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Abstract: In order to solve the problem of an uneven load distribution in a double-input and double-

output gearbox, based on the small-displacement Jacobi spin theory and considering the manufac-

turing and assembly errors of the gearbox, a Jacobi spin analysis model of the gearbox was estab-

lished. In order to improve the accuracy of the three-dimensional tolerance analysis of the gearbox, 

on the basis of the processing method of parallel chain of gears and shafts and box and shafts, the 

serialization method of parallel chain of meshing gear pairs is proposed, and the gearbox was es-

tablished. For the three-dimensional tolerance analysis model, three-dimensional tolerance analysis 

was carried out on the side-clearance dimensions of double-input and double-output gearboxes, 

and the side clearance values under the extreme value method and Monte Carlo method were de-

duced and combined with the theoretical side clearance to obtain the range of the side clearance of 

the gearboxes. Elastic deflection analysis was carried out on the gearbox shaft system, and the com-

pensation relationship between the elastic deflection and the side clearance was investigated, so as 

to calculate the range of the value of the gearbox uniform load coefficient from 1 to 1.259. The error 

between the theoretically calculated uniform load coefficient and the experimentally tested uniform 

load coefficient was 6.61%, which verifies the reasonableness of the load distribution method of 

double-input and double-output gearboxes calculated using three-dimensional tolerance analysis 

combined with the elastic deflection angle, and provides a theoretical basis for the optimal design 

of the uniform load of multi-branch input gearboxes. 

Keywords: Jacobian-torsor; Monte Carlo; local parallel chains; three-dimensional tolerances; equal 

loading 

 

1. Introduction 

A counter-rotating output transmission system which adopts a power shunt when 

transmitting power can meet the requirements of high-speed and heavy-duty working 

conditions with a small volume and mass, and this system is widely used in helicopters, 

torpedoes, underwater unmanned boats, and aviation. For redundancy and safety, mul-

tiple inputs and multiple-branch shunt-convergence drives are generally used. However, 

due to the inevitable manufacturing and installation errors of the gear system, as well as 

the influence of factors such as the deformation of the moving components, the gap size 

between each branch and the output gear is inconsistent, resulting in an uneven distribu-

tion of the load transmitted by each branch, which seriously affects the power density and 

reliability of the transmission system. The size of the torsional stiffness of each branch is 

also an important factor affecting the load distribution. Therefore, it is important to study 

the matching relationship between the clearance and the torsional stiffness of each branch 

gear and optimize the corresponding parameters to reduce the unevenness of the load 

distribution of each branch and improve the reliability of the transmission system. 
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To determine how to allocate the side clearance of the gearbox with the stiffness of 

each branch to obtain a reasonable load distribution coefficient, scholars around the world 

have performed a large amount of research in this area. 

(1) Calculation of load distribution based on hydrostatic gear split-torsion transmission 

Krantz et al. [1,2] conducted a theoretical analysis and experimental study on the load 

distribution of a gear split-torsion transmission system under a static load using a syn-

chronous angular load equalization design method without any load equalization device. 

Gmirya and Leigh [3,4] conducted a hydrostatic study on the equal load problem of multi-

branch power-shunt reducers and derived equal load coefficients satisfying the prevailing 

manufacturing and installation conditions. Hao et al. [5,6] investigated the static mean 

load characteristics of gear shunt drive wheel systems with different structures based on 

deformation coordination conditions using the concentrated parameter theory. Li and Jin 

[7–9] investigated the effects of the error, torsional stiffness, and standoff stiffness on the 

static load matching performance of multi-branch gearing systems. 

(2) Optimization of the load-equalization performance of a gear split-torsion transmis-

sion system based on a flexible shaft device 

Isabelle et al. [10] proposed the use of elastic devices, such as elastic torsion shafts 

and rectangular elastic pads, to optimize the load distribution in gear shunt transmission 

systems. White [11] proposed the design method of nesting a flexible shaft inside a duplex 

shaft, which resulted in a better load equalization performance of the system. Gmirya et 

al. [12,13] used a flexible shaft device in a multi-branch gear shunt transmission system 

and conducted a static and dynamic experimental study on the load equalization perfor-

mance of the multi-branch transmission system. Gui et al. [14] studied the equal load char-

acteristics of the elastic torsion shaft system for a dual-input gear split transmission sys-

tem and proposed a calculation method for the torsional stiffness of the elastic torsion 

shaft and the transmission error of the system. Hu [15] studied the equal load character-

istics of a dual-branch gear transmission system and proposed optimization measures for 

the flexibility of the wheel spokes and the support shaft. 

(3) Analysis of gearbox backlash based on three-dimensional tolerance 

The three-dimensional tolerance analysis model of Jacobian-torsor takes the backlash 

at the output end of the gearbox as the demand dimension and the other errors affecting 

the backlash as the constituent ring dimensions, which are calculated with the matrix 

method to avoid the complex derivation of geometric relationships. Desrochers et al. [16] 

proposed a three-dimensional tolerance analysis model based on small displacement tor-

sor (SDT) theory and a Jacobian matrix for characterizing the dimensional and form toler-

ances in geometries. In Amda et al. [17], three-dimensional tolerance analysis methods in 

product design were studied. In Liu [18], a dummy functional unit approach was pro-

posed to simplify parallel chains by integrating tolerance information into the torque pa-

rameter of a specified dummy functional unit. Laperrière et al. [19] developed a Jacobian-

torsor volume tolerance analysis model based on the interval algorithm, which could per-

form tolerance analysis based on the extreme value method and statistical methods. Zuo 

[20] developed an error propagation model based on the Jacobian-torsor theory. Weihua 

et al. [21–23] proposed a contact analysis method for the rapid determination of the gear-

drive clearance based on the Jacobian-torsor model and the Monte Carlo simulation tech-

nique. 

