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Abstract: In the rapidly evolving landscape of healthcare technology, the critical need for robust
privacy safeguards is undeniable. Local Differential Privacy (LDP) offers a potential solution to
address privacy concerns in data-rich industries. However, challenges such as the curse of dimen-
sionality arise when dealing with multidimensional data. This is particularly pronounced in k-way
joint probability estimation, where higher values of k lead to decreased accuracy. To overcome these
challenges, we propose the integration of Bayesian Ridge Regression (BRR), known for its effective-
ness in handling multicollinearity. Our approach demonstrates robustness, manifesting a noteworthy
reduction in average variant distance when compared to baseline algorithms such as LOPUB and
LOCOP. Additionally, we leverage the R-squared metric to highlight BRR’s advantages, illustrating
its performance relative to LASSO, as LOPUB and LOCOP are based on it. This paper addresses
a relevant concern related to datasets exhibiting high correlation between attributes, potentially
allowing the extraction of information from one attribute to another. We convincingly show the
superior performance of BRR over LOPUB and LOCOP across 15 datasets with varying average
correlation attributes. Healthcare takes center stage in this collection of datasets. Moreover, the
datasets explore diverse fields such as finance, travel, and social science. In summary, our proposed
approach consistently outperforms the LOPUB and LOCOP algorithms, particularly when operat-
ing under smaller privacy budgets and with datasets characterized by lower average correlation
attributes. This signifies the efficacy of Bayesian Ridge Regression in enhancing privacy safeguards
in healthcare technology.

Keywords: healthcare data; attribute correlation; LASSO regression; Gaussian copula; Bayesian ridge
regression; local differential privacy

1. Introduction

In the ever-evolving realm of healthcare technology, the implementation of robust
privacy safeguards has become indispensable. A pivotal approach in this regard is the
utilization of local differential privacy, a technique devised to safeguard individual-level
data while simultaneously facilitating the extraction of valuable insights from aggregated
datasets. As the healthcare industry increasingly embraces digital solutions and data-driven
decision-making, the necessity to strike a balance between innovation and the protection of
sensitive patient information has become more pressing than ever.

Nowadays, our data are multidimensional, making it possible to extract vast amounts of
information. For instance, a healthcare institution with a dataset tracking patient activities
can glean valuable insights. A patient’s interactions within a hospital environment, treated as
high-dimensional data, can be analyzed to uncover patterns such as patient admission and
discharge times, the duration of medical procedures, staff interactions, and preferred modes
of transportation within the hospital premises, among other relevant metrics.
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In recent years, safeguarding personal data privacy has gained heightened significance,
driven by the expanding array of industries, not limited to healthcare, that actively collect
and store our information. A significant privacy concern revolves around data publishing,
and one approach to tackle this issue is through Central Differential Privacy (CDP) [1]. This
method facilitates the release of sensitive data, permitting statistical analysis while preserv-
ing individual privacy. However, it is important to note that in CDP, users are required
to share their original information with a central server. In contrast, LDP aims to address
this limitation. Unlike CDP, users in LDP do not need to place trust in the communication
channel or central server. Instead, they encode their data and introduce random noise
before transmitting it to the central server. This process effectively protects users’ privacy
while still enabling the central server to compute the distribution of user statistics.

Arcolezi et al. [2] and Yang et al. [3] provide overviews of LDP technology, summariz-
ing and analyzing state-of-the-art research in the field. Yang [3] provides an overview of
existing works that serves as a foundational resource for exploring emerging challenges in
the future. These challenges include the relaxation of LDP, privacy amplification, and the
development of solutions tailored for small populations. Meanwhile, Arcolezi [2] investi-
gates the impact of collecting multiple sensitive attributes under LDP on fairness. They
experiment with several LDP approaches, including Generalized Randomized Response
(GRR), Binary Local Hashing (BLH), Optimal Local Hashing (OLH), RAPPOR, Optimal
Unary Encoding (OUE), Subset Selection (SS), and Thresholding with Histogram Encoding
(THE) to train Machine Learning (ML) models. The models are then evaluated using
several metrics, including the F1-score, area under the receiver operating characteristic
curve (AUC), Disparate Impact (DI), Statistical Parity Difference (SPD), Equal Opportu-
nity Difference (EOD), and Overall Accuracy Difference (OAD). The differences between
Arcolezi [2] and our work are presented in Table 1.

RAPPOR [4] is one of the most well-known LDP approaches; it was developed by
Google as an extension of Google Chrome, which collects process names and homepages
from users using an LDP algorithm. Furthermore, Apple has incorporated an LDP appli-
cation into their devices [5], intended for identifying popular emojis and detecting high
energy and memory usage in their devices. These examples represent just a few instances of
the diverse applications of LDP in practice. Nevertheless, the application of LDP schemes
faces challenges when dealing with multi-dimensional data, primarily stemming from
dimensionality issues like the curse of dimensionality. This concept asserts that as the data’s
dimensionality grows, introducing sufficient noise to protect privacy becomes increasingly
challenging without excessively distorting the data. For instance, consider a dataset with
10 features. Achieving local differential privacy would require perturbing each feature with
a specific amount of random noise. However, if we increase the number of features to 100,
the noise to maintain the same level of privacy also increases.

To tackle these challenges, several studies have been conducted. Ren et al. proposed
LOPUB [6], a privacy-preserving technique where users first encode their data using
Bloom filters and then perturb the encoded data using the randomized response (RR)
algorithm [7]. Finally, the perturbed-encoded data are sent to a central server, which
estimates the multi-dimensional joint probability distribution by applying the LASSO [8]
and expectation-maximization (EM) algorithms [9]. This method was tested on open
datasets and demonstrated good performance for high-dimensional data with low multi-
dimensional joint probability distributions. Meanwhile, LOCOP [10] represents a novel
approach for preserving privacy in high-dimensional data through synthesis. A univariate
marginal distribution is computed using LASSO regression from the perturbed-encoded
data, and a multivariate Gaussian copula is used to model the attribute dependence. This
method aims to provide a privacy-preserving solution for sharing high-dimensional data
with a central server.

Regrettably, approaches like LOPUB encounter diminished data utility as k-way in-
creases, where k is the dimensionality of joint probability distribution estimation. For
certain datasets, the error between k = 2 and k = 3 evaluations can be two or three times
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higher, contingent upon the cardinality of the attributes. Another crucial factor to take
into account is the number of elements in each attribute domain. Consequently, these
methods only offer a partial resolution to the challenge of handling extensive datasets with
numerous attributes and high cardinality. Unfortunately, both LOPUB and LOCOP rely
on LASSO regression, initially introduced to enhance prediction accuracy in regression
models. However, the LASSO regularization technique, employed in linear regression,
grapples with high cardinality—a prevalent issue for large datasets. The encoding and
perturbation method introduced by [6] has also been utilized and built upon in subsequent
works such as Wang [10] and Jiang [11].

