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Abstract: The detection of image similarity is critical to trademark (TM) legal registration and court
judgment on infringement cases. Meanwhile, there are great challenges regarding the annotation of
similar pairs and model generalization on rapidly growing data when deep learning is introduced
into the task. The research idea of metric learning is naturally suited for the task where similarity of
input is given instead of classification, but current methods are not targeted at the task and should be
upgraded. To address these issues, loss-driven model training is introduced, and a hybrid-margin
softmax (HMS) is proposed exactly based on the peculiarity of TM images. Two additive penalty
margins are attached to the softmax to expand the decision boundary and develop greater tolerance
for slight differences between similar TM images. With the HMS, a Siamese neural network (SNN) as
the feature extractor is further penalized and the discrimination ability is improved. Experiments
demonstrate that the detection model trained on HMS can make full use of small numbers of training
data and has great discrimination ability on bigger quantities of test data. Meanwhile, the model can
reach high performance with less depth of SNN. Extensive experiments indicate that the HMS-driven
model trained completely on TM data generalized well on the face recognition (FR) task, which
involves another type of image data.

Keywords: trademark image similarity; metric learning; Siamese neural network; softmax function

1. Introduction

Trademarks (TMs) are distinctive designations registered to identify products and
sources. The exclusivity of TM provides rules for orderly marketing [1]. However, the high
incidence of TM misappropriation causes plenty of revenue and reputation loss to legitimate
owners. Consumers can be misled to purchase counterfeit products, especially when the
right-infringing TM image is similar to a legal one [2]. Meanwhile, the rapidly growing TM
image database is massive itself, which brings great pressure on the governing body.

What further complicates this situation is that there are no defined criteria to conduct
the test named ‘likelihood of confusion’ [3]. The test is a critical part of the procedure to
determine whether a disputed trademark is similar to another one. Thus, there is a chance
that inconsistent judgments are declared by courts of different levels or districts.

Generally, appearance, characters, and sound are taken into consideration during
the test [4]. The repetition rate of characters is convenient to assess, and a TM can be
pronounced differently among regions. As the most common and important forms of TM,
the appearance, by contrast, is more consistent and controversial in judgment.

The feature extraction of TM images is crucial to the above issues. Conventional
feature engineering involves manually designed descriptors to detect and match features,
e.g., SIFT [5] and ORB [6]. SFIT is a local invariant feature descriptor based on keypoints
and local image gradient directions. ORB is a fast binary descriptor based on FAST keypoint
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detector and binary BRIEF descriptor. These extraction methods focus on some specific
image features such as points and edges [7], which makes it expensive to detect TM image
similarity comprehensively with several manual descriptors. The great improvement in
deep learning, that features which might be omitted by human beings can be extracted effi-
ciently by convolutional kernels, makes introducing computer ‘opinions’ to the procedure
of human judgment on TM image similarity a convincing prospect.

There is a great challenge in building training data when deep learning is introduced
in the detection of TM image similarity (TMISD). The performance of the detection model
is highly correlated with supervised information, while the annotation of similar TM
image pairs takes intensive work with skilled labor involved. Furthermore, the model
generalization on millions of new TM designs proposes a higher requirement for training
data preparation where extensive TM images are supposed to be covered. Metric learning
is naturally suitable for solving the problem of limited training shots [8]. A metric function
of similarity can be learned to detect whether inputs are similar, instead of classifying the
input samples.

Siamese neural networks (SNNs) are widely used in metric learning to extract pairs
of input image features [9,10] and metric functions, e.g., Euclidean distance, Manhattan
distance, and cosine similarity are used to compare embedded feature vectors [11,12].
Usually, contrastive loss is used in an SNN to minimize the distance between feature
vectors of samples in the same classes and maximize the distance between samples in the
different classes. There is a hyper-parameter in contrastive loss to control the threshold
of distance. A data-driven triplet network was proposed on the basis of an SNN with an
additional CNN branch [13]. The triplet loss function is used to decrease the feature vector
distance between the anchor sample and the positive sample, and at the same time increase
the distance between the anchor sample and the negative sample. The discrimination
ability of the triplet network is improved while the training cost is greatly increased with
the combinatorial explosion of the building of triplets, i.e., the input data of the triplet
network. In this way, the pressure on training data quantity is transferred to the cost of
existing annotated data mining by the more elaborate network architecture.

