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Abstract: The investigation of the reliability of long-life equipment is typically hindered by the lack 
of experimental data, which makes accurate assessments challenging. To address this problem, a 
bootstrap method based on the improved RBF (radial basis function) neural network is proposed. 
This method utilizes the exponential function to modify the conventional empirical distribution 
function and fit right-tailed data. In addition, it employs the RBF radial basis neural network to 
obtain the distribution characteristics of the original samples and then constructs the neighborhood 
function to generate the input network. The expanded sample is used to estimate the scale and shape 
parameters of the Weibull distribution and obtain the estimated value of the MTBF (mean time be-
tween failures). The bias correction method is then used to obtain the interval estimate for the MTBF. 
Subsequently, a simulation experiment is conducted based on the failure data of a CNC (computer 
numerical control) machine tool to verify the effect of this method. The results show that the accu-
racy of the MTBF point estimation and interval estimation obtained using the proposed method is 
superior to those of the original and conventional bootstrap methods, which is of major significance 
to engineering applications. 
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1. Introduction 
Reliability refers to the ability of a product to fulfill a particular function within a 

predetermined period and under specified conditions. It is an important index that is used 
to determine the performance of a product. With the advancements in manufacturing 
technology, the reliability of computer numerical control (CNC) machine tools and other 
equipment is continuously improving, and failure data are scarce. Therefore, conven-
tional approaches based on large sample data have limited applicability in current relia-
bility research. The accurate estimation of the reliability index of a product using limited 
sample data remains a key challenge in reliability research. 

Currently, two main methods exist to address the problem of an insufficient sample 
size in reliability assessment. The first approach uses information fusion methods to fuse 
multiple sources of a priori information to increase the information available for assess-
ment, thereby achieving a higher parameter accuracy. The Bayes method is an example 
and has been widely used in recent years for parameter estimation with the Weibull dis-
tribution [1–3]. Although it yields accurate estimation results using fewer samples, it re-
quires a greater amount of a priori information and is affected by subjective factors. The 
second approach expands small data samples into large data samples. This method can 
also achieve accurate estimation results using fewer samples; however, the a priori infor-
mation requirements are higher, and the influence of subjective factors is non-negligible. 
The bootstrap method is a typical example of this approach, and it is favored by scholars 
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due to its simplicity and convenience. However, it completely relies on the original sam-
ples, and, if these samples are not sufficiently informative, the estimation results will have 
a large error. Therefore, several researchers have studied and improved the bootstrap 
method, which was originally proposed by Efron [4]. This body of work can be catego-
rized into advancements in methodological accuracy, application to limited datasets, and 
refinements for enhanced sample representation. 

Firstly, concerning methodological accuracy, Picheny et al. [5] leveraged the boot-
strap method for reliability estimation and analyzed the relationship between estimation 
accuracy and confidence level. They established that the bootstrap method attains a higher 
accuracy at the 95% confidence level. Building on the bootstrap’s foundational use, Amal-
nerkar et al. [6] integrated the bootstrap information criterion with bootstrap resampling 
to estimate reliability from limited subsample data, demonstrating the method’s effective-
ness even with small subsamples. 

Secondly, addressing the challenges of using the bootstrap method with limited data, 
Zhang et al. [7] proposed an improved bootstrap approach that ensures that expanded 
samples remain within the mean error of the original samples, thereby maintaining result 
reliability without altering the probability distribution. Similarly, Sun et al. [8] developed 
an enhanced Bayes bootstrap method that applies an interpolation method to construct a 
neighborhood function, facilitating the expansion of the original sample size. 

Lastly, on the front of sample representation refinement, Zhao et al. [9] tackled the 
issue of large deviations between the empirical distribution function of original samples 
and the actual distribution. They employed a B-spline function to derive an empirical dis-
tribution more suited for sampling, which proved to meet the accuracy requirements of 
engineering applications. Additionally, Tang et al. [10] introduced a bootstrap data expan-
sion technique using the radial basis neural network for assessing small-sample reliability 
data, validating that the sample distribution characteristics closely mirror the actual dis-
tribution. 

