transformation module is applied to ensure optimal generalization performance.

3.2. Preprocess Method
3.2.1. Trajectory Mapping

In this paper, we represent the trajectory using three-dimensional points in the Carte-
sian coordinate system. However, noise in the sensor’s calculation of the end positions
may result in outliers in the collected three-dimensional point sequences. To mitigate the

Appl. Sci. 2024, 14, 2902 5 of 15

impact of outliers, we employ the MAD (median absolute deviation) method. MAD utilizes
two fundamental metrics to filter the data:

Pme = median(P),
Pmad = median(|P − Pme|),

(4)

where function median() means to find the median of the point set. Through (4) we can
obtain Pme and Pmad, which can help define the upper and lower bound of the algorithm:

Pup = Pme + a × b × Pmad,
Pdown = Pme − a × b × Pmad,

(5)

where a and b are two parameters that fit the outlier tolerance. We then apply the following
filter to the collected data:

P =

P Pdown < P < Pup

Pup P > Pup

Pdown P < Pdown

, (6)

where P represents a set of 3D points P = {p1, p2 . . . , pn}, and each pi = (xi, yi, zi) is a
point in three-dimensional space. After processing, we obtain a set of 3D trajectory points.

In order to decrease data dimensionality, we make the assumption that the three-
dimensional trajectory points are situated within a common plane aT p = b, where a is
the normal vector of the plane, and b is the distance of the plane from the origin. We can
employ singular value decomposition (SVD) to model this plane and project all points onto
it. Initially, we construct the data matrix A, where each row represents a data point:

A =

x1 y1 z1
x2 y2 z2
.
xn yn zn

. (7)

To simplify computations, the dataset is centered by subtracting the mean from
each column:

µ =
[
x y z

]
,

A = A − µ.
(8)

SVD is then performed on the centered data matrix A:

A = UΣVT , (9)

where U is an n × n orthogonal matrix, Σ is an n × 3 diagonal matrix with singular values
sorted in descending order, V is a 3× 3 orthogonal matrix. The normal vector a of the plane
is extracted from the right singular vector corresponding to the least singular value:

a = V[:,−1]. (10)

Consequently, we can map the trajectory into 2D points, significantly improving the
convergence of the model, as we will discuss later.

To project a point pi onto the fitted plane, the formula for vector projection is utilized:

pi = pi − (a · pi)a. (11)

This projection process is repeated for all data points, resulting in their projections
onto the fitted plane.

Appl. Sci. 2024, 14, 2902 6 of 15

3.2.2. Bézier Curve Representation

After recording the demonstrations, we require a method that not only represents
these trajectories but also generates additional trajectories. The Bézier curve is employed to
fulfill these requirements. A second-order Bézier curve is defined by three control points
P0, P1, P2, where P0 and P2 are the start and end points of the curve, and P1 is the middle
control point that influences the shape of the curve. The mathematical expression of the
second-order Bézier curve is:

B(t) = (1 − t)[(1 − t)P0 + tP1] + t[(1 − t)P1 + tP2], 0 ≤ t ≤ 1. (12)

By varying the parameter t between 0 and 1, we can generate any points desired
between the control points. Consequently, demonstration data can be augmented by
generating points with different sampling rates for training the neural network.

Another advantage of representing trajectories using Bézier curves lies in their ability
to abstract temporal intricacies. When sampling a new trajectory from the curve, the
sequential order of samples accurately mirrors the original trajectory’s sequence. This
adherence to the correct order serves to circumvent abrupt transitions when the trajectory
is executed by a robotic arm.

3.3. Trajectory Learning Based on GANs

GANs can learn trajectory representations from multiple demonstrations, enabling
the generator to generate trajectories similar to the demonstrations, but they are highly
sensitive to noise present in the trajectories. GANs demonstrate strong fitting capabilities
for noise and non-smooth parts of the trajectories, resulting in trajectories with high jerk.
Additionally, the discriminator cannot quantitatively describe the magnitude of trajectory
errors. When the discriminator loss reaches a certain value, it fails to provide sufficient
gradients for updating the generator, potentially leading to model collapse.

To address these issues, this paper introduces a new loss function that combines
DILATE [23] loss and jerk measurement, integrating traditional trajectory planning and
sequence similarity metrics, building upon the loss function of GANs. Denote the trajectory
generated by the generator as x and the ground truth trajectory as y, and the equations for
these new loss functions are as follows:

LDILATE(x, y) = β · Lshape(x, y) + (1 − β) · Ltemporal(x, y),
LJerk =

∫ t
0 ||

...
x ||2dt,

(13)

where
...
x is the third derivative of trajectory x, β is a hyperparameter used to balance the

weights between shape and temporal, and t represents the duration of the motion, under
discrete conditions (i.e., the number of trajectory points).

LDILATE consists of both shape loss and temporal loss. The shape loss adopts Soft-
DTW [30] to ensure differentiability which is defined as follows:

Lshape = DTWγ(x, y) = −γlog

(
∑

A∈An,m

exp
(
−⟨A |∆ (x, y)⟩

γ

))
, (14)

where An,m is the alignment matrices of x and y, ⟨x|y⟩ denotes the inner product operation,
∆(x, y) is the cost matrix of x and γ where cost function can be replaced with Euclidian
distance. Soft-DTW apply soft-minimum algorithm with a hyperparameter γ to replace the
minimum function which make the shape loss differentiable.