The existence of local parallel chains in the process of gear backlash analysis affects 

the accuracy of backlash analysis. Zeng et al. [24] compared the analytical results of spiral 

bevel gearboxes with and without partial parallel chains and proved that the effect of par-

tial parallelism on the resolution accuracy was not negligible. The authors of [25–29] stud-

ied linear construction and parallel construction methods and proposed a probabilistic 

approach using a connected assembly model without considering partial parallel effects. 

Jin et al. [30] studied a method to solve the partial parallel chain problem caused by 
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deterministic deviations and established a generalized deviation propagation formulation 

for n-level component assembly. Chen et al. [31–33] proposed the spin measure model to 

transform parallel chains into serial chain tolerances with complex algebraic operations. 

Zeng [34] proposed the use of the geometric structure leverage effect and combined the 

advantages of the CLIC (an acronym for “localization tolerancing with contact influence”) 

method and the analytical line method to generate new serial chain tolerances. 

The current methods for calculating the load distribution based on static and elastic 

shaft structures do not take into account the effect of tolerance zones on the gear backlash 

distribution or three-dimensional tolerance analysis for parallel shafts, and there has been 

less research on multi-branch split-torsion transmission. The dual-input counter-rotating 

drive system has a complex structure and many factors affect the load distribution. In this 

research, we consider the effects of the backlash and elastic shaft torsional stiffness on the 

equal load performance at the output of two branches of the dual-input-to-rotation trans-

mission system, and we establish a three-dimensional tolerance Monte Carlo analysis 

model of gear backlash based on the small displacement torsor theory and Jacobian ma-

trix. The method of local parallel chain theory of gearbox meshing tooth pairs is proposed, 

and the calculation method of an elastic deflection angle and an equal load coefficient of 

the gearbox is combined with the theory of the elastic torsional deformation of the shaft 

system. The side clearance and the range of the equal load coefficient are calculated for 

the dual-input counter-rotating gearbox, and they are then verified through tests and pro-

posed measures to optimize the equal load performance of the system. 

2. Calculation Method of Gear Backlash Based on Jacobian–Torsor Theory 

2.1. Analytical Model of Jacobian–Torsor Based on SDT Theory 

The basic concept of SDT theory is to consider the geometric defects of features as a 

result of the motion of a three-dimensional Euclidean space point set and to represent the 

spatial motion of points with tiny vectors. As a tolerance expression model, SDT theory 

characterizes the actual variation of the key geometric features of a part with respect to 

the ideal posture using three translational components and three rotational components, 

and the theory can also characterize the variation in the gap between the key geometric 

features of a part in an assembly. The tolerance expression is as follows: 

   ,    T u v w   =  (1) 

where  ,and u v w,  are the ideal geometric features of the translation along the X, Y, and Z 

coordinate axes, respectively; and ,  and     are the rotation of the ideal geometric fea-

tures along the X, Y, and Z coordinate axes, respectively. 

A detailed list of SDT models with various characteristics is given in the literature 

[34]. 

The Jacobian model can accurately transfer the robot’s joint variations to the end, and 

the 3D deviation of the actual features in the assembly from the ideal position can be per-

fectly transferred to the functional requirements (FRs) of the assembly with the help of the 

Jacobian model. With the help of SDT to represent each characteristic deviation, the Jaco-

bian matrix is introduced into the tolerance transfer model to establish the Jacobian-torsor 

model for three-dimensional tolerance analysis, whose expression is shown in Equation 

(2). Each functional element of the part layer in the Jacobian-torsor model has a corre-

sponding coordinate system: 0 is the closed-loop element, i denotes the i-th functional 

element in the tolerance transfer chain, (i = 1, 2, …, n), and n is the last functional element. 
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where  iJ  is the Jacobian matrix of tolerances,  FR  is the small displacement torsor of 

the functional requirements elements, and  iFE  is the amount of small displacement tor-

sor associated with the i-th functional element. 

According to SDT theory, the tolerance band can be expressed in a matrix form as 

follows: 

   

   

   

u

T P R v

w







 
 

=  =
 
    

(3) 

When the constituent tolerance zone is skewed with respect to the direction of toler-

ance analysis, it is necessary to project this tolerance zone in the direction of tolerance 

analysis, whose axis direction must coincide with or be parallel to the reference coordinate 

axis. To obtain a projection of the tolerance band, the change in the tilt of the tolerance 

band with respect to the basic reference system must be applied to the translational and 

rotational torsor of the tolerance band. P
→

 denotes the translational small displacement 

torsor, and R
→

 denotes the rotational small displacement torsor. The expressions for the 

projected torsor of the tolerance band are as follows: 

 

 

1

1 2 3

1

1 2 3

= =   

= =   

PTi

PTi

P R P C C C P

R R R C C C R

→ → → →
−

→ → → →
−

  
     


        

(4) 

where  PTiR  denotes the inconsistency coefficient of the tolerance analysis direction with 

respect to the i-coordinate system, with the columns 1 2 3  C C C
→ → →

 designating the unit vec-

tors along axes Xi, Yi, and Zi, respectively, for the tolerance zone tilted according to the 

direction to be analyzed in reference mark i. The final expression of the small displacement 

torsor associated with the i-th functional element is as follows: 

  1=i PTi iFE R T−

 (5) 

The Jacobian matrix  iJ  represents the transformation relationship between the re-

quirement elements of the assembly and the functional elements of the part level, given 

as 

 

 

0 0

03 3 6 6

    ...   ( )

=                               

0       ...       

i n i

PTi i PTi

i

i

PTi

R R W R R

J

R R
 

 
 
 
 
 

 (6) 

where 0

i

PTiR R  is the directional transformation matrix between coordinate systems, 
n

iW  

is the transformation matrix of the positions between coordinate systems, and 

0( )n i

i PTiW R R  is the matrix that is corrected for the spatial location to overcome the lever-

age effect. 