Another research idea in metric learning is loss-driven training methods such as recent
works on face recognition (FR) [14,15]. Instead of building a large-scale dataset for training,
these metric learning methods transformed the softmax function to conduct a margin
penalty on the decision boundary, aiming to develop the discrimination ability of SNNs.
The typical SphereFace [16], CosFace [17,18], and ArcFace [19] are all designed to expand
intraclass space and reduce interclass space. Some of the reasons are that the performance
of a data-driven model relies on the quality of information contained in training data
excessively, and manual annotation is a major expenditure of human efforts. Furthermore,
the SNN trained on close-set data shows bad performance in generalizing on open-set
data [19].

More specifically, for the TMISD task, Setchi proposed a TM similarity analysis system
to conduct the ‘likelihood of confusion’ test with three models [20]. Global and local shape
feature descriptors, i.e., Zernike moment and an edge gradient co-occurrence matrix are
used to extract TM image features. Euclidean distance is used to compute similarity. On
this basis, Trappey introduced SNNs into the feature extraction of TM images [21]. VGG16
is used to build an SNN. Alshowaish used pre-trained CNNs to build an SNN including
VGG16 and ResNet50 [22]. Most of these works focused on data-driven metric learning
methods. However, the training database encounters a great challenge of annotation and
covering the rapid growth in new TM designs.
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We choose to research the TMISD task from the perspective of a loss-driven metric
learning method. Here is a brief introduction to the frequently used loss function, i.e., the
softmax function in the classification. The expression of softmax is as follows:

L1 = − 1
N

N

∑
i=1

log
eWT

yi
xi+byi

n
∑

j=1
eWT

j xi+bj
(1)

where N is the class number, W and b are weight and bias terms, xi is the embedded
feature vector belonging to the yi-th class, and Wj is the j-th column of the weight W.
Then, by fixing the weight ∥W∥ = 1 and feature ∥xi∥ = 1 by ℓ2 normalization, and by
fixing the bias bj = 0, the decision boundary is transferred to the angular space.

The transformed softmax function is as follows:

L2 = − 1
N

N

∑
i=1

log
ecos θyi

ecos θyi +
n
∑

j=1,j ̸=yi

ecos θj

(2)

where θ is the included angle between the normalized weight and feature vector. The
prediction will depend only on the angle, and the decision boundary can be optimized by
margin penalties.

The main contributions of this study are as follows:

(1) We researched the TMISD task with prevalent methods in metric learning including
data-driven and loss-driven. The performance of these methods was investigated
from several evaluation aspects regarding the TMISD task, including accuracy, F1
score, training cost, and generalization ability.

(2) According to the peculiarity of TM images, a hybrid-margin softmax (HMS) is pro-
posed. Two additive margins are attached to the cosine term and the angular term
of softmax, respectively, to expand the decision boundary in the angular space. The
magnitudes of the weight and feature vector are preserved to retain the input infor-
mation as much as possible. The metric function used to calculate the similarity is
replaced by a classifier, i.e., a fully connected layer.

(3) Experiments indicate that the detection model penalized by HMS can be trained on
small numbers of annotated data and reaches high detection accuracy with fewer
layers of SNN. Furthermore, the HMS detection model trained completely on TM
data generalizes well on the face recognition (FR) task, which indicates that the model
trained on HMS has great input image discrimination ability.

2. Materials and Methods
2.1. Hybrid-Margin Softmax

The peculiarity of TM images is crucial to the TMISD task. We compared the FR and
the TMISD task to have a better view of the latter:

(1) The compositions of images in an FR task are constant. The principal parts of the
input pairs of samples are human faces that always come from one exact person or
different ones. The features extracted from the input are fixed generally, such as the
shapes of faces, eyes, and noses. Plus, there are external interfering terms that should
be considered including gestures, illuminations, ages, image noises, etc.