On the other hand, DILATE models the temporal loss, calculating the temporal error
of the trajectory points using the optimal transition matrix A∗

γ obtained from Soft-DTW.
The algorithm is defined as follows:

Ltemporal(x, y) = ⟨A∗
γ |Ω ⟩, (15)

Appl. Sci. 2024, 14, 2902 7 of 15

where Ω is the temporal penalty matrix, defined as the second norm of the temporal
sequence, and the function is fully differentiable. Based on this, the revised loss function
for the generator aspect in GAN is defined as follows:

LGenerator = α1V(D, G) + α2LDILATE + α3LJerk, (16)

where α1, α2, α3 are the loss coefficients.
The discriminator loss remains unchanged. This model can function as a template

library for conditional generation when guided by LGenerator, and as a demonstration
trajectory generation module when guided by LDiscriminator to generate additional demon-
stration trajectories.

The GAN framework described above demonstrates strong learning capabilities,
addressing the issue of current LfD algorithms lacking learning capacity. The proposed
method enables rapid learning and guaranteed convergence to demonstration trajectories.
Compared to current optimal teaching learning methods, it requires no hyperparameter
tuning, converges more easily, and can be applied to multidimensional inputs. With the
incorporation of the novel loss function, GANs can extract common features from multiple
demonstration trajectories, mitigating the impact of noise when trajectories contain noise.

After the training process is complete, we can utilize the generator to produce target
tasks using Formula (17):

T = G(z), (17)

where z denotes the latent vector sampled from the latent space pz(z), G() represents the
generator of GANs, and T signifies the task trajectory learned from demonstrations.

In this paper, we proposed a GAN whose component is an MLP network, as shown
in Figure 3. The two perceptrons have a symmetric structure. Taking the generator as an
example, it takes one cell as input and expands to 512 cells in the hidden space, with the
number of output cells being the same as the trajectory length.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 16

On the other hand, DILATE models the temporal loss, calculating the temporal error
of the trajectory points using the optimal transition matrix 𝐴∗ obtained from Soft-DTW.
The algorithm is defined as follows: 𝐿 (𝑥, 𝑦) = 𝐴∗ Ω , (15)

where Ω is the temporal penalty matrix, defined as the second norm of the temporal se-
quence, and the function is fully differentiable. Based on this, the revised loss function for
the generator aspect in GAN is defined as follows: 𝐿 = α V(𝐷, 𝐺) + α 𝐿 + α 𝐿 , (16)

where α , α , α are the loss coefficients.
The discriminator loss remains unchanged. This model can function as a template

library for conditional generation when guided by 𝐿 , and as a demonstration tra-
jectory generation module when guided by 𝐿 to generate additional demon-
stration trajectories.

The GAN framework described above demonstrates strong learning capabilities, ad-
dressing the issue of current LfD algorithms lacking learning capacity. The proposed
method enables rapid learning and guaranteed convergence to demonstration trajectories.
Compared to current optimal teaching learning methods, it requires no hyperparameter
tuning, converges more easily, and can be applied to multidimensional inputs. With the
incorporation of the novel loss function, GANs can extract common features from multi-
ple demonstration trajectories, mitigating the impact of noise when trajectories contain
noise.

After the training process is complete, we can utilize the generator to produce target
tasks using Formula (17): 𝑇 = 𝐺(𝑧), (17)

where 𝑧 denotes the latent vector sampled from the latent space 𝑝 (𝑧), 𝐺() represents
the generator of GANs, and 𝑇 signifies the task trajectory learned from demonstrations.

In this paper, we proposed a GAN whose component is an MLP network, as shown
in Figure 3. The two perceptrons have a symmetric structure. Taking the generator as an
example, it takes one cell as input and expands to 512 cells in the hidden space, with the
number of output cells being the same as the trajectory length.

Figure 3. The framework of proposed GANs with novel loss function.

3.4. Generalization Based on Affine Transformation

The generalization performance of demonstration learning primarily pertains to the
learning system’s ability to adapt to diverse scenario demands, even when encounter-
ing new environments characterized by novel starting points, endpoints, intermediate
points, and other factors. This adaptability is crucial for effective demonstration learning.

Appl. Sci. 2024, 14, 2902 8 of 15

However, traditional trajectory demonstration learning algorithms often struggle with
poor generalization performance: ProMP [25] lacks extrapolation ability, and promoted
DMP [9] cannot specify intermediate points. To overcome these limitations, this paper
introduces a trajectory generalization method based on affine transformation. This method
automatically selects trajectory points using perpendicular bisectors, constructing affine
transformation solving equations tailored to the generalization requirements of starting
and target points, thereby directly obtaining the target trajectory.

An affine transformation involves translation and linear mapping and serves as a
deterministic approach that avoids convergence issues. Unlike DMP, in which learns
trajectories based on external force terms, the proposed affine transformation method
preserves the original attributes of the trajectory. While DMP algorithms struggle to control
the trajectory’s shape when modifying the endpoint, our method achieves the desired
target trajectory by adjusting the scale factor. Additionally, our affine transformation-
based approach allows for specifying intermediate point poses without encountering
convergence issues.

The subsequent section delineates the algorithm for two-dimensional trajectory imitation
learning. We denote the trajectory generated by the generator as Torigin = {p1, p2, . . . , pN}.
For clarity, we denote original starting position of Torigin as a and the original ending
position as b. In a generalization task, the new starting position and ending position can be
denoted as a′ and b′ (new starting position and ending position can be assigned by user
directly), and the generalized trajectory can be denoted as Tnew. Our proposed method
aims to find an affine transformation matrix M to satisfy the equation:

Tnew = M × Torigin, (18)

where M is a 3 × 3 homogeneous matrix which has 6 degrees of freedom. To determine M,
6 constraints are required, corresponding to 3 pairs of trajectory points. In order to find the
third corresponding pair, we utilize the following method.