Appl. Sci. 2024, 14, 2899 5 of 22 
 

0

iR  represents the directional change of the i-coordinate system with respect to the 

zero-coordinate system, and its expression is as follows: 

 0 1 2 3 3 3

i

i i i x
R V V V=    (7) 

where 1 2 3 ,  and i i iV V V   are the direction vectors of the axes i i ix y z,  and  , respectively, in 

the 0th coordinate system. 
n

iW  is the change in position of the n-coordinate system relative to the i-coordinate 

system, given as 

0 dz dy

= dz 0 dx

dy dx 0

n n

i i

n n n

i i i

n n

i i

W

 
 

− 
 − 

 (8) 

dx dy dzn n n

i n i i n i i n idx dx dy dy dz dz= − = − = −、 、  (9) 

where idx   and ndx   are the X-values, idy   and ndy   are the Y-values, and idz   and 

ndz  are the Z-values of the origin of the i, n coordinate system in the 0 coordinate system. 

2.2. Three-Dimensional Tolerance Analysis Parallel Chain Serialization Method 

Two or more assembly positioning nodes exist for inter-part assembly positioning, 

which constitutes a parallel chain. According to the type of benchmark, parallel chains can 

be divided into two categories: multiple benchmarks and common benchmarks. Multiple 

datums and common datums are used as criteria for classifying parallel chains. Multiple 

datums are based on the spatial degree of freedom restrictions on the part features from 

mutually independent coordinate systems, while common datums are based on spatial 

degrees of freedom restrictions on part features from mutually coupled coordinate sys-

tems. 

Multi-basis parallel chains are commonly found in contact pairs formed between two 

surfaces, where cylindrical nodes combined with planar nodes are the most common type. 

When a key connection or a clearance fit is used between the gear and the shaft, a chain of 

parallel tolerances similar to the hole-pin is formed, and the partial parallel chain is calcu-

lated with the parallel or intersection operation [31]. 

The parallel dimensional chain with the geometric tolerance datum in the dimen-

sional chain is the common datum. The tolerance of the two contact surfaces can no longer 

take the serial chain operation method due to the existence of the leverage effect, and to 

eliminate the influence of the geometric structure leverage effect on part of the parallel 

chain, the advantages of the CLIC method and the analytical line method are integrated 

to transform the parallel chain into the new serial chain tolerance [24]. 

When a pair of gears meshes, with the active shaft axis as the positioning reference, 

there is a relative offset between the drive shaft axis and the active shaft axis, and the offset 

of the center distance tolerance causes the gears on the shaft to also be offset. The offset 

makes the gears misaligned and there is a local parallel chain between the main serial 

chain and the center distance tolerance; the dimensional chain is shown in Figure 1. Di-

rectly superimposing the center distance tolerance on the gear tolerance will increase the 

error. The center distance tolerance can be equated to the gear tooth thickness manufac-

turing deviation through the geometric relationship, which is shown in Figure 1. 
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Figure 1. Gear meshing partial parallel dimensional chain diagram. 

IFE3 in Figure 1 represents the tooth thickness deviation of gear 2, given by 

 3 3 3 3 0  0        0T w  =  (10) 

CFE5 indicates the center distance deviation of the two gears, given by 

 5    0        0T u w  =  (11) 

In Figure 2, t is the center distance deviation, u  and w  are the displacement com-

ponents of the center distance deviation, 1u  is the displacement component of the center 

distance deviation at the point of engagement, 11u  and 11w  are the displacement com-

ponents of the center distance deviation on the engagement line, and   and   are the 

rotational components of the center distance deviation. O1O3 is the length of the pitch cir-

cle radius of gear 1, which is denoted by 1ar , and O2O3 is the length of the pitch circle 

radius of gear 2, which is denoted as 2ar , the length of O1O2 is the central distance and is 

denoted as q , and θ is the mesh angle of the two gears, which can be expressed as the 

radius of the base circle 1br  and the radius of the indexing circle 1r  of gear 1. 

u
w t
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Figure 2. Geometric relationship between center distance and gear 2 tooth thickness deviation. 
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The deviation of the center distance of the two gears is in the same direction as the 

rotational component of the tooth thickness deviation of gear 2 and can be algebraically 

superimposed. The displacement component of the center distance deviation needs to be 

translated to the meshing line with the geometric relationship and then algebraically su-

perimposed with the displacement component of the gear 2 tooth thickness deviation. For 

11u  and 11w , as shown in Equations (12) and (13), after converting the center distance 

deviation to the gear 2 tooth thickness deviation, the tolerance torsor is IFE3′, as shown in 

Equation (14). 