(2) The TMISD task is aimed at detecting the similarity of TM images. Generally, a TM
design consists of a single element or several ones. The elements of the disputed
TM image will not be identical to the legal one but partly similar in contours, colors,
and textures, as shown in Figure 1. It is common for there to be both similar and
different elements between two TM images in disputed cases. It should be noted that
new outlines can be formed by the varying placements of elements. Furthermore,
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interfering terms mentioned in the FR task are no longer to be considered, since TM
images are artificially designed in most cases.

Figure 1. Some examples of TM images: (a) Similar pairs. Similar in element shapes and general
color. (b) Similar pairs. Similar in contour, some elements. (c) Dissimilar pairs. Similar in partial
contour, dissimilar in other factors.

To sum up, compared to the FR task, there are supposed to be more margin penalties
on the decision boundary to tolerate a wide variety of element design changes in pairs of
similar TM images. Meanwhile, the detection model should extract more information from
input images to have a full understanding of the similarity degree and avoid false alarms.
Therefore, the detection model should be further penalized, and the learnable parameters
should be preserved as much as possible.

Given the characteristics of the TMISD task, a hybrid-margin softmax (HMS) is pro-
posed as follows:

L3 = − 1
N

N

∑
i=1

log
es ∥WT

yi
∥ ∥xi∥ (cos (θyi−d1)−d2)

es ∥WT
yi ∥ ∥xi∥ (cos (θyi−d1)−d2) +

n
∑

j=1,j ̸=yi

es ∥WT
j ∥ ∥xi∥ cos θj

(3)

where s is a global scale factor. Wyi are the weights of the fully connected layer, and xi is
the feature vector of i-th sample extracted by SNN. The weights and feature vectors are not
normalized, and the biases are set to zero. Additive margin d1 and d2 are attached to the
angle term and the cosine term, respectively.

The decision boundary of HMS loss is as follows:

∥W1∥ cos θ1 = ∥W2∥(cos(θ2 − d1)− d2) (4)

The decision boundary still can be considered as laying in the angular space with a
varying amplitude of the cosine curve, as shown in Figure 2a.

Figure 2. Interpretations of HMS. (a) Decision boundary; (b) logit normalization; (c) penalties of HMS.

2.2. Interpretation of HMS

Several margins are attached to the inner product form of the logit to tolerate unpre-
dictable little changes between similar elements of TM images. The magnitudes of extracted
feature vectors, and the weight vectors, which are learnable parameters, are preserved to



Appl. Sci. 2024, 14, 2865 5 of 11

retain information from the input as much as possible. The model can benefit from this
information when similar elements are contained in the pairs of dissimilar TM images. Plus,
the normalization changes the magnitude and direction of the logit, as shown in Figure 2b.
The SNN has to constantly adapt to these changes during the training.

Considering a group of TM images with an anchor sample, a similar one and a
dissimilar one are given, suppose the class center of the anchor in the feature space is W2,
the class center of the dissimilar one is W1, and the feature vector of a similar one is x, as
shown in Figure 2c. The model can make the right prediction by the following calculation:

∥W1∥ cos θ1 ≤ ∥W2∥(cos(θ2 − d1)− d2) (5)

where θi(i = 1, 2) denote the angle between feature x and class center Wi.
The value of the cosine term is decreased by two margins d1 and d2. The model is

penalized further to improve discrimination ability. The magnitude of the weight vector
can be scaled for better prediction during model training.

There is a toy experiment, as shown in Figure 3, to describe the distribution of features
extracted by the SNN trained on different transformations of the softmax function. These
features are sent to the classifier to give a prediction. The SNN discrimination ability of
TM images is described visually in this way. Red and blue spots are visualized features
of two input TM images. Spots in the first row are from dissimilar TM images and spots
in the second row are from similar TM images. In the first row, the first four feature spots
are loose and chaotic. It is not solid enough for the classifier to judge they are not similar.
The last feature spots in the first row extracted by the SNN trained on HMS are oriented
intensively and separable in the meantime. The spot distributions in the second row also
indicate that features learned from the SNN with HMS are compact and adequate for
making a judgment.