The equation of the line passing through points a and b, as well as the equation of the
perpendicular bisector of the line segment joining a and b, denoted as Lorigin and PBorigin,
respectively, can be obtained from the following expressions:

Lorigin ≜ y = kx + τ,

PBorigin ≜ y = − 1
k ×

(
x − ax+bx

2

)
+

ay+by
2 .

(19)

where ≜ represents ‘is defined as’; k is the slope of Lorigin, given by k =
ay−by
ax−bx

; τ is the
y-intercept, which can be determined by substituting the coordinates of either point a or
b into the equation; and ()x and ()y represent the x-coordinate and y-coordinate of the
point, respectively. For discrete trajectory points, the approximate intersection point pmid
of the trajectory point pi and the line is obtained by minimizing the distance between the
trajectory point pi and the line:

c = argmin
pi ,pi∈Torigin

dist
(

pi, PBorigin
)
, (20)

where dist() is used to calculate the distance between a point and a line. After changing the
starting position and ending position of the trajectory, the two new lines Lnew and PBnew
can be obtained using Formula (19). Point c′ corresponding to point c can be determined
by Formula (21):

dist(c′, Lnew) = dist
(
c, Lorigin

)
,

dist(c′, PBnew) = dist
(
c, PBorigin

)
,∣∣∣∣∣∣

1 ax ay
1 bx by
1 cx cy

∣∣∣∣∣∣×
∣∣∣∣∣∣
1 a′

x a′
y

1 b′
x b′

y
1 c′x c′y

∣∣∣∣∣∣ > 0.
(21)

Appl. Sci. 2024, 14, 2902 9 of 15

After the unique c′ has been determined, the affine matrix M can be solved by the
following linear equations:

ax ay 1 0 0 0
0 0 0 ax ay 1
bx by 1 0 0 0
0 0 0 bx by 1
cx cy 1 0 0 0
0 0 0 cx cy 1

×

M00
M01
M02
M10
M11
M12

 =

a′
x

a′
y

b′
x

b′
y

c′x
c′y

, (22)

where ()ij represents the element in the i-th row and j-th column of the affine matrix
M. Finally, the generalized trajectory can be obtained from Formula (18). The process of
the algorithm is illustrated in Figure 4. The overall complexity of the algorithm is O(n),
making it conducive to rapid trajectory generalization and parameterized trajectory shape
transformation. In instances where specific intermediate points are designated, the affine
transformation point pair relationship can be recalculated as needed. In comparison to
KMP, which has a complexity of O

(
n3), our method boasts faster processing speed.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 16

𝑃𝐵 can be obtained using Formula (19). Point 𝑐 corresponding to point 𝑐 can be de-
termined by Formula (21): 𝑑𝑖𝑠𝑡(𝑐 , L) = 𝑑𝑖𝑠𝑡 𝑐, 𝐿 , 𝑑𝑖𝑠𝑡(𝑐 , PBn𝑒𝑤) = 𝑑𝑖𝑠𝑡 𝑐, 𝑃𝐵 , 1 𝑎 𝑎1 𝑏 𝑏1 𝑐 𝑐 × 1 𝑎 𝑎1 𝑏 𝑏1 𝑐 𝑐 > 0. (21)

After the unique 𝑐 has been determined, the affine matrix 𝑀 can be solved by the
following linear equations:

⎣⎢⎢
⎢⎢⎢
⎡𝑎 𝑎 1 0 0 00 0 0 𝑎 𝑎 1𝑏 𝑏 1 0 0 00 0 0 𝑏 𝑏 1𝑐 𝑐 1 0 0 00 0 0 𝑐 𝑐 1⎦⎥⎥

⎥⎥⎥
⎤ ×

⎣⎢⎢
⎢⎢⎡
𝑀𝑀𝑀𝑀𝑀𝑀 ⎦⎥⎥

⎥⎥⎤ =
⎣⎢⎢
⎢⎢⎢
⎡𝑎𝑎𝑏𝑏𝑐𝑐 ⎦⎥⎥

⎥⎥⎥
⎤
, (22)

where () represents the element in the 𝑖-th row and 𝑗-th column of the affine matrix 𝑀. Finally, the generalized trajectory can be obtained from Formula (18). The process of
the algorithm is illustrated in Figure 4. The overall complexity of the algorithm is 𝑂(𝑛),
making it conducive to rapid trajectory generalization and parameterized trajectory shape
transformation. In instances where specific intermediate points are designated, the affine
transformation point pair relationship can be recalculated as needed. In comparison to
KMP, which has a complexity of 𝑂(𝑛), our method boasts faster processing speed.

Figure 4. The framework of proposed affine transformation module.

4. Experiment
4.1. Experiment Setting

As shown in Figure 4, in the experiment, a UR5 robotic arm was employed to collect
3D trajectory data. For this study, all data were obtained through simulation. Following
preprocessing of the collected data, several schematic trajectories were derived and stored
using Bézier curves. Specifically, the digit ‘7’ was selected as an example in this paper. The
experimental setup and 2D trajectories are illustrated in Figure 5. Importantly, these tra-
jectories exhibit spikes and other factors that may hinder convergence when using

Figure 4. The framework of proposed affine transformation module.

