
Citation: Cortial, K.; Albouy-Kissi, A.;

Chausse, F. Product Space Clustering

with Graph Learning for Diversifying

Industrial Production. Appl. Sci. 2024,

14, 2833. https://doi.org/10.3390/

app14072833

Academic Editors: Barbara Strug
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Abstract: During economic crises, diversifying industrial production emerges as a critical strategy to
address societal challenges. The Product Space, a graph representing industrial knowledge proximity,
acts as a valuable tool for recommending diversified product offerings. These recommendations
rely on the edges of the graph to identify suitable products. They can be improved by grouping
similar products together, which results in more precise suggestions. Unlike the topology, the textual
data in nodes of the Product Space graph are typically unutilized in graph clustering methods. In
this context, we propose a novel approach for economic graph learning that incorporates learning
node data alongside network topology. By applying this method to the Product Space dataset,
we demonstrate how recommendations have been improved by presenting real-life applications.
Our research employing a graph neural network demonstrates superior performance compared
to methods like Louvain and I-Louvain. Our contribution introduces a node data-based deep
graph clustering graph neural network that significantly advances the macroeconomic literature and
addresses the imperative of diversifying industrial production. We discuss both the advantages and
limitations of deep graph learning models in economics, laying the groundwork for future research.

Keywords: graph neural networks; community detection; product space

1. Introduction

Since 2020, the outbreak of the COVID-19 pandemic and the economic consequences
of the Russo–Ukrainian armed conflict have posed significant challenges to global supply
chains, leading to severe disruptions and stock-outs in essential goods and services. Such
disruptions can have far-reaching consequences, impacting not only socio-economic sta-
bility but also manufacturing. One of the most promising approaches is for industries to
diversify their activities [1]. It has emerged as a viable strategy for mitigating the risks
associated with shortages and stock-outs in global supply chains. By reducing reliance
on a single source or region, industries can establish alternative supply networks, thereby
enhancing resilience and mitigating the impact of disruptions. Diversification involves iden-
tifying potential suppliers in different geographically close locations, fostering partnerships
with multiple vendors, and strategically managing inventory to ensure a steady local flow
of essential goods and services. This approach not only reduces the vulnerability of indus-
tries to crises but also promotes local innovation, as different suppliers bring their unique
capabilities and expertise to the market [2]. Moreover, diversification can foster economic
growth by enabling the development of new industries and employment opportunities,
while simultaneously reducing the dependence on a limited set of resources [3].

Several tools are available to support industrial diversification. One of these tools is
market research, which entails the examination of market trends and the identification of
prospective new suppliers. Another tool is technology assessment, which involves evalu-
ating technological advancements and their potential applications in various industries.
By staying updated on technological innovations, industries can identify opportunities to
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incorporate new technologies into their operations, leading to improved efficiency, new
product development, and increased competitiveness [4]. Additionally, collaboration and
partnerships with other industries or research institutions can facilitate diversification by
leveraging shared resources, knowledge, and expertise. Such local collaborations can foster
innovation, enhance capabilities, and open doors to new market opportunities [5]. Overall,
these tools empower industries to explore new horizons, diversify their activities, and
adapt to crises and evolving market dynamics.

Among the tools available to help industries diversify their product offerings, Product
Space, developed by economists Hidalgo and Hausmann [6–8], serves as an open-access
framework to identify diversification opportunities for industries, particularly during
stock-outs and shortages. It functions as a map representing different product types using
a global nomenclature of a harmonized system [9], showcasing relationships between
products based on manufacturing methods. By exploring adjacent products within the
Product Space graph, policymakers and industry stakeholders can pinpoint potential areas
for expansion and diversification. This data-driven approach supports informed decision-
making, allowing industries to strategically diversify activities and mitigate risks associated
with supply chain disruptions [10]. The Product Space thus serves as a recommendation
system, guiding manufacturers toward product diversification by highlighting related
products with untapped potential [11]. This approach makes it possible to respond to
certain shortages or out-of-stock situations. For example, during the COVID-19 crisis, many
countries lacked hydroalcoholic gels. The spirits industry produced these gels because
their production equipment was similar to that used to produce spirits or medical gel. In
Product Space, these two types of products are linked in Figure 1. Consequently, using the
Product Space as a recommendation system enables industries to strategically diversify
their product offerings and adapt to shortages.

Figure 1. Example of tree nodes in Product Space.

The Product Space establishes connections between the products of the global econ-
omy, which can be considered to be nodes linked by edges representing the productive
proximities between products. Thus basically, this structure forms a graph in the mathe-
matical context, facilitating the representation of interactions among entities. It operates
on a simple formalism capable of modeling complex systems like the Product Space. As
a result, graphs serve as versatile tools for representing various facets of reality across
numerous domains. The Product Space, composed of interconnected objects, exemplifies
such a structure where specific pairs of objects demonstrate relationships. Graph theory is
a mathematical method used to model and analyze pairwise relations between objects.