The Weibull distribution has been demonstrated to effectively model lifetime distri-
butions in several practical engineering problems based on failure data for mechanical 
components, electronic components, and biological tissues. It can also describe different 
types of failure rate distributions, ranging from exponential to Rayleigh distributions. Due 
to the well-characterized nature of the Weibull distribution, it is widely used and among 
the most successful life models [11]. There is an extensive literature on the applications 
and analytical methods of Weibull models, such as the recent studies by Thanh Thach et 
al. [12], Piña Monarrez et al. [13], and Almarashi et al. [14]. 

This paper proposes an improved bootstrap method using the radial basis neural 
network based on the research by Tang et al. [10]. Particularly, the exponential function is 
used to modify the empirical distribution function, and a neighborhood function is intro-
duced to widen the range of values of the expansion samples. Moreover, the confidence 
interval of the parameters of the Weibull life distribution is estimated using the bias cor-
rection method. Finally, the proposed method is validated using failure data obtained 
from CNC machine tools. 

2. Weibull Distribution 
The Weibull distribution is extensively used in the field of reliability engineering. It 

applies to several types of atypical electronic products [15] and can adequately describe 
the different cases of bathtub curves. Moreover, it can simplify the calculation steps using 
a transformed functional form. 

Several studies on the Weibull distribution have shown that, if a localized failure re-
sults in the malfunctioning of the entire system, the life of such a system generally obeys 
the Weibull distribution. 

The probability density function (PDF) of the two-parameter Weibull distribution is 
the following: 
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, (1) 

where  is the shape parameter,  is the scale parameter, and  is the time. 
The cumulative distribution function is as follows: 

. (2) 

The reliability function is the following: 

. (3) 

The lapse rate function is as follows: 

. (4) 

The shape parameter  has a strong influence on the Weibull distribution. 
Specifically, when , the density function  and the failure rate function 
 are both decreasing functions, suggesting early failure. 
When , the Weibull distribution is exponential. 
Finally, when , the density function curve has a single peak, and, when 

, the density function curve has a single symmetrical peak, resembling a normal distribu-
tion. The failure rate  is an increasing function, which suggests wear failure of the 
product. The density functional curves for different shape parameters (  fixed) are 
shown in Figure 1. 

 
Figure 1. Weibull distribution probability density function (PDF). 
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3. Bootstrap Methodology and Its Improvement 
3.1. Bootstrap Approach 

Let  be a set of random variables with a joint distribution . To 
estimate the overall parameter , it is generally possible to obtain a sample-based esti-
mate . The basic concept underlying the bootstrap method is that, given , one can con-
struct an estimate   of   and then regenerate a set of random variables

 from the distribution . If  is the best estimate of , then the 
relationship between  and  is adequately represented by the relationship between 

  and  , where   is called the empirical distribution function of the bootstrap 
method. This step can be repeated several times to obtain multiple estimates from the 
reconstructed data according to an estimation equation, as that for  . The metrics for 
measuring the accuracy of the estimator can then be obtained (e.g., using the Bayes 
method). The principle of the bootstrap method is illustrated in Figure 2. and the proce-
dure is as follows. 

original samples
Empirical 

Distribution 
Function

expanded samples Sample 
Parameter

Sampling 
Distribution

Bootstrap method
 

Figure 2. Schematic of the bootstrap method. 

The order statistics of the samples can be obtained by arranging the original samples 
𝑋𝑋 = [𝑥𝑥1�,�𝑥𝑥2 �, . . . , �𝑥𝑥𝑛𝑛]  in descending order, i.e.,  , where   and 

. 

When the parameters of the estimated distribution  are unknown and if the value 

of the cumulative distribution function at  is , then the empirical distribution 

function of the original sample assuming equal probability sampling is 

. (5) 
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The simulation-based method for generating random samples that obey the empiri-
cal distribution function  is as follows: 
1. Uniformly distributed pseudo-random numbers  in the interval [0, 1] are generated; 
2. Let , where  is rounded down; 
3. Let , where  is the desired random sample. 