1 1 b1

11

1

sina a

a

u r u r r
u

u q u q r


 
=  = 

+ +  
(12) 

1 1 b1

11

1

sina a

a

w r w r r
w

w q w q r


 
=  = 

+ +  
(13) 

 3 1 1 3 3 3 '  0  '       0T u w w    = + + +  (14) 

After the transformation, the center distance deviation CFE5 and the tooth thickness 

deviation IFE3 form a new tolerance torsor IFE3′, the coordinates of which coincide with 

those of IFE3. 

The gearbox is composed of main parts such as the drive shaft, gear, bearing, and 

box. For a gear transmission system with a known transmission structure, the three-di-

mensional tolerance analysis of the gearbox backlash is as shown in Figure 3. 
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Figure 3. Flowchart of three-dimensional tolerance analysis of gearbox backlash. 

3. Condition of Backlash Distribution of Dual-Input Counter-Rotating Gearbox 

The dual-input counter-rotating gearbox is symmetrical from left to right. The pa-

rameters are shown in Table 1. Taking the bearing seat axis of output shaft 1 as the posi-

tioning reference, and the backlash between Gd1, Gd2, and Go1 as the functional requirement 

FRi, and each element tolerance torsor as FEi, serializing the parallel chain is established 

for the Jacobian-torsor model of the gearbox, the distribution of the gearbox can be calcu-

lated, and the distribution of the gearbox backlash is calculated. 
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Table 1. Basic parameters of dual-input counter-rotating gearbox. 

Gear 
Number of 

Teeth 

Normal 

Module 

Pressure 

Angle 
Helix Angle Face Width 

Center 

Distance 

Tooth 

Thickness 

Deviation 

 Z nm /mm  /° nm  /° b/mm a a /mm Asn/mm 

Gl1 Gr1 30 
4.0 20 16.26 

45 
350 

0.03 

Go1 138 40 0.08 

Gl2 Gr2 30 

3.0 20 12.27 

45 
92 

0.03 

Gd1 Gd2 30 45 0.03 

Go2 138 40 258 0.06 

The tooth thickness deviation parameter shows that the theoretical backlash at the 

engagement of Gd1 and Gd2 with Go1 is 0.2443 mm. 

3.1. Structural Analysis of Dual-Input Counter-Rotating Gearbox 

A multi-branch shunt drive system adopts the method of a fixed shaft drive to 

achieve a power shunt, and a multi-branch input, so that the load of each branch is only 

part of the original load, thus greatly reducing the volume and weight of the wheel. A 

multi -branch drive system has a certain fault tolerance. When one of the branches is dam-

aged, the other branches can still maintain the normal operation of the system, which im-

proves the reliability of the drive system. 

Due to the existence of these errors, the backlashes between the multi-branch gears 

and the output gears are not equal, resulting in an uneven distribution of the system’s 

load. To study the system’s load equalization performance, the backlash distribution of 

each branch is calculated with the system errors, and thus the system load equalization 

factor is calculated. 

The three-dimensional tolerance analysis model based on a Jacobian-torsor can con-

sider the coupling of various errors in gearboxes well, avoiding the derivation of complex 

geometric relationships. The small displacement torsor and matrix are used to represent 

the tolerance of each element, and can be combined with the Monte Carlo analysis method 

to calculate the distribution of the backlash at the output end. 

Due to the difficulty of processing and cost limitations, the test was carried out using 

a double-input counter-rotating gearbox for theoretical calculation and experimental ver-

ification. The gearbox had synchronized inputs on the left and right branches and counter-

rotating outputs on the two output shafts, and its transmission structure sketch is shown 

in Figure 4. 

Gl2 Gd1

Go2

Go1

Gl1 Gr1

Gr2Gd2

1

2

3

5

6

4

 

Figure 4. Schematic diagram of the transmission structure of a double-input reverse-rotating 

gearbox. 
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In Figure 4, 1 is the first output shaft; 2 is the left idler shaft; 3 is the first output shaft; 

4 is the second output shaft; 5 is the right idler shaft; and 6 is the second input shaft. 

3.2. Tolerance Specifications for Gearing Systems 

Based on the new generation GPS standard system, the main parts of the gear trans-

mission system include the case, shaft, bearing, and gear. The bearing clearance is not 

considered here. Go1, Go2, and the output shaft were hot-mounted without considering the 

assembly clearance. The tolerance specification of each part is shown in Figure 5, in Figure 

5, the numbers represent the tolerances of the individual parts, and the red dotted lines 

indicate the direction of movement of the parts. and the tolerance dimensions are shown 

in Table A1 in Appendix A. 

A

1,2

3

4

5,6

A
B

7,8

10,11

9

A
B

12,13

15,16

14

A
B 17,18

20,21

19

22,23 24,25

26,27

28,29

32,33

30,31
34 35

36

37

 

Figure 5. Tolerance specification of each part of gearbox. 

3.3. Modeling of the Jacobian–Torsor Model of the Gearing System 

The gearbox was symmetrical from left to right and could be modeled on one side. 

The left side of the gearbox was modeled with output shaft 1 as the positioning reference 

and the backlash between Gd1 and Go1 as the closed ring. 

In the gear transmission system, choosing a reasonable working backlash is beneficial 

for improving the transmission accuracy. The intersection of the two gear axis lines and 

the gear mesh line is the origin of the characteristic coordinate system on the two gear 

tooth profiles, and the backlash is the minimum distance between the two tooth profiles. 

The schematic diagram of the two gears meshing is shown in Figure 6. 
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Figure 6. Schematic diagram of gear meshing. 