4. Experiment
4.1. Experiment Setting

As shown in Figure 4, in the experiment, a UR5 robotic arm was employed to collect
3D trajectory data. For this study, all data were obtained through simulation. Following
preprocessing of the collected data, several schematic trajectories were derived and stored
using Bézier curves. Specifically, the digit ‘7’ was selected as an example in this paper.
The experimental setup and 2D trajectories are illustrated in Figure 5. Importantly, these
trajectories exhibit spikes and other factors that may hinder convergence when using
traditional methods. To expedite the training process, trajectories were normalized before
being fed into the model.

The Lasa handwriting dataset [13] comprises a collection of 2D handwriting motions
recorded from a tablet personal computer. For each motion, users were instructed to
perform 7 demonstrations of a desired pattern, beginning from various initial positions
(albeit relatively close to each other) and concluding at the same final point. The patterns
were illustrated below, and we will utilize a portion of the recorded trajectory for method
estimation purposes.

We partitioned the dataset into training and testing subsets, utilizing a portion for
hyperparameter tuning. Once the hyperparameters were finalized, we train the model on
the entire training set and evaluate its performance on the test set. GANs were implemented

Appl. Sci. 2024, 14, 2902 10 of 15

and trained using PyTorch [31]. For updating network parameters, we sampled training
batches of fixed size 64, with the input being character digits. We employed the Adam
optimizer with default settings and a learning rate of 0.0001. Training halted when the
discriminator’s accuracy converged to 0.5, at which point we deployed the generator to
generate the desired trajectory.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 16

traditional methods. To expedite the training process, trajectories were normalized before
being fed into the model.

Figure 5. The framework of the proposed preprocessing method. After recording data from the
UR5 robot, depicted in different colors in the figure, we employ a MAD filter and SVD method to
project the trajectory into two dimensions. Additionally, we introduce a Bézier representation to
illustrate the collected data for further utilization.

The Lasa handwriting dataset [13] comprises a collection of 2D handwriting motions
recorded from a tablet personal computer. For each motion, users were instructed to per-
form 7 demonstrations of a desired pattern, beginning from various initial positions (albeit
relatively close to each other) and concluding at the same final point. The patterns were
illustrated below, and we will utilize a portion of the recorded trajectory for method esti-
mation purposes.

We partitioned the dataset into training and testing subsets, utilizing a portion for
hyperparameter tuning. Once the hyperparameters were finalized, we train the model on
the entire training set and evaluate its performance on the test set. GANs were imple-
mented and trained using PyTorch [31]. For updating network parameters, we sampled
training batches of fixed size 64, with the input being character digits. We employed the
Adam optimizer with default settings and a learning rate of 0.0001. Training halted when
the discriminator’s accuracy converged to 0.5, at which point we deployed the generator
to generate the desired trajectory.

4.2. Method Deployment
4.2.1. Comparison with Other LfD Methods

After 300 epochs of training, our model achieved numerical stability and can generate
the target trajectory with fairly high accuracy with a single numeric character, still taking
the digit ‘7’ as an example. Figure 6 shows the generated result of the model on the x-axis
and y-axis. Respectively; we can see that the error is quite small and retains a large number
of features in the demonstrations, without excessive smoothing.

Figure 5. The framework of the proposed preprocessing method. After recording data from the UR5
robot, depicted in different colors in the figure, we employ a MAD filter and SVD method to project
the trajectory into two dimensions. Additionally, we introduce a Bézier representation to illustrate
the collected data for further utilization.

4.2. Method Deployment
4.2.1. Comparison with Other LfD Methods

After 300 epochs of training, our model achieved numerical stability and can generate
the target trajectory with fairly high accuracy with a single numeric character, still taking
the digit ‘7’ as an example. Figure 6 shows the generated result of the model on the x-axis
and y-axis. Respectively; we can see that the error is quite small and retains a large number
of features in the demonstrations, without excessive smoothing.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 16

Figure 6. Fitting performance of the proposed network on each dimension.

For a comprehensive comparison, we conducted controlled experiments on the Lasa
handwriting dataset by introducing noise and assessing the outcomes against the original
data. In these experiments, we employed the parameter 𝑠𝑖𝑔𝑚𝑎 to regulate the variance
of the Gaussian noise added to the trajectory. We utilized mean squared error (MSE) and
generation time as quantitative metrics for comparison purposes. The final outcomes are
illustrated in Figure 7 and summarized in Table 1. Our proposed method exhibited learn-
ing and generation capabilities comparable to existing algorithms while requiring rela-
tively less generation time. Furthermore, the algorithm’s learning efficacy under noise was
akin to probability-based methods and notably surpassed the performance of the DMP
algorithm.

Table 1. Comparison with other LfD methods in terms of MSE and generation time.

Method
MSE

Time of Generation (ms)
Common Noise

DMP 25.26 53.00 130.38
GMR 27.06 26.75 218.10

ProMP 25.01 25.16 116.98
Proposed 24.71 25.78 23.12

Figure 7. Performance and Learning Reproduction Capability. The green lines in the figure repre-
sent the demonstrations.

In order to conduct a more comprehensive comparison, we conducted controlled ex-
periments on the Lasa handwriting dataset by introducing noise and comparing the re-
sults with the original data. Both mean squared error (MSE) and generation time were

Figure 6. Fitting performance of the proposed network on each dimension.