A review of existing studies and experimental simulations revealed that the 
resampling of the data in the bootstrap method relies on the original samples. Therefore, 
the random samples generated are typically not representative of the whole population, 
and the estimates obtained may be biased. Moreover, the bootstrap method may not be 
robust enough in terms of the margins (i.e., extremes) of the data distribution, because the 
extremes may be over-represented or under-represented in the generated random sam-
ples generated. The bootstrap method is, therefore, not reasonable when processing small 
subsamples of data. There are two main reasons for this. First, when  is used to 
generate random samples, the sample values are extracted from the original sample with 
a medium probability to form an expanded sample. The resulting sample’s empirical 
function , which is used to fit the head and the tail samples, is inadequate. Conse-
quently, the samples generated according to  are not satisfactorily random. Sec-
ond, because the generated random samples are limited by the minimum and maximum 
values  [16] and the values of random samples can only be extracted from the 
head and tail samples using limited subsample data, the bootstrap method is ineffective. 

Moreover, as the values of the random samples can only be obtained from the range 
of the original samples, the samples are not adequately random [17,18]. Therefore, this 
paper aims to address these two problems. For the first problem, the exponential distri-
bution function is used to perform the correction of the sample’s empirical function, as 
the life of electronic products essentially obeys an exponential distribution [19]. For the 
second problem, based on the corrected empirical distribution function, the radial basis 
function (RBF) neural network is used to fit the original empirical distribution and obtain 
the continuous distribution characteristics of the original sample. The input set of the RBF 
neural network is then obtained using the neighborhood sampling method to ensure that 
the expanded sample is not limited by the original data. Thus, the expanded sample re-
sembles the actual distribution of the original sample. 

3.2. Modified Exponential Sample Empirical Function 
For long-life devices such as electronic products, the failure rate rarely increases due 

to fatigue or wear and tear. Therefore, the tail of the cumulative distribution function of 
failure can be approximated by the exponential function, with a mean equal to the sample 
mean [19–21]. In this study, the exponential distribution function is utilized to fit the sam-
ples and correct the empirical distribution function . The exponential distribution 
function generally has a good fitting property, which can better estimate the unobserved 
data points and reduce the influence of random errors on the results. The steps involved 
are as follows. 
1. A linear empirical distribution function is introduced for each segment before  

samples, where  is the total number of samples, and  is the number of tail samples. 
2. The samples after  are fitted using an exponential distribution with the same 

mean as the original sample. Considering integer values below five for  results in a 
smaller variance in the right tail fit [22]. The modified empirical distribution function 
for the samples is 
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, (6) 

where .The simulation-based method for generat-

ing random samples that obey the modified empirical distribution function  in-
volves the following steps: 
1. Uniformly distributed pseudo-random numbers  in the interval [0, 1] are generated; 

2. If , then  is the desired random number; oth-

erwise, go to step (3); 
3. Let , and ; then, 

 (7) 

is the desired random number. 

3.3. Simulation Verification 
Let the original sample dataset  be generated using the exponen-

tial distribution with a mean of 100, with a sample capacity of . The sample dataset 
is summarized in Table 1, and its distribution is shown in Figure 3. Sampling is performed 

 times, and  is expanded into , with a sample capacity of 1000 × 30. The 
classical bootstrap method is used to obtain the expanded sample , and the improved 
bootstrap method is used to obtain the expanded sample  . Their distributions are 
shown in Figure 4. The distribution characteristics of  are analyzed, and the results 
are as follows. 

Table 1. Generated sample dataset. 

Exponential Distribution Sample Dataset ,  

51.67 64.43 85.08 102.42 151.11 
52.27 68.97 88.70 113.02 152.14 
56.96 74.02 88.88 115.54 159.35 
57.38 74.20 91.13 120.89 160.67 
61.56 76.24 94.91 131.71 164.48 
63.95 77.65 100.55 147.34 166.26 
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Figure 3. Distribution of original sample values. 