We propose the application of the Bayesian Ridge Regression (BRR) of Yang and
Emura [3] on the central server to address the challenge of evaluating highly correlated
attributes. The differences between our approach [6], and [10] are outlined in Table 1.

This work is supported by the research of Wieringen et al. [12], Sambasivan et al. [13],
and Assat et al. [14]. Wieringen’s investigation focused on computing the posterior prob-
ability from the prior probability, providing several benefits, including the construction
of robust prior distributions. Additionally, Sambasivan [13] applied a Bayesian approach
in sparse modeling and machine learning. Assat et al. [14] demonstrated the effectiveness
of this approach in constructing reliable prior probability distributions. This collective
evidence underscores the value of investigating BRR, suggesting practical applications
across diverse fields. Our previous work (a preliminary version of this work was published
in [15]) laid the groundwork for integrating BRR within the LDP mechanism, and the
extended version of this work delves deeply into exploring attribute correlations using
the average absolute Pearson correlation. This comprehensive expansion goes beyond the
mere application of BRR; it involves nuanced analyses of privacy guarantees and complex-
ity trade-offs, employing various metrics such as R-squared. Additionally, it includes a
comparison between regression techniques applied to estimate joint probability distribu-
tions in LDP. This study also encompasses several experiments on datasets with different
characteristics, including variations in size, attribute composition, and correlation from
various industries. Among these datasets are well-known sets commonly used to evaluate
LDP or CDP approaches.

Healthcare takes center stage in this collection of datasets. This evaluation is made
because datasets in the healthcare domain often exhibit high correlations among attributes.
For instance, the risk of developing various diseases tends to increase with age, encom-
passing conditions such as heart disease, stroke, cancer, and Alzheimer’s disease. This
phenomenon arises from multiple factors, including changes in cell function, the accrual of
damage over time, and the decline of the immune system. Certain diseases also exhibit
age-related prevalence, with childhood cancer being more common in children and prostate
cancer being more prevalent in older men.

Another solution to apply LDP into medical datasets was proposed by Sung et al. [16].
They normalized all data to a range between −1 and 1, and they applied the bounded
Laplacian method to prevent the generation of out-of-bound values following the appli-
cation of the differential privacy algorithm. To preserve the cardinality of categorical
variables, postprocessing via discretization was conducted. The efficacy of the algorithm
was assessed using both synthetic and real-world data sourced from the eICU Collaborative
Research Database. Evaluation involved comparing the original and perturbed data using
misclassification rates for categorical data and the mean squared error for continuous data
on ML models. Furthermore, the researchers compared the performance of classification
models predicting in-hospital mortality using real-world data. The differences between
this work and ours is presented in Table 1.
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Table 1. Differences between Sung [16], Arcolezi [2], LOPUB [6], LOCOP [10], and this paper. The
datasets pertaining to the healthcare industry are underlined.

Datasets Perturbation Estimation Evaluation

Sung [16] Synthetic
eICU

Normalize
Bounded Laplacian

Discretization

NA (ML Models)
misclassification rates
mean squared error

Arcolezi [2] Adults
ACSCoverage

LSAC

GRR
BLH
OLH

RAPPOR
OUE

SS
THE

NA (ML Models)
f1-score

AUC
DI

SPD
EOD
OAD

LOPUB [6] Nursery
Lung Cancer

Stroke
NHANES

Bank
National

Massachusets
Texas

MS FIMU
Adults

Hypertension
Skin Cancer

Diabetes
US CENSUS

Cirrhosis

Bloom Filter
Randomize Respose

LASSO
with
EM

Joint probability
distribution

AVD

LOCOP [10] LASSO
with

Gaussian
Copula

Ours BRR [17]

We assess the performance of LOPUB [6], LOCOP [10], and BRR using three metrics:
average variant distance (AVD), R-squared, and the average absolute Pearson correlation
coefficient (AAR). AVD is employed to quantify the difference between the probabilities
of two joint probability distributions—the original and those computed by the LDP ap-
proaches. Subsequently, we propose using R-squared, a metric that gauges the performance
of LASSO and Bayesian Ridge Regression algorithms applied to LDP approaches. Finally,
we evaluate how the performance of LDP approaches is affected by the correlation between
elements in a dataset using AAR.

With a privacy budget set to ϵ = 0.1 per attribute and k = 5, after conducting one
hundred experiments, our work achieves a 57% reduction in the average variant distance
compared to that of LOPUB. The contributions of this paper are summarized as follows:

1. We propose a new LDP schema using BRR for joint probability estimation and the
baseline algorithm LOPUB [6].

2. We propose two metrics, R-squared and AAR, for evaluation of the performance.
3. We show in this document the experimental results using six open datasets that

demonstrates the superiority of estimation accuracy and the robustness across diverse
characteristics including numbers of users, attributes, and AARs.

The subsequent sections of the paper are organized as follows: Section 2 provides the
preliminaries, while Section 3 details our proposed approach. The paper concludes with
the sections Experiments and Conclusions.

2. Preliminaries
2.1. LDP Overview and the Curse of High Dimensionality

The Local Differential Privacy (LDP) model comprises two entities: users and a
central server, with the objective of enabling users to share information while safeguarding
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their privacy. The shared information serves various purposes, including computing
statistics about the dataset. LDP has proven effective in sharing and recovering the original
distribution of a dataset while preserving user privacy. Numerous LDP approaches in the
literature employ diverse methods to protect user information [1,4,18].

As a general example, we can think of a dataset where the attributes exhibit the fol-
lowing cardinalities Ωgender = {male, female}, Ωcountry = {USA, CAN, CHN, JAP, MEX},
and Ωmarital = {married, widowed, separated, divorced, single}. The objective of LDP is
for users to transmit their information to the central server while preserving anonymity.
Subsequently, the central server can use the information provided by the users to compute
the original distribution of this dataset.

In this example, if the central server tries to recover the distribution of one attribute, it
will face the original cardinalities |Ωgender| = 2, |Ωmarital | = 5, and |Ωcountry| = 5, where
the average of these cardinalities is computed as

ωk =
∑k |Ω(gender,marital,country

k )
|

(gender,marital,country
k )

. (1)

Here, |Ω
(gender,marital,country

k )
| denotes the cardinality of the unique combinations of the attributes for

gender, marital status, and country, while (gender,marital,country
k ) represents the count of unique

combinations for a given value of k. The average of these cardinalities is computed using

Equation (1). Substituting (k = 1), the result is ω1 =
∑1 |Ω

(
gender,marital,country

1 )
|

(gender,marital,country
1 )

= 2+5+5
3 = 4, and the

cardinality has risen; for two attributes (k = 2), the average is ω2 = 15. Finally, the cardinality
of three attributes (k = 3) is ω3 = 50. The complexity of the cardinality increases as the number
of attributes grows. For instance, consider a real-world dataset with tens of attributes. We can
see the challenge when the central server tries to recover k attributes, as the average cardinality
size increases with the data dimensionality.