In accordance with the gearbox assembly relationship and the tolerance specification 

of each part, the coordinate system shown in Figure 7 was established with the gearbox 

bearing bond surface as the reference In Figure 7, Oi (i = 1, …, n) represents the coordinate 

axes of each part tolerance. The housing bore was machined based on a uniform datum, 

so the output shaft 1 and output shaft 2 mounting bores shared a common datum. Con-

sidering the gear tooth thickness deviation and center distance tolerance, the Jacobian spin 

volume model was established, with each part’s manufacturing error and assembly error 

as the constituent ring and the output gear backlash 1jn  as the closed ring. Three-dimen-

sional tolerance calculations are usually performed in the closed-loop tolerance direction. 

However, the direction of the constituent ring tolerance is mostly inconsistent with the 

backlash direction, so the output shaft reference hole was used as the tolerance analysis 

direction, and finally 1jn  was calculated with an angular conversion to the closed ring 

coordinate system direction. The dimensional chain of the gearbox assembly is shown 

schematically in Figure 8. In Figure 8, i (i = 1, …, n) denotes the axis designation of each 

part tolerance. 
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Figure 7. Characteristic coordinate system of dual-input counter-rotating gearbox. 
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Figure 8. Schematic diagram of the left dimensional chain of the gearbox. 

As shown in Figure 8, FRi is the output gear backlash tolerance torsor, IFE is the 

internal part tolerance torsor, CFE is the inter-part tolerance torsor, and the PFE parallel 

tolerance torsor can be solved as described in Section 2.2 

The housing and shaft parallel chains were converted into serial chain parameters as 

shown in Table A2 in Appendix A. The SDT of each tolerance is shown in Table A3 in 

Appendix A. The Jacobian matrix of each tolerance is shown in Table A4 in Appendix A. 

The calculation of 1sin  in the Table A1 is as follows: 

1 2 2sin /bGo Gor r =  (15) 

where 2bGor  is the base circle radius of Go2, and 2Gor  is the reference circle radius of Go2. 

3.4. Three-Dimensional Tolerance Analysis of Output Gear Backlash of Gearbox 

Three-dimensional tolerance analysis mainly has an extreme value method and a sta-

tistical method. The backlash calculated with the extreme value method is large. In this 

research, we used the Monte Carlo method in the statistical method for the tolerance anal-

ysis of the backlash. 

Monte Carlo simulation is a numerical method for solving approximate solutions to 

mathematical, physical, and engineering technology problems through stochastic simula-

tions and statistical experiments. The method is computationally accurate and consistent 

with the actual generation, and it is suitable for the solution of assembly functions with 

nonlinear expressions. 

The dimensional and shape tolerances of the gearbox follow the principle of inde-

pendence, and the tolerance zones of their dimensional and shape tolerances are symmet-

rically distributed and obey a normal distribution. The symmetrically distributed toler-

ances, regardless of whether they are defined as increasing or decreasing rings, have the 
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same effect on the closed ring. Therefore, in the process of tolerance analysis, the tolerance 

of each component ring is expressed as 
2

i

t
T   (t is the tolerance of the component ring). 

The closed-loop samples FR1 and FR2 conformed to a normal distribution, for which 

the tolerance can be calculated as follows: 

=w FR FRFR Z   (16) 

where FR  and FR  are the mean and the variance of FR, respectively. The confidence 

level at 99.73% probability was used, and Z was taken as 3. 

The backlash jn  value was calculated as follows: 

( ) ( )( )1 1 2 2cos cos sinw wjn FR FR FR FR  = +  + + −  + 
 

(17) 

where 1wFR  is the upper deviation of the Z-directional translation of closed-dimensional 

chain 1, 2wFR   is the lower deviation of the Z-directional translation of closed-dimen-

sional chain 2, 1FR   is the upper deviation of the Z-directional rotation of closed-dimen-

sional chain 1, 2FR   is the lower deviation of the Z-directional rotation of closed-dimen-

sional chain 2, and   is the angle of engagement of Gd1 and Gd2 with Go1. 

The results of the jn  calculation are shown in Table 2. 

Table 2. Calculation results of jn . 

N 
Closed-Loop z-Translation Coordinates/mm Closed-Loop z-Rotation Coordinates/mm 

jn /mm 
1wFR  2wFR  1FR   2FR   

1000 (−0.405, 0.391) (−0.047, 0.048) (−0.0059, 0.0062) (−0.0042, 0.0041) 0.4107 

5000 (−0.402, 0.399) (−0.049, 0.049) (−0.0058, 0.0058) (−0.0042, 0.0042) 0.4191 

10000 (−0.397, 0.395) (−0.047, 0.047) (−0.0059, 0.0059) (−0.0042, 0.0042) 0.4146 

15000 (−0.401, 0.399) (−0.047, 0.047) (−0.0059, 0.0059) (−0.0042, 0.0042) 0.4185 

20000 (−0.397, 0.398) (−0.047, 0.047) (−0.0059, 0.0059) (−0.0042, 0.0043) 0.4173 

25000 (−0.396, 0.396) (−0.047, 0.047) (−0.0059, 0.0059) (−0.0042, 0.0042) 0.4150 

The theoretical value of 0.2443 mm was used as the lower limit of the backlash, and 

the value calculated with the Monte Carlo method, 0.4150 mm, was used as the upper 

limit of the backlash. The actual measurement of the backlash should be distributed in this 

range. 

The contribution of each dimensional tolerance to the backlash closure ring is shown 

in Figure 9. 
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Figure 9. Contribution of each dimensional tolerance to the backlash closure ring. 