  
(a) (b) 

Figure 4. Distribution of sample values for expansion. (a) Conventional bootstrap; (b) improved 
bootstrap. 

The original samples obey the exponential distribution, and expanded samples are ob-
tained using the bootstrap method by correcting the empirical distribution function . 
Evidently, compared to the conventional bootstrap method, the tails resulting from the cor-
rection of the exponential function have an overall distribution that is more in line with the 
characteristics of the original distribution. The range of the augmented samples generated 
using the modified bootstrap method increases, which improves the randomness of the aug-
mented samples (Figure 4). 

The distribution of the expanded samples in Figure 4, the parameter distribution of 
the expanded samples in Figure 5, and the estimation of the parameter 𝜆𝜆 in Table 2 show 
that the improved bootstrap method overestimates the sample parameter 𝜆𝜆. There is an 
insignificant difference in terms of the accuracy when compared with the conventional 
method. However, the confidence interval generated by the improved method is mark-
edly narrower compared to that produced by the conventional method, thereby demon-
strating a significant superiority in the estimation of confidence intervals. Therefore, this 
study uses the improved bootstrap method in conjunction with the RBF neural network 
for sample expansion. 
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(a) (b) 

Figure 5. Parameter distribution of expanded samples. (a) Conventional bootstrap; (b) improved 
bootstrap. 

Table 2. Parameter (𝜆𝜆) estimation table. 

 
Parameter Point Estimate Estimation of Confidence Intervals 

Expected Value Estimated Value Error Estimated Value 
Interval 
Length 

Conventional bootstrap 
100.4493 

99.7526 0.6967 [99.1357, 100.6059] 1.4702 
Improved bootstrap 101.1103 0.6610 [100.8831, 101.3135] 0.4304 

4. Improved Bootstrap Data Expansion Methodology Based on RBF Neural Network 
and Reliability Assessment 
4.1. RBF Neural Network 

The RBF neural network is a three-layer feed-forward neural network in which the 
links from the input layer to the hidden layer are typically fixed and not trained. However, 
the links from the hidden layer to the output layer are trained. This is a simpler training 
process than that of standard neural network models [23]. 

The structure of the RBF neural network is shown in Figure 6. 
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Figure 6. Schematic of the RBF neural network. 

In the RBF network structure, the input vector of the network is . 
The radial basis vector of the RBF network is , and the basis width 
vector of the hidden nodes of the network is . Then, the Gaussian 
basis function  is 

, (8) 

where  is the center vector of the th hidden node of the network and is determined us-
ing the k-means training algorithm [24], and  is the base width parameter of node . 

The output of the RBF neural network  is 

, (9) 

where  is the weight vector of the network and is determined via 
least squares approximation learning. 

4.2. Improved Bootstrap Data Expansion Method Based on RBF Neural Network 
The methodology of the bootstrap data expansion method based on the RBF neural 

network is depicted in Figure 7. 
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Figure 7. Flowchart of the RBF + bootstrap approach. 

First, the empirical distribution function expressed in Equation (5) is used to obtain 
the original sample dataset 𝑋𝑋 = [𝑥𝑥1�,�𝑥𝑥2�, . . . ,�𝑥𝑥𝑛𝑛]. The RBF neural network is trained based 
on the original sample dataset  and the set of empirical distribution values . Notably, 
the effectiveness of this method has been demonstrated in [10]. Setting , the modi-
fied empirical distribution function in Equation (6) is then used to generate a set of empir-
ical distributions based on the original sample dataset . As 
the RBF neural network produces more reliable outputs for inputs which are close to the 
training samples [25], a neighborhood function  is introduced based on the input set. 
The expanded sample dataset  is then obtained using the input set  based on 
. The specific implementation steps are as follows. 
1. The original samples 𝑋𝑋 = [𝑥𝑥1�,�𝑥𝑥2 �, . . . ,�𝑥𝑥𝑛𝑛] are sorted in descending order to obtain the 

order statistic of the sample  , where  , ...,

. Substituting  into Equation (5) yields the set of empirical distribu-

tion values of , . 
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2. RBF neural network training: The RBF neural network is trained by considering 
  as the input and   as the output of the network  . The 