2.2. Correlation between Variables in Healthcare Datasets

In the realm of healthcare datasets, the question of whether there is a correlation
between variables becomes pivotal, especially considering the sensitivity of health-related
information. Here, there are some examples of some kinds of datasets that can have
correlations between their attributes:

• Age and Disease Risk:

– The risk of developing many diseases increases with age.
– Certain diseases are more likely to occur in specific age groups.

• Body Mass Index (BMI) and Diabetes:

– People with a higher BMI are more likely to develop type 2 diabetes.
– Excess body weight can lead to insulin resistance, increasing the risk of diabetes.

• Blood Pressure and Cardiovascular Diseases:

– High blood pressure is a major risk factor for cardiovascular diseases.
– The risk of developing cardiovascular diseases increases with blood pressure.

• Cholesterol Levels and Atherosclerosis:

– High levels of LDL (bad) cholesterol can lead to atherosclerosis.
– The risk of developing atherosclerosis increases with LDL cholesterol levels.

• Exercise Habits and Overall Health:

– Regular exercise has many health benefits, including a reduced risk of various
conditions.

– Exercise also helps to improve mental health and overall mood.

• Smoking and Respiratory Diseases:
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– Smoking is a leading cause of preventable death.
– Smoking is a major risk factor for respiratory diseases.

R-Squared, R2

Despite the ubiquity of regression analysis in scientific disciplines, a unified standard
for its evaluation remains elusive. Chicco et al. [19] perform a critical review, examining
several commonly employed metrics and ultimately advocate for R-squared as the most
informative and transparent measure in many cases. While metrics such as mean absolute
percentage error (MAPE), mean absolute error (MAE), mean square error (MSE), and
its rooted variant (RMSE) are frequently used, they often obscure crucial details about a
regression model’s performance. For example, a seemingly acceptable MAPE value can
conceal significant outliers or systematic biases. In contrast, Chicco et al. [19] show that
R-squared offers valuable clarity: high values denote accurate predictions across diverse
data points, while negative values unambiguously signal a poorly fitting model. This
inherent informativeness makes R-squared a compelling choice for evaluating regression
analyses in various scientific contexts. R-squared is computed as

R2 = 1 − MSE
MST

,

where MSE is ∑z
i=1(Xi − Ci)

2 and the mean total sum of squares (MST) is ∑z
i=1(Yi − Y)2.

In the previous formulas, Xi is the predicted ith value, the Ci element is the actual ith value,
and z is the length of the vector. In our experiments, Xi and Ci are the joint probability
distributions for real and computed data on k-way. R-squared can take values in the range
(−∞, 1] according to the mutual relation between the ground truth and the prediction
model. Hereafter, we show a brief overview of the principal cases.

• R2 ≥ 0: With linear regression with no constraints, R2 is non-negative.
• R2 = 0: The fitted line (or hyperplane) is horizontal. With two numerical variables,

this is the case if the variables are independent, that is, are uncorrelated.
• R2 ≤ 0: This case is only possible with linear regression when either the intercept or

the slope are constrained so that the “best-fit” line (given the constraint) fits worse
than a horizontal line, for instance, if the regression line (hyperplane) does not follow
the data.

2.3. Generalizing the Problem

Before describing our approach, we introduce preliminary concepts. In LDP ap-
proaches, users want to not only share their information with a central server but also
maintain their privacy. Thus, users encode and perturb their data before sending it to
the central server, and in doing this, they preserve their anonymity. In this work, we
follow the user steps proposed by LOPUB [6], where we generalize the LDP problem;
there are N users, and U = {u1, u2, u3, . . . , uN} is a set of users. All users have an equal
number of attributes, denoted as d. Each attribute has a specific domain, represented by
Ωi = {ω1

i , . . . , ω
|Ωi |
i }, where i ranges from 1 to d.

2.4. Local Differential Privacy

Local Differential Privacy (LDP) [20] offers a stringent privacy guarantee, wherein
users place their trust solely in themselves and not in any central authority.

Definition 1 (Local Differential Privacy). An algorithm ξ satisfies ϵ-local differential privacy for
any user if for any two data records u and w and for any output ũ within the range of outputs of
algorithm ξ(ũ ⊂ Range(ξ)), Equation (2) holds:

Pr[ξ(u) ∈ ũ] ≤ eϵPr[ξ(w) ∈ ũ]. (2)



Appl. Sci. 2024, 14, 2864 7 of 23

In Equation (2), ϵ is the privacy budget, a smaller ϵ implies stronger privacy protection, while
a larger value indicates the opposite.

2.5. LOPUB Scheme

The algorithm introduced by Ren [6] for encoding and perturbing user data has been
implemented in this study. Table 2 enumerates the key notations utilized in this paper.

Table 2. Notations.

Notation Description

k dimensionality of joint probability distribution estimation
U dataset
N number of users
Ui ith user
d number of attributes in U

Uj jth attribute in U
ui

j value of ith user with attribute jth in U
Ωj domain of Uj
H set of hash functions
p false-positive probability used to calculate mj

mj length of si
j

si
j bloom filter of ui

j , si
j = Hj(ui

j)

si
j[b] bth bit of si

j
ŝi

j randomized bloom filter of ui
j

ŝi
j[b] bth bit of ŝi

j[b]
ŷ counts the number of 1’s in ŝi

j
ŷ[b] bth bit of ŷ[b]

y original count
y[b] bth bit of y
M candidate bit matrix
R̂ Pearson correlation coefficient matrix
Fj marginal distribution function of Uj

F−1
j inverse cumulative distribution function of Uj

2.5.1. Bloom Filters

Encoding user information involves representing user input using a Bloom filter
H [21,22], a probabilistic data structure designed by Bloom in 1970 [21] to test membership
in a set. Consider a dataset U with N users, where the data record ui for the ith user
comprises d attributes, denoted as ui = [ui

j, . . . , ui
d]. To encode each ui

j, the user utilizes a
Bloom filter with a set H of hash functions designed for Uj, where Uj represents the jth
attribute of U. Specifically, the user applies hj hash functions Hj,1, . . . ,Hj,hj

from Hj to

map ui
j to a length-mj bit string si

j, where mj is the length of the Bloom filter and 1 ≤ j ≤ d.

Consequently, ui
j is inserted into a mj-bit Bloom filter using h hash functions from H,

represented as Hj(Ω), with si
j[b] denoting the bth bit of the bit string si

j. The length of the
Bloom filter mj for Uj is computed as

mj =
ln 1

p

(ln 2)2 |Ωj|. (3)

Here, |Ωj| denotes the cardinality of attribute Uj, and p represents the false-positive probability.
The number of hash functions used in a Bloom filter directly impacts the likelihood of

false positives. Employing a greater number of hash functions decreases the probability of
collisions, thereby enhancing the filter’s precision.
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Next, let us discuss how the size of mj impacts the error rate. The probability of not

setting a bit by h hash functions becomes p =
(

1 − 1
mj

)h
.