Appl. Sci. 2024, 14, 2902 11 of 15

For a comprehensive comparison, we conducted controlled experiments on the Lasa
handwriting dataset by introducing noise and assessing the outcomes against the original
data. In these experiments, we employed the parameter sigma to regulate the variance
of the Gaussian noise added to the trajectory. We utilized mean squared error (MSE) and
generation time as quantitative metrics for comparison purposes. The final outcomes are
illustrated in Figure 7 and summarized in Table 1. Our proposed method exhibited learning
and generation capabilities comparable to existing algorithms while requiring relatively
less generation time. Furthermore, the algorithm’s learning efficacy under noise was akin to
probability-based methods and notably surpassed the performance of the DMP algorithm.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 16

Figure 6. Fitting performance of the proposed network on each dimension.

For a comprehensive comparison, we conducted controlled experiments on the Lasa
handwriting dataset by introducing noise and assessing the outcomes against the original
data. In these experiments, we employed the parameter 𝑠𝑖𝑔𝑚𝑎 to regulate the variance
of the Gaussian noise added to the trajectory. We utilized mean squared error (MSE) and
generation time as quantitative metrics for comparison purposes. The final outcomes are
illustrated in Figure 7 and summarized in Table 1. Our proposed method exhibited learn-
ing and generation capabilities comparable to existing algorithms while requiring rela-
tively less generation time. Furthermore, the algorithm’s learning efficacy under noise was
akin to probability-based methods and notably surpassed the performance of the DMP
algorithm.

Table 1. Comparison with other LfD methods in terms of MSE and generation time.

Method
MSE

Time of Generation (ms)
Common Noise

DMP 25.26 53.00 130.38
GMR 27.06 26.75 218.10

ProMP 25.01 25.16 116.98
Proposed 24.71 25.78 23.12

Figure 7. Performance and Learning Reproduction Capability. The green lines in the figure repre-
sent the demonstrations.

In order to conduct a more comprehensive comparison, we conducted controlled ex-
periments on the Lasa handwriting dataset by introducing noise and comparing the re-
sults with the original data. Both mean squared error (MSE) and generation time were

Figure 7. Performance and Learning Reproduction Capability. The green lines in the figure represent
the demonstrations.

Table 1. Comparison with other LfD methods in terms of MSE and generation time.

Method
MSE Time of

Generation (ms)Common Noise

DMP 25.26 53.00 130.38
GMR 27.06 26.75 218.10

ProMP 25.01 25.16 116.98
Proposed 24.71 25.78 23.12

In order to conduct a more comprehensive comparison, we conducted controlled
experiments on the Lasa handwriting dataset by introducing noise and comparing the
results with the original data. Both mean squared error (MSE) and generation time were
used as quantitative metrics for comparison. The final results are presented in the figures
and tables. Our proposed method demonstrated learning and generation capabilities
comparable to those of existing algorithms while taking relatively less generation time.
Moreover, the algorithm’s learning ability under noise is similar to that of probability-based
methods and significantly outperforms the DMP algorithm.

Probabilistic-based methods such as ProMP, GMR, and KMP are noted for their limited
generalization performance [22]. Hence, this section of the experiment primarily aims to
compare the performance of DMP with the proposed method. In contrast to Section 4.2.1,
the starting and ending points of the generalized trajectory in this section deviate signifi-
cantly from the demonstration area. To assess the similarity between the trajectories before
and after generalization, we introduced the distance correlation analysis (DCA) index [32].
A higher DCA index value indicates a greater similarity in shape. As illustrated in Figure 8
and Table 2, the proposed method exhibited generalization capability superior to DMP, all
while incurring a relatively low time cost. Furthermore, due to DMP’s reliance on dynamic

Appl. Sci. 2024, 14, 2902 12 of 15

systems modeling, the coupling between force terms and endpoint error makes it challeng-
ing to control system outputs as the trajectory approaches the endpoint. This often results
in significant deviations from the demonstrated trajectory, as depicted in Figure 8b–d, and
the average DCA value is relatively low, indicating an inability to maintain the shape
after changing the start and end points of the trajectory. In contrast, the proposed method
ensured consistent shape preservation, as evidenced by an average DCA value of 1.00.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 16

used as quantitative metrics for comparison. The final results are presented in the figures
and tables. Our proposed method demonstrated learning and generation capabilities com-
parable to those of existing algorithms while taking relatively less generation time. More-
over, the algorithm’s learning ability under noise is similar to that of probability-based
methods and significantly outperforms the DMP algorithm.

Probabilistic-based methods such as ProMP, GMR, and KMP are noted for their lim-
ited generalization performance [22]. Hence, this section of the experiment primarily aims
to compare the performance of DMP with the proposed method. In contrast to Section
4.2.1, the starting and ending points of the generalized trajectory in this section deviate
significantly from the demonstration area. To assess the similarity between the trajectories
before and after generalization, we introduced the distance correlation analysis (DCA) in-
dex [32]. A higher DCA index value indicates a greater similarity in shape. As illustrated
in Figure 8 and Table 2, the proposed method exhibited generalization capability superior
to DMP, all while incurring a relatively low time cost. Furthermore, due to DMP’s reliance
on dynamic systems modeling, the coupling between force terms and endpoint error
makes it challenging to control system outputs as the trajectory approaches the endpoint.
This often results in significant deviations from the demonstrated trajectory, as depicted
in Figure 8b–d, and the average DCA value is relatively low, indicating an inability to
maintain the shape after changing the start and end points of the trajectory. In contrast,
the proposed method ensured consistent shape preservation, as evidenced by an average
DCA value of 1.00.

Table 2. Comparison with DMP in terms of DCA and generation time.