Gaussian radial basis function is used in the network, as shown in Equation (8). 
3. The neighborhood function   of the set of   empirical distributions   is intro-

duced. The input set  of the RBF neural network is then obtained, and  is substi-
tuted into Equation (6) to obtain the set of -corrected empirical distribution values

. Let , and the neighborhood function  
be 

, (10) 

where  is the neighborhood parameter ( ). The input set  of the RBF 
neural network is generated sequentially from the uniform distribution of each neighbor-
hood , where . 

4. The input set  is fed into the RBF neural network to obtain the expanded sample 
. The elements of  are input into the RBF neural network sequentially. When 

the input is , the output is 

. (11) 

The set  consisting of the RBF neural network outputs  is the augmented sam-
ple of . 

5. Steps (3) and (4) are repeated   times to obtain the expanded sample 
 of . 

4.3. Assessment of Reliability Indicators 
After obtaining the expanded sample  based on the maximum likelihood es-

timation of the two parameters of the Weibull distribution, the likelihood function  
for the shape parameter  and the scale parameter  is calculated according to the PDF 
in Equation (1), as follows: 

, (12) 

where  and are the shape parameter estimate and scale parameter estimate for the 
first  entries of the expanded sample, respectively. 

Applying the logarithmic function to Equation (12) yields the log-likelihood function. 

 
(13) 

The partial derivatives of the parameters  and  in Equation (13) are equal to 
0. This results in two systems of equations, as follows. 
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 (14) 

Solving this system of equations yields  and . Then, the mean time between 
failures (MTBF) is 

. (15) 

Substituting Equation (1) into Equation (15) yields 

. (16) 

Using variable substitution and the properties of the Gamma function, this integral 
can be simplified. The Gamma function is defined as follows: 

. (17) 

Ultimately, the MTBF is 

. (18) 

To ensure the accuracy of interval estimation, the method of bias correction is em-
ployed to estimate the confidence intervals. The center point of the confidence interval is 
modified by calculating the deviation between the original and expanded samples. 

The normal quantile corresponding to the position of the original sample in the cu-
mulative distribution function of the expanded sample distribution, , is calculated as 

, (19) 

where   denotes the inverse function of the cumulative distribution function of the 
standard normal distribution, i.e., 

; (20) 

I denotes the indicator function; N denotes the number of expanded samples;

  denotes the parameter estimates of the original sample; and

 denotes the parameter estimates of the th expansion sample. 
The values of the parameter distributions of the expanded samples may not only be 

biased but also asymmetric, meaning that the width of the confidence intervals may need 
to be skewed. The acceleration value  is used to modify the shape of the confidence 
interval and ensure that it adequately covers the true parameter values. In this study, the 
jackknife resampling method [26] is used to estimate the value of , as follows: 
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, (21) 

where  is the sample size of the original sample,  is the parameter estimate of the 
jackknife sample after excluding the th observation, and  is the average of the param-
eter estimates of all the jackknife samples, i.e., 

. (22) 

Using the bias correction  and the acceleration value , the upper and lower cor-
rected quartiles of the confidence interval  and  are calculated as 

,  
(23) 

where  is the level of significance and is assumed to be 0.05. 
Then, the confidence interval is 

. (24) 

5. Example Analysis 
Retrieve the maintenance records for seven CNC machines (designated as K1, K2, ..., 

K7) operating under similar conditions within a single factory, spanning three years, to 
acquire 61 instances of failure data for this specific model (Table 3). 

Table 3. Equipment failure data. 