For η elements mapped-in, it becomes p =
(

1 − 1
mj

)hη
. Now our interest lies in

setting a bit by mistake for a string, resulting in a false positive and thus an error rate. The

probability is computed as p = 1 −
(

1 − 1
mj

)hη
. Then, we need to repeat this process h

times. Finally, the error rate for a string is computed as p =

(
1 −

(
1 − 1

mj

)hη
)h

.

In the context of this scenario, as the number of bits mj approaches infinity, the error
rate diminishes to 0, indicating an increasingly accurate result. Conversely, when mj is set
to 1, the error rate rises to 1, signifying a 100% error rate, implying that every attempt at
hashing results in a false positive, rendering the outcome entirely inaccurate. Thus, the
error rate is inversely related to the value of mj, with larger values yielding more precise
results and smaller values leading to a complete failure in accuracy.

2.5.2. Randomized Response

Introducing perturbations into the data involves the use of Randomized Response
(RR), a method first proposed by Warner [7] in 1965, allowing respondents to provide
answers while preserving confidentiality. In RR, the interviewer remains unaware of
whether the question is answered truthfully, introducing randomness into the respondent’s
decision-making process. The RR method is applied after each encoding step, where each
bit si

j[b] (b = 1, 2, . . ., mj) undergoes a random flip as following,

ŝi
j =


si

j with probability of 1 − f ,
1 with probability of f /2,
0 with probability of f /2.

(4)

Here, f ∈ [0, 1] represents the probability of randomly flipping a bit. Once the
randomized Bloom filter ŝi

j is obtained, the ith user concatenates ŝi
1 through ŝi

d to create

a bit vector (ŝi
1 · · · ŝi

d), which consists of (∑d
j=1 mj) bits. The resulting vector is sent to the

server.

2.5.3. Estimation, LASSO

Following the encoding and perturbation of their data, users transmit the processed
information to the central server. The central server then acquires the distribution of users,
incorporating random noise introduced by RR. For every bit b within each attribute j, the
central server counts the number of 1’s ŝi

j as ŷj[b] = ∑N
i=1 ŝi

j[b]. Subsequently, the original
count yj[b] is approximated as

y[b] =
ŷ[b]− f N

2
1 − f

, (5)

after calculating the original count, the candidate bit matrix is generated using a set of
candidate Bloom filters H, implemented as

M = H1(Ω1)×H2(Ω2)× · · · ×Hd(Ωd), (6)

where d represents the number of attributes. The block diagram illustrated in Figure 1
outlines the process. It reviews the steps undertaken by the central server, providing
an example with k = 2. The aim is to estimate the distribution of attributes U1 and
U2 in the subsequent steps. To derive the distribution from the noise data, y = Mβ, a
regression technique is used. The technique employed is Least Absolute Shrinkage and
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Selection Operator, commonly known as LASSO. LASSO is a linear regression method that
incorporates regularization to enhance prediction accuracy, as introduced by [23].

Figure 1. Central server block diagram proposed by [6].

2.6. LOCOP Scheme
Estimation, LASSO with Gaussian Copula

After users encode and perturb their data, they transmit it to the central server, which
receives the distribution of users with random noise added by RR. Initially, the server
estimates the one-dimensional and two-dimensional distributions using the steps proposed
by Wang [10]. Subsequently, it calculates the Pearson correlation coefficient matrix R̂ for
the d-dimensional attributes. Ensuring that this matrix is a positive definite matrix (PDM)
is essential, signifying that all its eigenvalues are positive.

In the realm of copulas, PDMs play a crucial role, as they are utilized to model the
dependence structure between random variables. Copulas, acting as functions, describe
the joint distribution of random variables by incorporating their marginal distributions and
a dependence structure. PDMs enable the specification of the variable’s correlation matrix,
illustrating the linear relationship between variable pairs. By defining the correlation
matrix, it becomes feasible to model the dependence structure between variables with
flexibility and accuracy. Therefore, it is imperative to verify that R̂ is a PDM.

Wang [10] propose an algorithm to check this condition, and if R̂ fails to be a PDM,
a postprocessing step is implemented to transform it into a positive definite matrix. This
ensures that the copula model can effectively describe the joint distribution.

Following the computation of the correlation coefficient matrix R, the formulation
of the multivariate Gaussian copula aligns with the Gaussian joint distribution Ξ(0, R).
Algorithm 1 delineates the process of sampling and synthesizing.

The matrix Ũ is a representation of anonymous users, where each row corresponds to
an individual user and each column signifies a potential attribute. This matrix enables the
estimation of the joint distribution of the original dataset while preserving user privacy.
To calculate the joint probability distribution of two or more attributes for the users in
Ũ, begin by determining the total number of users in Ũ, which serves as the sample size.
Subsequently, ascertain the frequency of each combination of attribute values for the users
of interest, thereby establishing the joint frequency distribution. Lastly, compute the joint
probability of each combination by dividing its joint frequency by the sample size. This
process ensures a comprehensive understanding of attribute relationships among users
while maintaining a focus on privacy considerations.
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Algorithm 1 Copula-based Multiple Variable Sampling and Synthesizing

Ui(i = 1, . . . , d): attribute (i = 1, 2, . . . , d)
for each Ui do

Generating marginal distribution function Fi
Computing the inverse cumulative distribution function F−1

i
end for
Computing R
Generating d-dimensional random vector (r1, . . . , rd) following Ξ(0, R)
Computing X1 = φ(r − i), where φ is the standard normal distribution
Computing Ũ = (F−1

i (X1), . . . , F−1
d (Xd))

return Ũ

2.7. Bayesian Ridge Regression

BRR is a linear regression technique that integrates Bayesian principles into the deter-
mination of model parameters. The method assumes that the coefficients of the regression
model adhere to a Gaussian distribution with a zero mean and a precision parameter
(inverse of the variance), which is estimated from the data. The incorporation of Bayesian
principles into ridge regression is designed to mitigate overfitting by introducing a regular-
ization term [24]. The model can be represented as follows [17]:

t = βw + ϑ (7)

where t corresponds to the dependent variable, β denotes the coefficient vector, w represents
the independent variable, and ϑ stands for the error term, which is assumed to follow a
Gaussian distribution. The BRR model introduces a prior distribution over β and estimates
the posterior distribution using Bayesian inference. The regularization term in this model
helps in controlling model complexity, making it less prone to overfitting. BRR offers
several advantages over traditional linear regression and ridge regression:

• Effective Handling of Multicollinearity: BRR incorporates a regularization term, which
is essentially a penalty for large coefficients. This helps to shrink the coefficients of
correlated features, making them more stable and less sensitive to small changes in
the data [17].

• Prevention of Overfitting: BRR’s shrinkage mechanism effectively reduces overfitting
by preventing the model from overemphasizing specific features [25].

• Automatic Shrinkage: BRR automatically determines the optimal degree of shrinkage
based on the data, reducing the need for manual tuning of the ridge parameter.