Method DCA Time of Generalization (ms)
DMP 0.39 139.28

Proposed 1.00 24.48

(a) (b)

(c) (d)

Figure 8. Performance of generalization ability. Demonstrations (a–d) represent four instances
from the Lasa handwriting dataset. The DMP method fails to converge in tasks (b–d), whereas the
proposed method ensures convergence in all tasks.

Table 2. Comparison with DMP in terms of DCA and generation time.

Method DCA Time of Generalization (ms)

DMP 0.39 139.28
Proposed 1.00 24.48

4.2.2. Performance of UR5 Robotic Arm under Simulations

To further validate the reliability of the algorithm proposed in this paper, we employed
the previously outlined data collection method to gather trajectory data for the UR5 robot.
In the simulated environment, we utilized the UR5 simulation provided by the ROS
platform, employing position control mode for precise trajectory control and assessment.
This data served as the foundation for training our algorithm. Subsequently, the trajectories
generated by our algorithm were implemented within a UR5 simulation environment to
evaluate their efficacy. The outcomes of these experiments are presented in Table 3 and
Figure 9. Notably, Figure 9 illustrates three distinct handwriting tasks: ‘A’ in the first
row, ‘G’ in the second row, and ‘X’ in the third row. As demonstrated in Table 3, our

Appl. Sci. 2024, 14, 2902 13 of 15

method exhibited a higher DCA index score, indicating its ability to preserve the shape of
demonstrations when generalized to new starting and ending positions.

Table 3. Comparison with DMP in terms of DCA.

Handwriting Task
DCA

DMP Proposed

‘A’ 0.495 0.973
‘G’ 0.607 0.986
‘X’ 0.326 0.986

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 16

Figure 8. Performance of generalization ability. Demonstrations (a–d) represent four instances from
the Lasa handwriting dataset. The DMP method fails to converge in tasks (b–d), whereas the pro-
posed method ensures convergence in all tasks.

4.2.2. Performance of UR5 Robotic Arm under Simulations
To further validate the reliability of the algorithm proposed in this paper, we em-

ployed the previously outlined data collection method to gather trajectory data for the
UR5 robot. In the simulated environment, we utilized the UR5 simulation provided by the
ROS platform, employing position control mode for precise trajectory control and assess-
ment. This data served as the foundation for training our algorithm. Subsequently, the
trajectories generated by our algorithm were implemented within a UR5 simulation envi-
ronment to evaluate their efficacy. The outcomes of these experiments are presented in
Table 3 and Figure 9. Notably, Figure 9 illustrates three distinct handwriting tasks: ‘A’ in
the first row, ‘G’ in the second row, and ‘X’ in the third row. As demonstrated in Table 3,
our method exhibited a higher DCA index score, indicating its ability to preserve the
shape of demonstrations when generalized to new starting and ending positions.

Table 3. Comparison with DMP in terms of DCA.

Handwriting Task
DCA

DMP Proposed
‘A’ 0.495 0.973
‘G’ 0.607 0.986
‘X’ 0.326 0.986

Origin DMP Proposed

Origin DMP Proposed

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 16

Origin DMP Proposed

Figure 9. Performance of UR5 robotic arm under simulation.

5. Conclusions
In this paper, we introduce a novel algorithm for trajectory learning and reproduc-

tion utilizing GANs coupled with affine transformation. Our method aims to address the
challenges in LfD tasks. To facilitate practical implementation, we present a tailored data
acquisition and preprocessing method.

By leveraging the capabilities of GANs, our proposed algorithm adeptly learns from
demonstration trajectories and generates new trajectories that closely mimic the learned
skills. The integration of affine transformation further enhances the algorithm’s generali-
zation capabilities and ensures convergence, even in noisy environments. Our data pre-
processing method is meticulously designed to enhance the quality of the training data.
We employ the MAD filter for noise reduction, followed by the SVD method for dimen-
sionality reduction of the 3D data.

To comprehensively evaluate the performance of our algorithm, we conducted ex-
periments to assess its generation performance, generalization capability, and perfor-
mance under simulation. Our generation experiment demonstrates the effectiveness of
our method in learning the features of demonstrations, even in noisy environments, while
achieving a notable fivefold increase in generation speed. Additionally, our generalization
experiment confirms the algorithm’s ability to maintain trajectory shapes during general-
ization, with a relatively fast generalization speed. Furthermore, experimental results
strongly validate the efficacy of our algorithm in reproducing learned skills. Successful
simulations conducted on the UR5 robotic arm further demonstrate its ability to generate
accurate trajectories in practical scenarios.

Author Contributions: Conceptualization, Z.W. and K.A.; methodology, Z.W.; coding and realiza-
tion, Z.W.; validation, Z.W. and K.A.; formal analysis, K.A.; investigation, Z.W.; resources, Z.W.;
data curation, Z.W.; writing—original draft preparation, Z.W.; writing—review and editing, K.A.;
visualization, K.A., Y.S., X.X. and Q.S.; supervision, K.A., Y.S., X.X. and Q.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China (Grant No.
62073245).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Robla-Gomez, S.; Becerra, V.M.; Llata, J.R.; Gonzalez-Sarabia, E.; Torre-Ferrero, C.; Perez-Oria, J. Working Together: A Review

on Safe Human-Robot Collaboration in Industrial Environments. IEEE Access 2017, 5, 26754–26773.

Figure 9. Performance of UR5 robotic arm under simulation.

5. Conclusions

In this paper, we introduce a novel algorithm for trajectory learning and reproduction
utilizing GANs coupled with affine transformation. Our method aims to address the
challenges in LfD tasks. To facilitate practical implementation, we present a tailored data
acquisition and preprocessing method.