Number Time between Failures (h) 
K1 63.5 215.5 302 639.5 945.5 1264.25 

 2332.5 2591.5 2894    
K2 178 318.08 374.5 645.5 1240.42 1246.58 

 1337 1419.5 2154    
K3 215.3 230.17 837.33 838.67 1017.27 1486 

 2491.17 2842.33     
K4 537.25 862.38 953.67 1027.67 1045.5 1274 

 1584 2449.25 3062.08    
K5 194 271.5 399 913 1040 1873.5 

 2304.5 3062.5     
K6 141.5 239.5 241.83 397.67 454.5 1382.5 

 2027.5 2312 2591.83    
K7 153.5 184 186 409 639 655.5 

 686 1037 1375    

Point and interval estimation of the shape and scale parameters are performed using 
the maximum likelihood estimation method, bootstrap method, RBF + bootstrap method, 
and modified RBF + bootstrap method. 
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1. Using the maximum likelihood estimation to estimate the parameters of the Weibull 
distribution for the original data yields  and , and the relia-
bility function is as follows: 

. (25) 

Then, MTBF is 

. (26) 

2. The conventional bootstrap method is used to expand the original data, and sampling 
is performed 1000 times, resulting in the expanded samples 
, . The overall distribution of  is shown in Figure 8a. 

Solving Equation (14) yields , and the average estimate is 
the following: 

 (27) 

The parameter distribution obtained by solving Equation (18) for  is shown 
in Figure 8b. 

  
(a) (b) 

Figure 8. Results of the conventional bootstrap approach. (a) Overall distribution; (b) parametric 
distribution. 

A mean value of  is obtained, and the 95% confidence interval 
of  is (1099.51, 1130.47), using the bias correction method. 

3. The original data are expanded using the conventional bootstrap method and the 
improved bootstrap combined with the RBF neural network method. The “newrb” 
function in MATLAB (v2018b, MathWorks, Inc., USA) is used to construct the RBF 
radial basis neural network. The network performance targets, expansion constants, 
and number of neurons, respectively, are set as 
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. The calculation process is shown in Figure 7, 
and the results converge to yield the expanded samples of  , 

 , and  . The average estimates of the 
Weibull parameters obtained using the conventional bootstrap method + RBF neural 
network are  , with  . The 
95% confidence interval of   is (1114.37, 1121.86), using the bias correction 
method. The average estimates of the Weibull parameters obtained using the improved 
bootstrap method + RBF neural network are , with 

. The 95% confidence interval of the  obtained using 
the bias correction method is (1080.13, 1089.15). The overall distribution of  
is shown in Figure 9a, and the parameter distribution of  is shown in Figure 9b. 
The overall distribution of  is shown in Figure 10a, and the parameter distribu-
tion of  is shown in Figure 10b. 

  
(a) (b) 

Figure 9. Results of the RBF + conventional bootstrap method. (a) Overall distribution; (b) paramet-
ric distribution. 

  
(a) (b) 

Figure 10. Results of the RBF + improved bootstrap method. (a) Overall distribution; (b) parametric 
distribution. 
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The cumulative distribution function (CDF) and probability density function (PDF) 
are obtained using Equations (1) and (2), as shown in Figure 11. 

 
Figure 11. Plots of the cumulative distribution function (CDF) and probability density function 
(PDF). 

As illustrated in Figure 11, the probability density function (PDF) of the Weibull life 
distribution, obtained using the RBF plus the enhanced Bootstrap method, exhibits a peak 
value that is comparatively higher than those obtained through other methods. This ob-
servation can be interpreted as follows: 
1. A higher peak value indicates that the life data are more concentrated around a spe-

cific time period. This suggests that the majority of components or systems are likely 
to fail around this point in time, demonstrating a lower variability in life spans. In 
other words, the lifespans of most components are expected to be relatively similar, 
leading to reduced uncertainty in life expectancy predictions. 

2. Additionally, a higher peak value implies more accurate reliability predictions at this 
specific time point. Since failure events are more likely to occur near the peak, this 
facilitates more precise planning for maintenance, replacement cycles, and inventory 
management. 
A comparison of the MTBF estimates obtained from the aforementioned methods 

with the manufacturer-rated MTBF = 1000 h and the corresponding errors are presented 
in Table 4. 
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Table 4. Comparison of reliability assessment results based on MTBF obtained using the different 
methods. 