Hastie et al. [26] discuss the applicability of LASSO regression for automatic feature
selection, where certain features are deemed irrelevant by setting their coefficients to zero.
This highlights a fundamental difference between LASSO and BRR when estimating joint
probability distributions. While LASSO tends to eliminate certain coefficients, BRR assumes
that all features contribute to some extent, resulting in coefficients rarely reaching zero.

As a graphical example, we tackle the matter from a Bayesian perspective by employ-
ing a linear model with normal errors, integrating it with a particular prior distribution for
β. For ridge regression [27], the prior follows a Gaussian distribution with mean zero and
a standard deviation determined by λ. Conversely, for LASSO [23], the distribution is a
Laplacian distribution with mean zero and a scale parameter determined by λ. Figure 2
presents a comparison of the posterior mode of β under a Gaussian prior and a Laplacian
prior. With LASSO, the prior distribution peaks at zero, indicating an expectation (a priori)
that many coefficients β will be exactly equal to zero. In contrast, for ridge regression,
the prior distribution is flatter at zero, implying an expectation of coefficients to be nor-
mally distributed around zero. For further information on BRR, readers can consult the
works [17,24], which offer comprehensive discussions of Bayesian Ridge Regression.
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Figure 2. Comparison of the posterior mode of β under a Gaussian prior (Left) and Laplacian prior (Right).

2.8. Privacy Analysis

User privacy is maintained by asserting the privacy of local randomizers, which each user
applies independently to data records. Local perturbation of a specific attribute can achieve
ϵ-LDP, where ε = 2h ln

(
2− f

f

)
, with h being the number of hash functions in the Bloom filter

and f the flip bit probability. According to the sequential composition theorem [28], the local
transformation of a d-dimensional data record achieves ϵd-LDP, where:

ϵd = 2dh ln
2 − f

f
,

with d representing the number of attributes in the original data record. As all users
independently perform the same transformation, the aforementioned ϵd-LDP guarantee is
applicable to all distributed users.

3. Proposed Scheme
3.1. Model Definition of Bayesian Ridge Regression (M,y)

This section focuses on demonstrating how we apply BRR using the available data on
the server to estimate joint distributions. The server has a vector y = (y1[1] · · · y1[k]) origi-
nally computed by Equation (5) and a candidate bit matrix M = (H1(Ω1)× · · ·×Hk(Ωk))

T

computed by Equation (6), where k is dimensionality of joint probability distribution es-
timation. The output parameter is the candidate bit matrix M, and the input feature is
the vector y. Substituting the output and input parameters into Equation (7), we have
M = βy + ϑ.

3.2. Bayesian Ridge Distribution Estimation

We aim to improve the performance of the LOPUB algorithm by using perturbed
Bloom filters as representative features of the data, similar to LOPUB. The central server
receives samples with noise from a specific distribution, which can be estimated using linear
regression M = βy + ϑ. The candidate bit matrix M is created using Bloom filters, which
guarantee that the features extracted by the central server will be the same as those extracted
by the user. BRR Algorithm 2 unfolds through a sequence of steps. Initially, the central
server acquires perturbed Bloom filters sent by users. Subsequently, the server undertakes
the computation of the original count for each bit within k attributes, estimating the accurate
count for each. Following this, a candidate bit matrix M is meticulously constructed for k
attributes, as illustrated in Figure 1. The BRR model is then fitted, employing the Bloom
filters M and the associated counts y. Finally, the probability of the target is determined
by normalizing β, the estimated coefficients derived from the regression model, through
division by their sum. Algorithm 2 improves performance and privacy preservation by
using perturbed Bloom filters as representative features and by estimating the distribution
using BRR.
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Algorithm 2 Bayesian Ridge Regression k-way Joint Probability Distributions

Uj: jth attribute (1 ≤ j ≤ k)
Ωj: domain of (1 ≤ j ≤ k)
ŝi

j: perturbed bloom filter (1 ≤ i ≤ N) (1 ≤ j ≤ k)
f : flipping probability
H: set of hash functions for Uj
D: a subset of attributes Uj1, . . . , Ujk
Pr(AD): joint probability distribution of k attributes specified by D
for each j ∈ D do

for each b = 1, . . . , mj do
compute ŷj[b] = ∑N

i=1 ŝi
j[b]

compute yj[b] = (ŷj[b]− f N/2)/(1 − f )
end for
Hj(Ωj) Bloom filters are constructed by the server using H

end for
y = (y1[1], . . . , y1[m1] . . . yk[1], . . . , yk[mk])
M = (H1(Ω1)× . . . ×Hk(Ωk)) Candidate bit matrix is created
β = BayesianRidgeRegression(M, y)
return Pr(AD) = β/ ∑ β

4. Experiments

All experiments were conducted on a machine equipped with an AMD EPYC 7543P
32-Core Processor running at 2.8 GHz and 512 GB of RAM. The machine operated using
the Ubuntu 22.04.3 operating system and Python 3.11. For each dataset available in this
study, individual data records were examined and locally transformed into noisy Bloom
filters as outlined in Sections 2.5.1 and 2.5.2. Subsequently, the central server estimated the
joint probability distribution using Algorithm 2.

4.1. Experimental Method

We applied our approach to fifteen open datasets, namely, seven from the healthcare
domain and eight from various sectors, including finance, travel, and others. The following
is a brief summary of each dataset used in our experiments.

• The US Census (1990) dataset [29] is a raw dataset extracted from the Public Use
Microdata Samples person records. Recognized for its widespread usage, this dataset
holds significance for evaluating the efficacy of both CDP and LDP approaches. In
our experiments, we opt to utilize 10% of the available users within the dataset,
considering the substantial scale of available users. The continuous attributes within
the dataset have been discretized into five distinct categories.

• The Bank dataset [30] has the information for marketing campaigns. Through a
discretization process, the dataset has been transformed, converting its continuous
attributes into five distinct categories.

• The Adult dataset [31] stands out as one of the most widely utilized datasets for
assessing the efficacy of CDP and LDP approaches. The continuous attributes within
the dataset have been discretized into ten distinct categories.

• The Ms Fimu dataset [32] concerns multiple tourism statistics of the frequency of
visitors by days and by the union of consecutive days. The continuous attributes
within the dataset have been discretized into five distinct categories.

• The Nursery dataset [33] is derived from a decision model originally developed to
rank applications for nursery schools in the 1980s. The dataset has discretized its
continuous attributes into ten distinct categories.

• The Diabetes, Stroke, and Hypertension datasets belong to the Behavioral Risk Factor
Surveillance System (BRFSS) 2015 [34]. The dataset has undergone a discretization
process, resulting in the transformation of its continuous attributes into ten distinct
categories.
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• The NHANES dataset [35] was used in the PWS Cup 2021 [36], the goal of which was
to provide anonymized healthcare data. Through a discretization process, the dataset
has been transformed, converting its continuous attributes into ten distinct categories.

• The Cirrhosis dataset [37] compiles information gathered during a Mayo Clinic trial
of primary biliary cirrhosis of the liver. The continuous attributes within the dataset
have been discretized into ten distinct categories.