Figure 3. Visualized feature spots extracted by SNN trained on different transformations of softmax
function. (a) SphereFace; (b) CosFace; (c) ArcFace; (d) HMS (normalized); (e) HMS.

3. Results

We conducted two branches of experiments. The comparison of loss-driven methods
includes detection models based on an SNN trained on different transformations of softmax.
The comparison of data-driven methods includes detection models based on the typical
SNN (trained by contrastive loss), triplet network, and fine-tuning method.



Appl. Sci. 2024, 14, 2865 6 of 11

3.1. Datasets

There were two types of image data involved in the experiments: TM images and
human faces. The face data were used to train the feature extractor in the fine-tuning
method and used for testing in the loss-driven methods. The TM image training data were
compiled from real-world trademarks and annotated, consisting of 300 pairs of similar
samples. The TM test data were collected from real court-disputed cases and cleaned
manually, consisting of 1000 pairs of similar samples. The dissimilar TM image pairs were
randomly selected and paired, consisting of equivalent numbers of similar pairs. The public
LFW dataset was used as human face data, consisting of 3000 pairs of positive samples and
3000 pairs of negative samples [23,24].

The data preprocessing included input images cropped to a fixed-size shape and
preserved colors. The TM training data were normalized with corresponding statistics.
The TM test data and LFW data were normalized with mean value X = 0.5 and variance
σ = 0.5.

3.2. Experimental Setup

The details of the detection process are given in this section. The detection based on
the loss-driven methods includes feature extracting and classifying.

The process of feature extracting is as follows: the backbone of the feature extractor
is an SNN consisting of two identical CNNs that have the same structure and weight, as
shown in Figure 4. Images input through the SNN can be encoded to vectors in the same
feature space. Several CNN structures are implemented, including a simple self-defined
six-layer CNN and resnet18, 34, 50, 101, and 152 [25]. The fully connected layer in resnet is
removed, and the six-layer CNN has a similar structure to resnet, including a batchnorm
(BN) layer and pooling layer, as shown in Figure 5. There is no residual module in the
six-layer CNN.

Figure 4. The procedure of TM image similarity detection.
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Figure 5. The structure of the 6-layer CNN.

The process of classifying is as follows: output vectors of the feature extractor are con-
catenated, activated by the transformation of softmax, and then sent to the fully connected
layer, i.e., the classifier with the sigmoid activation function. Output judgment of similarity,
the same as the input label, is one-hot encoded.

The detection processes of the data-driven methods are as follows:

(1) Fine-tuning method: An SNN to be transferred is trained on the LFW training dataset.
The backbone of the SNN is composed of an original series of resnet. When the SNN
reaches 95% or more accuracy on the LFW test dataset, the fully connected layer is
removed and the rest of the weights are frozen. The trained and frozen SNN and
a new fully connected layer compose the TM detection model. Then, the model is
further trained on the TM training dataset and tested on the TM test dataset.

(2) Triplet model: Each input consists of two similar TM images, a dissimilar one, and
corresponding labels. The triplet is built from the TM training dataset by attaching a
random TM image to the pairs of similar samples.

The six-layer CNN is excluded from the data-driven methods since a shallow-depth
CNN is not able to meet the demand of fitting in the triplet network model and fine-
tuning method.

Other experiment setups are as follows:
The scale factor s in softmax was set to 90, the angular margin in SphereFace was 4, the

additive margin of cosine term in CosFace was 0.006, the additive margin of angular term
in ArcFace was 0.003, the additive margins of cosine term and angular term in HMS were
0.006 and 0.003, respectively. All experiments were conducted in the pytorch framework.
Cuda was used to accelerate training. The learning rate was set to 0.001, the batch size was
16, the optimizer in the triplet network was Adam, and the optimizer in other methods was
SGD (momentum was 0.9).

3.3. Loss-Driven Method Experiments

To prove that HMS enables the SNN to learn separable enough features of a TM image,
we compared the detection models based on different transformations of softmax under
the same experimental conditions. The accuracy and F1 score of detecting similar and
dissimilar TM image pairs are shown in Tables 1 and 2. We also tested the detection model
on the LFW dataset while the SNN was still trained with TM image data. The results are
shown in Tables 3 and 4.