 
Point Estimates 

(h) 
Rated Value 

(h) 
Absolute 
Error (h) 

Relative 
Error (%) 

Confidence Interval 
Interval 
Length 

Maximum likelihood method 1118.20 

1000 

118.20 11.82 \ \ 
Bootstrap 1114.97 114.97 11.50 (1099.51, 1130.47) 30.96 

RBF + conventional bootstrap 1118.32 118.32 11.83 (1114.37, 1121.86) 7.49 
RBF +improved bootstrap 1083.41 83.41 8.34 (1080.13, 1089.15) 9.02 

As shown in Table 4, the estimated value of the MTBF obtained using the maximum 
likelihood estimation method is 1118.20 h, compared with the nominal value of 1000 h, 
resulting in a relative error of 11.82%. The relative error of the RBF + conventional boot-
strap method is 11.83%, which is almost equal to that of the maximum likelihood estima-
tion method, indicating that the expanded samples obtained using the RBF + conventional 
bootstrap method are overfitted and not sufficiently random for the bootstrap method. 
The analysis results presented in Figures 9a and 10a reveal that correcting the tail of the 
empirical distribution function using an exponential distribution attenuates the propor-
tion of large values and makes the distribution more dispersed, which is consistent with 
the actual life distribution of the equipment. In addition, the relative error for MTBF is 
reduced to 8.34% from 11.50%, indicating that the proposed data expansion method im-
proves the conventional bootstrap method. 

In this study, the confidence interval estimates for the different methods are obtained 
by combining bias correction methods. As shown in Table 4, the bootstrap method com-
bined with the RBF neural network significantly reduces the length of the confidence in-
tervals and improves the accuracy of the estimates. This demonstrates the effectiveness of 
combining RBF neural networks with the bootstrap method. 

6. Conclusions 
The estimation of equipment MTBF is crucial for reliability assessment and analysis. 

However, when the number of samples is limited, relying on traditional parameter esti-
mation methods simulations is inadequate. Moreover, conventional parameter estimation 
methods such as maximum likelihood estimation typically fail to estimate the confidence 
intervals of the parameters. 

This paper proposes the use of the bootstrap method for data expansion and reliabil-
ity assessment. An exponential distribution is utilized to fit right-tailed data and modify 
the empirical distribution function. The simulation results indicate that the range of the 
expanded samples generated via the modified bootstrap method increases. The random-
ness of the expanded samples also increases, and the accuracy of interval estimation im-
proves. In addition, a novel data expansion method is proposed by combining the modi-
fied bootstrap method with the RBF neural network. The bias correction method is then 
used to estimate confidence intervals for the expanded data and improve the estimation 
accuracy. Through our analysis of the results, this paper proposes that the method of tail 
data correction using an exponential function effectively enhances the original failure data 
by moderately incorporating additional information on the product’s reliability charac-
teristics, based on its failure properties. This approach optimizes the raw data. Further-
more, employing the radial basis function (RBF) neural network essentially achieves a 
better fit of the failure data, thereby improving the accuracy of parameter estimation. 

Finally, the proposed method is employed for the reliability assessment of a CNC 
machine tool. The shape and scale parameters of the corresponding Weibull distribution 
are estimated to determine the MTBF of the equipment. Simulation experiments show that 
the proposed method offers a greater improvement in the accuracy of point estimation 
and interval estimation than the original bootstrap and conventional parameter estimation 
methods. Therefore, this method has excellent applicability in engineering practice. 
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Despite our research’s contributions, our work is not without limitations. The collection 
of CNC failure data presents significant challenges, notably due to the scarcity of available 
data. We compiled data from seven machines operating under ostensibly similar condi-
tions, operating on the assumption that these conditions were identical. However, in real-
ity, variances in operating conditions do exist. Addressing how to effectively integrate 
data across varying conditions represents a key area for our future investigations. 
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