• The Lung Cancer dataset [38] comprises information on individuals diagnosed with
lung cancer, encompassing various factors such as age, gender, exposure to air pol-
lution, and alcohol consumption. The continuous attributes within the dataset have
been discretized into ten distinct categories.

• The Skin Cancer dataset [39] encompasses a summary of dermatoscopic images.
Organized in a tabular format, the dataset includes a comprehensive collection of
crucial diagnostic categories for pigmented lesions. The dataset has undergone a
discretization process, resulting in the transformation of its continuous attributes into
ten distinct categories.

• The NIST [40] Privacy Engineering Program introduced National, Texas, and Mas-
sachusetts datasets, initiating the Collaborative Research Cycle (CRC) to stimulate
research, innovation, and comprehension of data deidentification techniques. These
datasets have undergone a discretization process, resulting in the transformation of its
continuous attributes into ten distinct categories.

In our experiments, we convert categorical variables into numerical representations us-
ing techniques such as Label Encoding, where each category is assigned a unique numerical
value. The order of these values is determined alphabetically. We utilize LabelEncoder from
the scikit-learn library [41] in Python. It is important to note that the order of numerical
values based on the alphabetical order of categories is independent of estimation accuracy.
The arrangement is solely determined by the alphabetical sequence of the categories and
does not reflect any hierarchy or ranking based on the precision of estimations within those
categories.

Table 3 provides a thorough examination of datasets, incorporating key features such
as the attribute count, the number of users, and AAR. To compute the AAR, we require the
absolute value of the Pearson correlation coefficient |rlt|, where rlt is the Pearson correlation
coefficient between attributes l and t. The absolute value of |rlt| measures the strength
of the linear relationship between two attributes, irrespective of the direction (positive or
negative). The average absolute Pearson correlation coefficient for a dataset with j attributes
is calculated as

AAR =
∑

j−1
l=1 ∑

j
t=l+1 |rlt|
( j

2)
.

Here, ( j
2) is the binomial coefficient representing the number of unique pairs of j attributes.

The datasets vary significantly in terms of the number of users, attributes, and average at-
tribute correlation. The US CENSUS dataset has the highest number of users and attributes,
with a relatively high AAR of 0.1607. The Cirrhosis dataset has a notably high AAR of
0.2790, indicating stronger correlations among its attributes. The Nursery dataset has the
lowest AAR at 0.0411, suggesting weaker correlations among its attributes.

The default parameters are outlined as follows: The number of hash functions em-
ployed is denoted as h = 4, ensuring a consistent false-positive probability of p = 0.022
across all datasets. This is computed by solving for p in Equation (3) with mj = 8 and
|Ωj| = 2. The value of mj varies based on the cardinality of Uj within the datasets and can
be computed using Equation (3). We evaluate the performance of three approaches: the
simple LOPUB, which relies solely on LASSO regression, the standard LOCOP, and BRR.
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Table 3. Datasets characteristics.

Dataset # Users # Attributes AAR

Nursery 12,960 9 0.0240
Lung Cancer 53,427 5 0.0411

Stroke 40,910 11 0.0645
NHANES 4189 10 0.0747

Bank 45,211 17 0.0919
National 27,253 24 0.1002

Massachusets 7634 24 0.1006
Texas 9276 24 0.1035

MS FIMU 88,935 6 0.1068
Adults 45,222 10 0.1088

Hypertension 26,083 14 0.1237
Skin Cancer 10,015 5 0.1268

Diabetes 70,692 18 0.1334
US CENSUS 245,828 68 0.1607

Cirrhosis 418 17 0.2790

4.2. Results
Joint Probability

We select randomly one hundred times k-way joint probability attributes. To analyze
the joint probability distributions, we use the AVD to quantify the difference between real
and computed data; according to LOPUB [6] and LOCOP [10], it is defined as

AVD =
1
2 ∑

ω∈Ω
|P(ω)− Q(ω)|. (8)

The results depicted in Figure 3 pertain to six distinct datasets: Nursery, NHANES,
Massachusetts, MSFimu, Diabetes, and Cirrhosis. We have chosen to present their results
due to the datasets showcasing significant differences in terms of size, attribute composition,
and AAR. These variations in size, attribute count, and AAR underscore the diverse nature
and potential applications of each dataset across various domains, including healthcare,
demographics, and machine learning research. Readers are encouraged to explore the
results of the fifteen datasets available in this study by visiting the website https://www.
kikn.fms.meiji.ac.jp/~andres/BRR.html, accessed on 27 February 2024. The website also
presents a comparison between AVD and AAR for all datasets using different values of ϵ
within the range of [0.1, 1], along with the k-way joint probability distribution. Figure 4
illustrates the outcomes for ϵ = 0.1 and k = 2, 3, 4, 5. We have chosen this specific privacy
budget as it provides a robust level of privacy for the users.

Figure 3 presents the results of the experiments conducted on the six datasets using
three algorithms: LOPUB, LOCOP, and BRR. The Y-axis illustrates the AVD between the
original and computed data, with lower values indicating superior performance. On the
X-axis, the privacy budget is depicted, where lower values signify a higher level of privacy.
The four columns display results for different k-way settings, specifically k = 2, 3, 4, 5. The
shaded blue, green, and red areas represent the standard deviations of LOPUB, LOCOP,
and BRR, respectively.

https://www.kikn.fms.meiji.ac.jp/~andres/BRR.html
https://www.kikn.fms.meiji.ac.jp/~andres/BRR.html
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Nursery Dataset, Average attribute correlation is 0.0240
k = 2 k = 3 k = 4 k = 5

NHANES Dataset, Average attribute correlation is 0.0747
k = 2 k = 3 k = 4 k = 5

Massachusets Dataset, Average attribute correlation is 0.1006
k = 2 k = 3 k = 4 k = 5

MS Fimu Dataset, Average attribute correlation is 0.1068
k = 2 k = 3 k = 4 k = 5

Diabetes Dataset, Average attribute correlation is 0.1334
k = 2 k = 3 k = 4 k = 5

Cirrhosis Dataset, Average attribute correlation is 0.2790
k = 2 k = 3 k = 4 k = 5

Figure 3. AVD vs. privacy budget (ϵ) per attribute. The best value of AVD is close to zero as is the
best privacy budget value (ϵ).

The findings indicate that, in terms of AVD, BRR consistently outperforms LOPUB
and LOCOP. Across all six datasets, BRR achieves lower AVD values than LOPUB and
LOCOP at various privacy budgets. This implies that BRR can attain better accuracy while
preserving greater privacy compared to the other two algorithms. Overall, the standard
deviations are similar for the three algorithms. Moreover, the results reveal an overall
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enhancement in the performance of all three algorithms as the privacy budget increases.
This is attributed to a larger privacy budget allowing users to incorporate less noise for
data protection. However, it is crucial to acknowledge that the algorithm performance may
vary depending on the dataset. For example, BRR significantly outperforms LOPUB and
LOCOP on the Nursery dataset, while the distinction is less pronounced on the Cirrhosis
dataset, potentially due to AAR. A high AAR value suggests a strong correlation between
attributes, posing a risk of information extraction from one attribute to another or causing
noise propagation to other attributes. This, in turn, leads to a further decline in data
utility. The propagation of noise makes it difficult to accurately estimate joint probability
distributions, as shown in Figure 3.