As can be seen from Figure 9, the tolerance T3 has the highest contribution to the 

backlash at 38.65%, followed by the tolerances T8 and T1 at 17.24% and 16.41%, respec-

tively. Tolerance T3 is the center distance error of the first stage gear, tolerance T8 is the 

phase angle error of the first and second stage gear. The error value of the center distance 

and phase angle is consistent with the direction of the backlash, and at the same time, due 

to the large value of the center distance error, it has the greatest impact on the backlash, 

followed by the phase angle error. 

4. Calculation Method of Equal Load Factor for Dual-Input Counter-Rotating Gearbox 

4.1. Calculation of the Elastic Deflection Angle of the Gear Shaft System 

For the dual-input counter-rotating transmission system, when the two input torques 

are the same, the load difference between Gl1, Gr1, and Go2 is neglected because the cumu-

lative error between Gl1, Gr1, and Go2 is small, the two gears are very close to the input 

motor, and the deformation of the shaft system is small. During the loading process, one 

of the two idler pulleys enters into engagement first. Due to the influence of manufactur-

ing and installation errors, there is a gap between the idler pulley that enters into engage-

ment later and Go1, and with the increase in the input torque T, the gap is gradually elim-

inated through the elastic deformation of the engagement sub and input shaft system. 

Then, all idler pulleys enter into engagement. The rotation angle of Gl1 and Gr1 is l1 1G Gr = 

. The rotation angles of Gl2 and Gr2 are l2 2 and G Gr  , respectively, while the Go1 and Go2 

rotation angles are 1 2andGo Go      , respectively. The left and right input shaft torsion angles 

are  andnl nr   , respectively. 

The gear meshing deformation and rotation angle were calculated as shown in Equa-

tion (18). The torsion angle formed by the torsional deformation of the shaft was calculated 

as shown in Equation (19). The equations for the static balance of the input shaft, idler 

shaft, and output shaft 1 are shown in Equation (20). The theoretical normal backlash 

could be converted into a circumferential backlash with Equation (21). 
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jn
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   
(21) 

where i is the transmission ratio, 1K  is the average meshing stiffness of gears Go2 and Gl1, 

and 2K  is the average meshing stiffness of gears Go1 and Gl2. l1GT  is the torque applied 

to gear Gl1, and l1bGr  is the radius of the base circle of the gear. l2GT  is the torque applied 

to gear Gl2 and l2bGr  is the radius of the base circle of the Gl2. 1GrT  is the torque applied to 

gear Gr1 and 1bGrr  is the radius of the base circle of gear Gr1. 2GrT  is the torque applied to 

gear Gr2 and 2bGrr  is the radius of the base circle of gear Gr2. 1GoT  is the torque applied to 

gear Go1 and 2GoT  is the torque applied to gear Go2. b  is the base helix angle of gear Go1, 

  is the gear Go1 engagement angle, l  is the input shaft length, d  is the input shaft 

diameter, and G  is the input shaft modulus of elasticity. 

In Equations (18) and (21), the torsional deformation of the input shaft was solved 

according to material mechanics, the average meshing stiffness of the gear was calculated 

according to GB/T 3480-1997 [35], and the meshing angle was calculated by referring to 

ISO/TR10064-2:1996 [36]. 

When the input torques 1 2,T T  are equal to 200 N m, the calculated deformation of 

the system under a load, Gd1 turns at an angle of 0.007 rad with respect to Go1. The previous 

theoretical backlash value of 0.2443 mm is the normal backlash, and the rotation angle 

corresponding to the Gd1 circumferential backlash is 0.006 rad. If the manufacturing and 

assembly errors of the system are not considered, the theoretical equal load performance 

of the system is good. 

4.2. Analysis and Calculation of the Uniform Load Factor 

In fact, the dual-input counter-rotating gearbox had manufacturing and assembly er-

rors, and the two branches were not loaded in the same way. It was then assumed that the 

left branch backlash was the theoretical value of 0.2443 mm and the right branch backlash 

value was the upper limit of 0.4150 mm, and the elastic deformation of the two branches 

could compensate for the backlash. The torque values of gears Gl2 and Gr2 were calculated 

according to Equations (18) and (19), and the equal load factor is defined as follows: 
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l2 2

l2 2

( , )

( ) / 2

r

r

G G

P

G G

MAX T T
K

T T
=

+  
(22) 

where 
l 2 2

 and 
rG GT T  are the torque values of gear Gl2 and Gr2, respectively. 

From the previous calculations of backlash and torque values, it can be seen that the 

uniform load coefficient of the dual-input counter-rotating gearbox ranged from 1 to 1.259. 

5. Experimental Verification of Load Distribution Characteristics of Dual-Input  

Counter-Rotating Gearbox 

The range of the Gd1, Gd2, and Go1 backlash calculated with the three-dimensional 

tolerance discussed in Section 3.3 shows that when the input torque of the two branches 

was equal, the backlash of Gl2 and Gr2, and the value of the torque applied were not equal. 

The previous calculation showed that the Gd1, Gd2, and Go1 backlash range was 

0.2443–0.4150 mm, and the system’s uniform load coefficient range was 1–1.259. To verify 

the reasonableness of the previous calculation method, a test rig was built for testing. The 

test rig for the dual-input counter-rotating gearbox is shown in Figure 10. 

  

Figure 10. Dual-input counter-rotating gearbox test stand. 