Appl. Sci. 2024, 14, 2902 14 of 15

By leveraging the capabilities of GANs, our proposed algorithm adeptly learns from
demonstration trajectories and generates new trajectories that closely mimic the learned
skills. The integration of affine transformation further enhances the algorithm’s gener-
alization capabilities and ensures convergence, even in noisy environments. Our data
preprocessing method is meticulously designed to enhance the quality of the training
data. We employ the MAD filter for noise reduction, followed by the SVD method for
dimensionality reduction of the 3D data.

To comprehensively evaluate the performance of our algorithm, we conducted exper-
iments to assess its generation performance, generalization capability, and performance
under simulation. Our generation experiment demonstrates the effectiveness of our method
in learning the features of demonstrations, even in noisy environments, while achieving a
notable fivefold increase in generation speed. Additionally, our generalization experiment
confirms the algorithm’s ability to maintain trajectory shapes during generalization, with a
relatively fast generalization speed. Furthermore, experimental results strongly validate the
efficacy of our algorithm in reproducing learned skills. Successful simulations conducted
on the UR5 robotic arm further demonstrate its ability to generate accurate trajectories in
practical scenarios.

Author Contributions: Conceptualization, Z.W. and K.A.; methodology, Z.W.; coding and realization,
Z.W.; validation, Z.W. and K.A.; formal analysis, K.A.; investigation, Z.W.; resources, Z.W.; data
curation, Z.W.; writing—original draft preparation, Z.W.; writing—review and editing, K.A.; visu-
alization, K.A., Y.S., X.X. and Q.S.; supervision, K.A., Y.S., X.X. and Q.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China (Grant
No. 62073245).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Robla-Gomez, S.; Becerra, V.M.; Llata, J.R.; Gonzalez-Sarabia, E.; Torre-Ferrero, C.; Perez-Oria, J. Working Together: A Review on

Safe Human-Robot Collaboration in Industrial Environments. IEEE Access 2017, 5, 26754–26773. [CrossRef]
2. Pedersen, M.R.; Nalpantidis, L.; Andersen, R.S.; Schou, C.; Bøgh, S.; Krüger, V.; Madsen, O. Robot Skills for Manufacturing: From

Concept to Industrial Deployment. Robot. Comput. Integr. Manuf. 2016, 37, 282–291. [CrossRef]
3. Gao, Z.; Wanyama, T.; Singh, I.; Gadhrri, A.; Schmidt, R. From Industry 4.0 to Robotics 4.0—A Conceptual Framework for

Collaborative and Intelligent Robotic Systems. Procedia Manuf. 2020, 46, 591–599. [CrossRef]
4. Cherubini, A.; Passama, R.; Crosnier, A.; Lasnier, A.; Fraisse, P. Collaborative Manufacturing with Physical Human-Robot

Interaction. Robot. Comput. Integr. Manuf. 2016, 40, 1–13. [CrossRef]
5. Mohammed, A.; Schmidt, B.; Wang, L. Active Collision Avoidance for Human–Robot Collaboration Driven by Vision Sensors. Int.

J. Comput. Integr. Manuf. 2017, 30, 970–980. [CrossRef]
6. Bauer, A.; Wollherr, D.; Buss, M. Human-Robot Collaboration: A Survey. Int. J. Humanoid Robot. 2008, 5, 47–66. [CrossRef]
7. Ravichandar, H.; Polydoros, A.S.; Chernova, S.; Billard, A. Recent Advances in Robot Learning from Demonstration. Annu. Rev.

Control Robot. Auton. Syst. 2020, 3, 297–330. [CrossRef]
8. Qu, J.; Zhang, F.; Wang, Y.; Fu, Y. Human-like Coordination Motion Learning for a Redundant Dual-Arm Robot. Robot. Comput.

Integr. Manuf. 2019, 57, 379–390. [CrossRef]
9. Ginesi, M.; Sansonetto, N.; Fiorini, P. Overcoming Some Drawbacks of Dynamic Movement Primitives. Robot. Auton. Syst. 2021,

144, 103844. [CrossRef]
10. Kong, L.H.; He, W.; Chen, W.S.; Zhang, H.; Wang, Y.N. Dynamic Movement Primitives Based Robot Skills Learning. Mach. Intell.

Res. 2023, 20, 396–407. [CrossRef]
11. Lin, H.I. Design of an Intelligent Robotic Precise Assembly System for Rapid Teaching and Admittance Control. Robot. Comput.

Integr. Manuf. 2020, 64, 101946. [CrossRef]
12. Sung, H.G. Gaussian Mixture Regression and Classification. Doctoral Thesis, Rice University, Houston, TX, USA, 2004.
13. Khansari-Zadeh, S.M.; Billard, A. Learning Stable Nonlinear Dynamical Systems with Gaussian Mixture Models. IEEE Trans.