Figure 4. AVD vs. dataset average attribute correlation.

Figure 5 shows the results of the experiments on the six datasets using two regression
algorithms: LASSO and BRR. The Y-axis shows the R-squared between the original and the
estimated data, where a value close to one indicates better performance. The X-axis shows
the privacy budget, where lower values indicate more privacy. The four columns display
results for different k-way joint probability distribution settings, specifically k = 2, 3, 4, 5.
The shaded blue and red areas represent the standard deviation of LASSO and BRR,
respectively. BRR generally outperforms LASSO in terms of R-squared. Across all six
datasets and privacy budgets, BRR consistently achieves higher R-squared values compared
to LASSO. This indicates that BRR effectively handles multicollinearity, even when privacy
requirements are stringent. Additionally, it is worth noting that, overall, the standard
deviation of LASSO is typically higher than that of BRR. The performance of AVD improves
with a decreased privacy budget. As the privacy budget decreases (moving towards the
right on the X-axis), the R-squared values for both algorithms increase. This is because
a lower privacy budget allows the algorithms to use more information without noise for
estimation, leading to better preservation of attributes relationships. BRR’s advantage is
most pronounced on the Nursery and MS FIMU datasets. For these datasets, BRR achieves
significantly higher R-squared values compared to LASSO, even at low privacy budgets.
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The difference between BRR and LASSO is smaller on the Cirrhosis dataset. On this dataset,
BRR’s R-squared values are only slightly higher than those of LASSO, particularly at k = 5.

Nursery Dataset, Average attribute correlation is 0.0240
k = 2 k = 3 k = 4 k = 5

NHANES Dataset, Average attribute correlation is 0.0747
k = 2 k = 3 k = 4 k = 5

Massachusets Dataset, Average attribute correlation is 0.1006
k = 2 k = 3 k = 4 k = 5

MS Fimu Dataset, Average attribute correlation is 0.1068
k = 2 k = 3 k = 4 k = 5

Diabetes Dataset, Average attribute correlation is 0.1334
k = 2 k = 3 k = 4 k = 5

Cirrhosis Dataset, Average attribute correlation is 0.2790
k = 2 k = 3 k = 4 k = 5

Figure 5. R-squared (R2) vs. privacy budget (ϵ) per attribute. The best value of R-squared is one, and
the best privacy budget (ϵ) is close to zero.

Figure 4 shows the results of the experiments comparing the performance of LOPUB,
LOCOP, and BRR on fifteen datasets. The Y-axis shows the AVD between the original
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and the estimated data, where a value close to zero indicates better performance. The
X-axis shows the AAR, where lower values indicate less correlation between attributes. The
charts display results for different k-way joint probability distribution settings, specifically
k = 2, 3, 4, 5 with a privacy budget set as ϵ = 0.1.

Figure 4 shows that BRR generally outperforms LOPUB and LOCOP in terms of utility
(AVD). Across k = 4, 5 settings and for most of the datasets, BRR achieves lower AVD
values compared to the other two algorithms. This means that BRR can estimate the data
more accurately while preserving more privacy than LOPUB and LOCOP.

The performance of all three algorithms varies depending on the dataset. Considering
the Nursery and Cirrhosis datasets, which have the lowest and highest AAR values,
respectively, in the Nursery dataset, as k increases, BRR significantly outperforms both
LOPUB and BRR. In the Cirrhosis dataset, as k increases, the three algorithms exhibit similar
values. This suggests that with an increase in k, more highly correlated attributes become
available to estimate the joint probability distribution. In Figure 4, the chart in the bottom
right, when k = 5, illustrates how the performances of all three algorithms become similar as
highly correlated attributes become available to estimate the joint probability distribution.

For some datasets, such as the Nursery and Bank datasets, BRR achieves significantly
lower AVD values compared to the other algorithms. However, for other datasets, such as
the Cirrhosis and USCENSUS datasets, the differences between the algorithms are smaller.
BRR’s advantage is most pronounced for k = 4, 5. For these settings, BRR consistently
achieves the lowest AVD values across most datasets. LOPUB generally performs worse
than LOCOP and BRR. Across all k-way settings and most datasets, LASSO has the highest
AVD values among the three algorithms.

Figure 4 illustrates how the health datasets exhibit a rightward skew on the X-axis, with
the Cirrhosis dataset having the highest AAR. This dataset contains information related to
patients with primary biliary cirrhosis who participated in a clinical trial conducted by the
Mayo Clinic [37].

Figure 6 shows the correlation matrix for the Cirrhosis dataset; for example, sex and
ascites demonstrate a weak positive correlation (0.12), suggesting a slight tendency for one
to increase as the other does. Ascites and edema show a moderate positive correlation
(0.30), implying a stronger association. Bilirubin and albumin exhibit a moderate negative
correlation (−0.25), meaning as bilirubin levels rise, albumin levels tend to decrease. Copper
and alkaline phosphatase (Alk Phos) have a moderate positive correlation (0.71), indicating
a notable relationship where they increase or decrease together. SGOT (an enzyme found
in the liver) and Alk Phos also display a moderate positive correlation (0.68). Finally,
platelets and prothrombin have a weak negative correlation (−0.13), hinting at a slight
inverse relationship between the two. We can now explore more generally the potential
correlations between the attributes available in the cirrhosis disease [42].

• Sex, categorized as male or female, could be correlated with various health parameters
and responses to treatment.

• Ascites, hepatomegaly, and spiders are variables indicating the presence or absence
of certain clinical features. Correlations with other health parameters, especially
liver-related ones, may exist.

• Bilirubin, cholesterol, albumin, copper, alkaline phosphatase, SGOT, triglycerides,
platelets, and prothrombin are laboratory measurements indicating different aspects of
a patient’s health. Examining correlations among these variables may unveil concealed
patterns associated with physiological processes, such as liver function and blood
composition.

While a healthcare professional can provide a more in-depth analysis of the necessity
of each variable in this dataset, it is crucial to highlight that highly correlated attributes
may raise privacy concerns when sharing data with third parties. Additionally, introducing
noise to one attribute can result in the propagation of noise to other attributes, leading to a
further decline in data utility. This noise propagation makes it challenging to accurately
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estimate joint probability distributions, as depicted in Figure 4, where the results indicate
that the AVD generally increases as the value of k increases.

Figure 6. Correlation matrix for the Cirrhosis dataset.