5.1. Backlash Test Verification 

The Gd1, Gd2, and Go1 backlash was measured using a dial gauge. When measuring 

the side clearance, the input shaft and output shaft 1 positions were fixed, and the dial 

gauge was located at the Gd1 and Gd2 indexing circle. Then, Gd1 and Gd2 were turned and 

the dial gauge reading was the backlash value. The actual measurement method is shown 

in Figure 11. 

 

Figure 11. Dual-input counter-rotating gearbox backlash measurement physical diagram. 
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When measuring, the input shaft was rotated four times with the output shaft 1 po-

sition, and the backlash was taken as the average of eight measurements. The measure-

ment data are shown in Table 3. 

Table 3. Actual backlash measurement data. 

 1 2 3 4 5 6 7 8 Average 

Gd1 0.24 0.25 0.25 0.24 0.25 0.26 0.26 0.26 0.251 

Gd2 0.42 0.46 0.39 0.38 0.42 0.37 0.42 0.41 0.410 

The actual measured Gd1 and Go1 backlash value was 0.251 mm and the Gd2 and Go1 

backlash value was 0.410 mm. The actual measured backlash was within the theoretical 

calculated backlash range of 0.2443–0.4150 mm, and the three-dimensional tolerance anal-

ysis played a more important role in the study of the system’s even load performance. 

With the actual measured backlash values, the two branch torques were calculated 

as 86.736 N m and 141.680 N m using Equations (18)–(21), and the uniform load coefficient 

was calculated as 1.241 according to the definition of the uniform load coefficient in Equa-

tion (22). 

5.2. Uniform Load Performance Test 

The uniform load coefficient was calculated to be 1.241 according to the backlash, 

and the gear Gl2 and Gr2 torque values were then measured using a stress-torque sensor 

with strain gauges applied to the two input shafts at the corresponding two measurement 

points. The measurement principle is shown in Figure 12. 

1 2

4

3

6

5

7
8

 

Figure 12. Gearbox equal load test schematic. 

In Figure 12, 1 is the signal acquisition system; 2 is the PC; 3 is the gear box; 4 is the 

strain sensor; 5 is the speed and torque sensor; 6 is the driving motor; 7 is measurement 

point 1; and 8 is measurement point 2. 

The results of the torque measurements at measurement point 1 and measurement 

point 2 for various input conditions are shown in Table 4. 
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Table 4. Multi-case torque measurement results. 

Same Torque Input 

for Left and Right 

Measurement Point 1 

Torque/N.m 

Measurement Point 2 

Torque/N.m 

Mean Value of 

Uniform Load Factor 

PK  

100 0 159.255 / 

150 0 273.940 / 

200 68.417 133.560 1.323 

250 85.695 164.660 1.315 

300 103.664 196.106 1.308 

350 123.015 228.243 1.300 

400 140.708 259.344 1.296 

The uniform load coefficient test data are shown in Figure 13, and the relationship 

between the input torque and the average value of the uniform load coefficient is shown 

in Figure 14. 
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Figure 13. (a–e) Graph of the test data of the uniform load coefficient. 
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Figure 14. Input torque versus equal load factor. 

From Figure 14, it can be seen that the maximum system uniform load coefficient is 1.323, 

and with a theoretically calculated equalization factor of 1.259, this result exceeds the theoret-

ical uniform load coefficient by 0.064, and the test-measured uniform load coefficient exceeds 

the theoretical value by 5.08%. The error was 6.61% compared to the uniform load coefficient 

calculated from the measured backlash. According to the experimental data, it can be seen 

that the larger the input torque is, the lower the equal load coefficient is. The difference be-

tween the elastic deflection angles of the two branches decreases as the torque increases, re-

sulting in a more uniform load distribution of the system. Due to the input torque limitation, 

the system load equalization performance can be improved by reducing the elastic shaft tor-

sional stiffness of the branch with a large backlash. 

6. Conclusions 

(1) From the tolerance contribution degree, it can be seen that T3 is the output shaft 2 large 

gear tooth thickness deviation and T8 is the input shaft 1 two gear phase angle deviation. 

Tolerance T3 is the center distance error of the first stage gear; tolerance T8 is the phase 

angle error of the first and second stage gear; the error value of the center distance and 

phase angle is consistent with the direction of the backlash, and at the same time, due to 

the large value of the center distance error, it has the greatest impact on the backlash, 

followed by the phase angle error. These two design tolerances can be reduced appropri-

ately in the theoretical design stage to obtain a more reasonable equal load factor. 
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(2) The small-displacement-based Jacobian spin theory was used for three-dimensional tol-

erance modelling, and a three-dimensional tolerance analysis method was used to derive 

the backlash distribution law, which is of great significance for the optimization of gear 

system parameters. Meanwhile, the load balancing performance of the system can be im-

proved by reducing the torsional stiffness of the branch elastic shaft with large tooth 

backlash. 

(3) The three-dimensional tolerance theory analysis method can calculate the backlash range 

more accurately, and utilizes the backlash range to calculate the uniform load coefficient 

range. The test-measured uniform load coefficient exceeded the theoretical range by 

5.08%. The error was 6.61% compared to the uniform load coefficient calculated from the 

measured backlash. This method of calculating the uniform load coefficient has a greater 

reference value. 

Replication of Results: Both the backlash results and the mean load factor results in this 

paper can be reproduced using the data and equations in the research. 
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Appendix A 

Table A1. Tolerance dimensions of each part. 