Robot. 2011, 27, 943–957. [CrossRef]

https://doi.org/10.1109/ACCESS.2017.2773127
https://doi.org/10.1016/j.rcim.2015.04.002
https://doi.org/10.1016/j.promfg.2020.03.085
https://doi.org/10.1016/j.rcim.2015.12.007
https://doi.org/10.1080/0951192X.2016.1268269
https://doi.org/10.1142/S0219843608001303
https://doi.org/10.1146/annurev-control-100819-063206
https://doi.org/10.1016/j.rcim.2018.12.017
https://doi.org/10.1016/j.robot.2021.103844
https://doi.org/10.1007/s11633-022-1346-z
https://doi.org/10.1016/j.rcim.2020.101946
https://doi.org/10.1109/TRO.2011.2159412

Appl. Sci. 2024, 14, 2902 15 of 15

14. Huang, Y.; Rozo, L.; Silvério, J.; Caldwell, D.G. Kernelized Movement Primitives. Int. J. Robot. Res. 2019, 38, 833–852. [CrossRef]
15. Ziebart, B.D.; Maas, A.; Bagnell, J.A.; Dey, A.K. Maximum Entropy Inverse Reinforcement Learning. In Proceedings of the 23rd

AAAI Conference on Artificial Intelligence, AAAI 2008, Washington, DC, USA, 7–14 February 2008.
16. Peng, X.B.; Kanazawa, A.; Toyer, S.; Abbeel, P.; Levine, S. Variational Discriminator Bottleneck: Improving Imitation Learning,

Inverse RL, and GANs by Constraining Information Flow. In Proceedings of the 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019.

17. Fei, C.; Wang, B.; Zhuang, Y.; Zhang, Z.; Hao, J.; Zhang, H.; Ji, X.; Liu, W. Triple-GAIL: A Multi-Modal Imitation Learning
Framework with Generative Adversarial Nets. In Proceedings of the IJCAI International Joint Conference on Artificial Intelligence,
Yokohama, Japan, 11–17 July 2020; Volume 2021-January.

18. Zuo, G.; Chen, K.; Lu, J.; Huang, X. Deterministic Generative Adversarial Imitation Learning. Neurocomputing 2020, 388, 60–69.
[CrossRef]

19. Zhang, T.; Ji, H.; Sil, A. Joint Entity and Event Extraction with Generative Adversarial Imitation Learning. Data Intell. 2019, 1,
99–120. [CrossRef]

20. Jiang, H.; Yamanoi, Y.; Kuroda, Y.; Chen, P.; Togo, S.; Jiang, Y.; Yokoi, H. Conditional Generative Adversarial Network-Based
Finger Position Estimation for Controlling Multi-Degrees-of-Freedom Myoelectric Prosthetic Hands. In Proceedings of the 2022
IEEE International Conference on Cyborg and Bionic Systems, CBS 2022, Wuhan, China, 14–16 March 2023.

21. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. Improved Training of Wasserstein GANs. In Proceedings of
the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 2017-December.

22. Huang, Y.L.; Xu, D.; Tan, M. On Imitation Learning of Robot Movement Trajectories: A Survey. Zidonghua Xuebao/Acta Autom. Sin.
2022, 48, 315–334.

23. Le Guen, V.; Thome, N. Shape and Time Distortion Loss for Training Deep Time Series Forecasting Models. In Proceedings of the
Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Volume 32.

24. Shadmehr, R.; Wise, S.P. A Minimum-Jerk Trajectory. In Supplementary Documents for “Computational Neurobiology of Reaching and
Pointing”; The MIT Press: Cambridge, MA, USA, 2005; Volume 5.

25. Gomez-Gonzalez, S.; Neumann, G.; Scholkopf, B.; Peters, J. Adaptation and Robust Learning of Probabilistic Movement Primitives.
IEEE Trans. Robot. 2020, 36, 366–379. [CrossRef]

26. Li, G.; Jin, Z.; Volpp, M.; Otto, F.; Lioutikov, R.; Neumann, G. ProDMP: A Unified Perspective on Dynamic and Probabilistic
Movement Primitives. IEEE Robot. Autom. Lett. 2023, 8, 2325–2332. [CrossRef]

27. Xu, X.; You, M.; Zhou, H.; Qian, Z.; Xu, W.; He, B. GAN-Based Editable Movement Primitive from High-Variance Demonstrations.
IEEE Robot. Autom. Lett. 2023, 8, 4593–4600. [CrossRef]

28. Yin, X.; Chen, Q. Trajectory Generation with Spatio-Temporal Templates Learned from Demonstrations. IEEE Trans. Ind. Electron.
2017, 64, 3442–3451. [CrossRef]

29. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial
Networks. Commun. ACM 2020, 63, 139–144. [CrossRef]

30. Cuturi, M.; Blondel, M. Soft-DTW: A Differentiable Loss Function for Time-Series. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, Australia, 6–11 August 2017; Volume 2.

31. Ketkar, N.; Moolayil, J. Introduction to PyTorch. In Deep Learning with Python; CreateSpace Independent Publishing Platform:
North Charleston, SC, USA, 2021.

32. Cowley, B.R.; Semedo, J.D.; Zandvakili, A.; Smith, M.A.; Kohn, A.; Yu, B.M. Distance Covariance Analysis. In Proceedings of the
20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017, Lauderdale, FL, USA, 20–22 April 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1177/0278364919846363
https://doi.org/10.1016/j.neucom.2020.01.016
https://doi.org/10.1162/dint_a_00014
https://doi.org/10.1109/TRO.2019.2937010
https://doi.org/10.1109/LRA.2023.3248443
https://doi.org/10.1109/LRA.2023.3285473
https://doi.org/10.1109/TIE.2016.2613843
https://doi.org/10.1145/3422622

	Introduction
	Background
	Movement Primitives
	Generative Adversarial Networks

	Proposed Method
	Overview
	Preprocess Method
	Trajectory Mapping
	Bézier Curve Representation

	Trajectory Learning Based on GANs
	Generalization Based on Affine Transformation

	Experiment
	Experiment Setting
	Method Deployment
	Comparison with Other LfD Methods
	Performance of UR5 Robotic Arm under Simulations

	Conclusions
	References