For the TMISD task, SphereFace achieves up to 96.39% accuracy, which outperforms
CosFace and ArcFace greatly. However, when the depth of SNN increases, the model is
overfitted severely. The accuracy of HMS regarding normalization of feature and weight
vectors is slightly better than that of CosFace and ArcFace. HMS achieves the best per-
formance, with up to 98.97% accuracy, which is a 2.58% improvement over SphereFace.
Another notable thing is that a simple six-layer SNN trained on HMS works well on the
TMISD task, with 97.45% accuracy and an F1 score of 0.9516.
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Table 1. The accuracy of the TMISD task.

Transformations of
Softmax

Accuracy (%)

6-Layer ResNet18 ResNet34 ResNet50 ResNet101 ResNet152

SphereFace [16] 96.25 95.36 96.39 — * — —
CosFace [17,18] 43.81 51.55 52.06 52.58 55.15 58.76
ArcFace [19] 46.39 47.94 53.09 52.06 56.70 52.58
HMS (normalized) 54.12 53.61 54.12 57.73 52.06 53.09
HMS 97.45 97.42 97.94 98.39 98.97 98.52

Note: *—indicates that SNN is overfitted, same below.

Table 2. The F1 score of the TMISD task.

Transformations of
Softmax

F1 Score

6-Layers ResNet18 ResNet34 ResNet50 ResNet101 ResNet152

SphereFace [16] 0.9539 0.9516 0.9574 — — —
CosFace [17,18] 0.4171 0.4778 0.5131 0.5306 0.5915 0.5789
ArcFace [19] 0.4800 0.4294 0.5381 0.5373 0.6216 0.5534
HMS (normalized) 0.5189 0.5714 0.4671 0.6339 0.5373 0.5646
HMS 0.9516 0.9735 0.9798 0.9749 0.9746 0.9897

Table 3. The accuracy of the FR task.

Transformations of
Softmax

Accuracy (%)

6-Layers ResNet18 ResNet34 ResNet50 ResNet101 ResNet152

SphereFace [16] — — — — — —
CosFace [17,18] 45.63 47.25 46.97 47.38 47.82 46.38
ArcFace [19] 46.05 48.23 49.07 48.63 46.87 46.90
HMS (normalized) 50.13 50.50 49.06 50.55 48.30 51.18
HMS 80.45 90.57 82.45 82.30 84.17 82.90

Table 4. The F1 score of the FR task.

Transformations of
Softmax

F1 Score

6-Layers ResNet18 ResNet34 ResNet50 ResNet101 ResNet152

SphereFace [16] — — — — — —
CosFace [17,18] 0.3932 0.4468 0.4348 0.4411 0.5229 0.4389
ArcFace [19] 0.4564 0.4461 0.5789 0.5466 0.5173 0.4927
HMS (normalized) 0.3828 0.5380 0.3794 0.5524 0.3872 0.5978
HMS 0.8173 0.9002 0.8464 0.8449 0.8517 0.8483

For the FR task, the detection model trained on SphereFace with TM data is overfitted.
The performance of HMS (normalized) is also better than that of CosFace and ArcFace. The
model trained on HMS generalizes well on the LFW dataset with up to 90.57% accuracy and
an F1 score of 0.9002. A simple six-layer SNN trained on HMS can reach 80.45% accuracy
and an F1 score of 0.8173.

The performances of HMS with different depths of SNN were tested, as shown in
Tables 1–4. ResNet18 was adequate for meeting the demand of the TMISD task and
generalizing on the FR task. This also indicates that the SNN penalized by HMS is adequate
to learn sufficient and critical information with fewer network layers. The training expenses
are reduced as a result.

The detection accuracy of the model (resnet18) trained on HMS with different hyper-
parameters is shown in Figure 6. The accuracy fluctuation caused by scale factor s is higher
than the margin d1 and d2.
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Figure 6. The accuracy of the detection model (resnet18) trained with different hyper-parameters
in HMS.