Component Serial Number Dimensional Tolerance 
Position 

Tolerance 

First input shaft 

1, 2 30k6  0.015 A-B
 

3 / 0.02 A-B
 

5, 6 50k6  0.015 A-B
 

37 = 5 '   / 

Left idler shaft 
7, 8, 10, 11 30k6  0.015 A-B

 

9 / 0.015 A-B
 

First output shaft 
12, 13, 15, 16 100m6  0.015 A-B

 

14 / 0.02 A-B
 

Second output shaft 
17, 18, 20, 21 100m6  0.015 A-B

 

19 / 0.02 A-B
 

Housing 
22, 23 72H7  0.02

 

24, 25 62H7  0.02
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26, 27 90H7  0.02
 

28, 29, 32, 33 150H7  0.015
 

30, 31 150H7  0.02
 

34, 35, 36 92js7 js7 js7、258 、350  / 

Table A2. Housing and shaft parallel chain conversion to serial chain parameters. 

 1L /mm 2L /mm 2H /mm L /mm 1u /mm 2u

/mm 

1PFE  74 121.5 24 145.5 0.051 0.046 

6PFE  224.5 273 19 292 0.043 0.039 

7PFE  66.5 273 19 292 0.043 0.039 

13PFE  63.5 120.5 16 136.5 0.0415 0.039 

16PFE  74 121.5 24 145.5 0.051 0.046 

Table A3. SDT for each tolerance of the gearbox. 

Tolerance Type Small-Displacement Torsor 

1T 16T  1PFE 16PFE  
-4 -40.067   0   0.067   5.636 10    0   5.636 10         

2T  2IFE  
-4 -40.01   0   0.01   5 10    0   5 10         

3T  3IFE  
3 30   0   0.04   8.89 10    2 10    0− −        

4T  4PFE  
-3 -40.0215   0   0.0315   3.42 10    8.2 10    0         

5T 9T 12T 14T

17T  

5IFE 9IFE 12IFE 14IFE

17IFE  
-4 -40.01   0   0.01   4.44 10    0   4.44 10         

6T  6PFE  
-4 -40.097   0   0.097   2.808 10    0   2.808 10         

7T  7PFE  
-4 -40.052   0   0.052   2.808 10    0   2.808 10         

8T  8IFE  
-3 -30   0   0.0335   9.91 10    1.67 10    0        

10T  10IFE  
-3 -40   0   0.015   4.44 10    6.7 10    0        

11T  11PFE  
-3 -3 -47.97 10    0   0.02297   461 10    7.9 10    0          

13T  13PFE  
-4 -40.068   0   0.068   6.007 10    0   6.007 10         

15T  15PFE  
-3 -3 -44.35 10    0   0.01935   4.47 10    7.3 10    0          

18T  18IFE  
-3 -30   0   0.03   8.89 10    1.5 10    0        

Table A4. Jacobian matrix for each tolerance. 

 0 i→  0

iR  PTiR  n

iW  

1PFE 2IFE  

0→7 1   0   0

0   1   0

0   0   1

 
 
 
  

 

1   0   0

0   1   0

0   0   1

 
 
 
  

 

   0               0          155.5

   0               0         211.85

-155.5    -211.85          0

 
 
 
  

 
0→9 

3IFE 4PFE  

0→10 1 1

1 1

cos    0   -sin

   0      1       0

sin    0   cos

 

 

 
 
 
  

 

1

1

1   0   -sin

0   1     0

0   0   cos





 
 
 
  

 

   0               0          155.5

   0               0         -75.65

-155.5      75.65          0

 
 
 
  

 
0→11 

5IFE 6PFE  0→13 
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0→20 

1   0   0

0   1   0

0   0   1

 
 
 
  

 

1   0   0

0   1   0

0   0   1

 
 
 
  

 

   0               0          155.5

   0               0         -138.15

-155.5      138.15          0

 
 
 
  

 

7PFE 8IFE 9IFE  

0→27 1   0   0

0   1   0

0   0   1

 
 
 
  

 

1   0   0

0   1   0

0   0   1

 
 
 
  

 

0           0            0

0           0      -138.15

0      138.15        0

 
 
 
  

 0→28 

0→29 

10IFE 11PFE  

0→30 2 2

2 2

cos    0   -sin

   0      1       0

sin    0   cos

 

 

 
 
 
  

 

2

2

1   0   -sin

0   1     0

0   0   cos





 
 
 
  

 

0         0        0

0         0    -92.2

0      92.2      0

 
 
 
  

 
0→31 

13PFE 12IFE 14IFE  

0→32 1   0   0

0   1   0

0   0   1

 
 
 
  

 

1   0   0

0   1   0

0   0   1

 
 
 
  

 

0         0         0

0         0    -46.15

0      46.15     0

 
 
 
  

 0→33 

0→42 

15PFE  0→43 

2 2

2 2

cos    0   -sin

   0      1       0

sin    0   cos

 

 

 
 
 
  

 

2

2

1   0   -sin

0   1     0

0   0   cos





 
 
 
  

 

0         0         0

0         0         0

0         0         0

 
 
 
  

 

16PFE 17IFE  

0→50 1   0   0

0   1   0

0   0   1

 
 
 
  

 

1   0   0

0   1   0

0   0   1

 
 
 
  

 

0         0            0

0         0      211.85

0      -211.85    0

 
 
 
  

 
0→52 

18IFE  0→53 

2 2

2 2

cos    0   -sin

   0      1       0

sin    0   cos

 

 

 
 
 
  

 

2

2

1   0   -sin

0   1     0

0   0   cos





 
 
 
  

 

0         0         0

0         0         0

0         0         0

 
 
 
  
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