5. Discussion

We conducted a comprehensive evaluation of datasets across various domains, em-
ploying our proposed LDP scheme based on BRR, across various scenarios involving
k = 2, 3, 4, 5 with a privacy budget set at 0.1. Regrettably, direct comparison with the study
conducted by Arcolezi et al. [2] is not feasible, although both methods employ LDP. Their
main objective revolves around improving accuracy in machine learning models, whereas
our emphasis is on estimating the joint probability distribution with minimal error.

Our proposed method consistently outperforms LOPUB and LOCOP across various
datasets, considering differences in size, attribute composition, and the average absolute
Pearson correlation coefficient (AAR). The AAR serves as a valuable tool for scrutinizing
datasets prior to publication and evaluating the performance of synthetic data algorithms.
This preventive approach helps avoid the release or sharing of datasets containing highly
correlated attributes, thereby safeguarding the privacy of users within the dataset. For
instance, this paper assesses the performance using the Nursery and Cirrhosis datasets,
showcasing the lowest and highest AAR values, respectively. Our findings indicate that
as k increases, more highly correlated attributes become available for estimating the joint
probability distribution, posing a risk, especially in the absence of a small privacy budget,
which implies robust privacy protection.

Particularly noteworthy is a specific dataset (the dataset with a lower AAR) where
our method achieved a remarkable decrease in the average variant distance compared
to LOPUB and LOCOP. Additionally, for the other datasets, our proposed method out-
performed the well-known LOPUB and LOCOP algorithms, both based on randomized
response and the LASSO algorithm, with a privacy budget set at 0.1 per attribute and k = 5.

Continuing our experiments, we employ the R-squared metric to assess the perfor-
mance of LASSO and Bayesian Ridge Regression. The findings reveal that BRR consistently
outperforms both LOPUB and LOCOP, both of which are based on LASSO regression.
These results illustrate how BRR exhibits greater stability across various k-way evaluations,
privacy budgets, and AAR compared to LASSO, owing to its effective handling of mul-
ticollinearity. In summary, our study unveils the nuanced performance of our proposed
method, LOPUB, and LOCOP across diverse datasets, emphasizing the crucial influence
of AAR on their efficacy. These findings underscore the necessity of aligning algorithmic
choices with the unique characteristics of datasets to achieve optimal results. These insights
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hold significant implications for applications such as healthcare, where precise predictions
and considerations of attribute correlations are paramount. Importantly, our study under-
scores the importance of avoiding high correlation among attributes in datasets, as revealed
by our results.

Highly correlated attributes in a dataset present two risks. Firstly, information from
one attribute can be inferred from another, compromising the privacy guarantees provided
by local differential privacy, especially when working with a high privacy budget value.
Secondly, when employing a small privacy budget value in a dataset with highly correlated
attributes, introducing noise to one attribute can cause the noise to propagate to other
attributes. This propagation of noise results in a further decline in data utility. It becomes
challenging to accurately estimate joint probability distributions, particularly for higher
values of k-way.

5.1. Curse of Dimensionality

The curse of dimensionality presents a significant obstacle within LDP. LDP aims to
protect privacy by injecting noise into individual data points before sharing. However, as data
dimensionality grows, the volume of noise needed to obscure true values while upholding the
same privacy standards increases dramatically. This results in a loss of data utility.

Our experiments depicted in Figure 5 illustrate a noticeable trend of declining per-
formance, as evidenced by an increased AVD, with higher k values. This highlights the
trade-off between accuracy and dimensionality, underscoring the challenges associated
with the curse of dimensionality. Notably, our proposed method exhibits lower AVD values,
indicating superior data utility compared to LOPUB and LOCOP, especially for datasets
with an AAR close to zero.

5.2. Real-World Applicability of the Proposed Method

The proposed LDP scheme based on BRR holds significant potential for revolution-
izing data analysis in the healthcare industry while ensuring the utmost protection of
patient privacy. LDP techniques enable healthcare organizations to conduct data analysis,
such as epidemiological studies and treatment outcome analysis, without compromising
patient privacy. Additionally, LDP provides a secure framework for data sharing, allowing
collaboration on initiatives like population health management and clinical trials while
safeguarding patient information. Moreover, LDP facilitates personalized medicine by
analyzing patient-specific data while preserving confidentiality. Integration of LDP into
healthcare analytics and machine learning models enables predictive analysis and proactive
decision-making without exposing individual patient data. Furthermore, LDP enhances
the privacy and security of telemedicine and remote patient monitoring systems, ensuring
patient confidentiality in virtual healthcare settings. Overall, LDP has the potential to
transform healthcare data analysis while maintaining patient privacy and confidentiality.

Unfortunately, direct comparison with the Sung et al. [16] study is not feasible, despite
both methods applying LDP to medical data. Their primary objective lies in enhancing
accuracy in machine learning models, while our focus centers on estimating the joint
probability distribution with minimal error.

6. Conclusions

This paper presents a comprehensive evaluation of datasets spanning various domains.
We employed our proposed LDP scheme based on BRR across different scenarios while
estimating the joint probability distribution with a privacy budget set at 0.1. Our method
consistently outperformed LOPUB and LOCOP. We suggest using the average absolute
Pearson correlation coefficient (AAR) as a valuable tool for scrutinizing datasets before
publication and assessing the performance of synthetic data algorithms. This approach
helps prevent the release or sharing of datasets containing highly correlated attributes,
safeguarding users’ privacy. Particularly in datasets with a lower AAR, our method
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achieved a significant decrease in the average variant distance compared to LOPUB and
LOCOP.

We utilized the R-squared metric to evaluate the performance of LASSO regression
and Bayesian Ridge Regression. The results demonstrate that BRR consistently outperforms
both LOPUB and LOCOP, which are based on LASSO regression. This highlights BRR’s
greater stability across various joint probability distribution evaluations, privacy budgets,
and AAR compared to LASSO, thanks to its effective handling of multicollinearity.

In summary, our study reveals the nuanced performance of our proposed method,
LOPUB, and LOCOP across diverse datasets, underscoring the significant influence of AAR
on their efficacy. These findings stress the importance of aligning algorithmic choices with
datasets’ unique characteristics to achieve optimal results, especially in critical applications
like healthcare, where precise predictions and considerations of attribute correlations
are crucial. Importantly, our study highlights the need to avoid high correlation among
attributes in datasets, as indicated by our results.

In contemplating the future of this research, we anticipate a continuous process of
refining and optimizing our proposed LDP scheme based on BRR. This entails addressing
the intricate trade-off between accuracy and computational complexity across diverse
scenarios, which includes variations in privacy budgets and attribute compositions. We
envision further advancements aimed at enhancing the adaptability and efficacy of our
approach in real-world applications. Additionally, we aim to extend the application of our
LDP approach to generate accurate machine learning models.

The importance and contribution of this work for the future are substantial. Our results
demonstrate that BRR is able to present better performance than LOPUB and LOCOP when
a strong privacy budget is used to protect the privacy of the users. These findings suggest
that BRR can be an effective tool for privacy preservation in data publication, and it may
have various applications where privacy is a concern.
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