3.4. Data-Driven Method Experiments

The performance of detection models based on the typical SNN, triplet network, and
fine-tuning methods is shown in Table 5.

Table 5. The performance of data-driven methods on the TMISD task.

SNN (Contrastive Loss) Method Triplet Network Method Fine-Tuning Method

Accuracy (%) F1 Accuracy (%) F1 Accuracy (%) F1

ResNet18 41.53 0.4237 85.05 0.8449 53.61 0.5588
ResNet34 46.73 0.4535 92.27 0.9282 70.65 0.7149
ResNet50 47.18 0.4654 58.25 0.6897 56.19 0.5685

ResNet101 46.53 0.4549 54.13 0.6642 47.42 0.5049
ResNet152 46.84 0.4431 59.28 0.6802 46.39 0.4851

The triplet network achieved 92.27% accuracy with an F1 score of 0.9282 on the TMISD
task, which is a significant improvement over a typical SNN. However, the performance
gap came with greatly increased training costs in terms of memory and time. The perfor-
mance of the fine-tuning method on the TMISD task was not satisfactory considering the
training cost of the transferred knowledge. But when a model for a similar task is readily
available, the fine-tuning method makes for a good choice with minimal training cost and
fine performance.

For the detection models based on the triplet method and fine-tuning method, the
performance changes rapidly with the depths of the network. These data-driven methods
obtain a large gain in performance only under the condition that an adaptive depth CNN is
employed for the task.

3.5. Discussion

Metric learning is an appropriate research idea for the TMISD task since the require-
ment for annotation data during the training is reduced. With the same numbers of similar
TM pairs, the triplet network and fine-tuning data-driven methods can improve perfor-
mance greatly compared to a simple SNN model. The triplet model enhances the discrimi-
nation ability with an additional input during training. The fine-tuning method transfers
the learned information from other tasks and alleviates the pressure of data annotation.

The advantage of the detection models based on the data-driven methods is not
prominent compared to the typical loss-driven models since the training is complicated



Appl. Sci. 2024, 14, 2865 10 of 11

and expensive. The performance gaps between the SphereFace model and the other two
models, CosFace and ArcFace, are huge, but the performance cannot be sustained when
SNN depth is increased or a new type of image is input for detection. The SphereFace
model can be damaged by the diversity of TM images.

The HMS model outperformed other methods in the following aspects: (1) the com-
pactness of similar TM pairs is tightened obviously; (2) the discrimination ability for another
type of image, i.e., face data, is improved, which indicates the model trained on HMS is
robust; (3) the training cost is reduced as a result of the requirements of annotated data and
deep SNN depth being loosened.

In general, the introduction of the loss-driven model training idea is meaningful to the
TMISD task. The challenges of training data-building and generalization on new data are
dealt with in a low-cost way.

4. Conclusions

The detection of TM image similarity (TMISD) is an essential procedure for court
judgments on TM infringement cases and TM legal registration, while the training data-
building of similar TM pairs and model generalization on fast-growing numbers of new
TM designs are huge challenges for the task. To address these issues, similarity detection
models based on loss-driven metric learning methods were researched. Compared to
data-driven methods, including the triplet network model and fine-tuning method, the
optimization of the softmax loss function had a larger gain in performance, with less data
preparation and training cost.

A hybrid-margin softmax (HMS) is proposed based on the peculiarity of TM images.
Additive margins are attached to the cosine and angular term of softmax in the angular
space to tolerate the slight differences between the similar parts of similar TM image pairs.
The weights of the classifier and extracted feature vectors in the softmax are not normalized,
aiming to best preserve the information of input images.

The detection model trained on HMS is further penalized to improve the discrimi-
nation ability of TM images. The model can be trained on small numbers of TM training
data. Experiments indicate that the model trained on HMS achieves the best performance
on the TMISD task with up to 98.97% accuracy and an F1 score of 0.9746, compared to
other transformations of softmax. The model can also achieve high performance with fewer
SNN layers. Furthermore, the HMS-driven model trained completely on TM image data
generalized well on the FR task, with up to 90.57% accuracy and an F1 score of 0.9002.
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