In this study, we propose improving these recommendation systems by clustering the
Product Space graph. Clustering is a technique used to group similar elements together.
In the case of Product Space, we are grouping products together. Clustering techniques
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have proven to be effective in enhancing recommendation systems by organizing data into
meaningful groups [12]. By applying clustering algorithms to graphs, recommendation
systems can identify similar products/nodes and group them together. This enables the
system to provide more accurate and relevant recommendations to users based on the
product link and the clustering results. Indeed, clustering information can be leveraged
to generate recommendations by the product/node belonging to a group, i.e., a cluster,
and the product links. By improving the precision and relevance of recommendations,
clustering-based approaches improve the overall performance of recommendation systems.

Graph community detection methods have made significant contributions to the
analysis and understanding of complex networks. The scientific literature on statistical
community detection methods in graphs, such as clustering [13] and the Louvain algo-
rithm [14], is extensive and rich in insights. However, Product Space is a graph that has
many textual, numerical, and categorical data in its nodes to characterize each product.
These statistical methods for graph clustering do not use node and edge data, but only
graph topology. To improve the Product Space-based recommendation system, we need
to use the textual data present in the nodes. Deep learning methods are used to perform
machine learning on this data, considering the graph structure: these are graph neural
network methods [15].

Existing recommendation systems often lack precision and relevance due to their
reliance solely on product linkage and generic clustering techniques. While clustering
methods have shown promise in enhancing recommendation accuracy, traditional statistical
approaches overlook the rich data within product nodes. Moreover, the dynamic nature of
the industrial ecosystem necessitates agile production strategies, underscoring the need
for recommendation systems that can adapt to evolving market conditions. To address
these challenges, there is a need for a comprehensive framework that integrates deep
learning techniques to analyze textual data within Product Space and generate more precise
recommendations. By bridging the gap between traditional statistical methods and cutting-
edge deep learning approaches, this study aims to advance recommendation systems for
manufacturers operating within dynamic market environments. In summary, the key
contributions of this paper can be outlined as follows:

• We develop a comprehensive clustering graph framework that utilizes node features
to enhance a recommendation system for manufacturers, enabling them to diversify
their production in response to shortages and stock-outs.

• We develop deep graph learning approaches for community detection approaches on
a macroeconomic graph.

• We propose an economic graph analysis by learning nodes and edge features in
addition to graph topology.

• We implement the suggested framework on an actual macroeconomic dataset along-
side a state-of-the-art graph, and we confirm through validation that our deep graph
learning outperforms statistical tools in community detection.

The distinctive scientific contribution of the article lies in its advancement and utiliza-
tion of deep graph learning techniques within the field of economics. More specifically, the
paper presents a new approach to economic graph learning and analysis characterized by
learning node data in addition to network topology.

In this article, we will present the literature in Section 2. After a quick approach to
the work carried out on the Product Space, we will then insist on the methods of graph
learning which make it possible to analyze these relational data in the economy. Section 3
presents the methods that we applied to the Product Spaces and state-of-the-art dataset.
Section 4 will detail important steps of our experimentation, such as data preprocessing and
evaluation metrics. Section 5 will present the evaluation of results that confirm that a Deep
Graph Clustering method provides more meaningful clusters than traditional methods that
do not exploit graph attributes. Finally, we will conclude by delving into future research
possibilities regarding this topic in Section 6.
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2. Related Work

Since Hidalgo’s works [6–8], several studies have been conducted on the Product
Space to analyze a wide range of economic phenomena. For example, Hausmann [7] used
Product Space to study the relationship between trade and innovation, and found that
countries with more complex Product Space are more likely to generate new technologies.
Complexity in Harvard’s Product Space is a measure of the economic and technological
sophistication of the products an industry can produce. Product Space identifies envi-
ronmentally friendly products with the greatest growth potential within a country by
assessing their proximity to products that the country produces with a high relative com-
parative advantage [16]. As well as analyzing the economy theoretically, Product Space
can also be used empirically, i.e., through experimentation and observation [17]. In this field,
Pachot et al. [11] used the Product Space to respond to shortages caused by the
COVID-19 crisis. Product Space highlighted the adaptability of certain companies that
quickly adapted their production chains by producing goods experiencing shortages due
to the similarity in expertise between the two categories of products [18]. This work shows
that Product Space can be used as a recommendation system for industries to diversify
their product offerings. Product Space can be described as a graph comprising a collection
of interconnected nodes. In this context nodes represent products and edges represent links
between products, indicating their similarity and complementarity of Hidalgo. To improve
these graph-based recommendations, clustering has proven its effectiveness in obtaining
more relevant results [19–21]. On the other hand, studies have shown that GNNs can bring
diversity to recommendations [22,23]. Therefore, in our work, we implement GNNs that
produce clusters grouping similar and relevant elements. Building upon these results, we
enhance industrial diversification recommendations through meaningful diversification.
Our literature review was therefore divided into several parts. First, a literature survey was
carried out to provide an overview of the main graph learning methods for node clustering
in Section 2.1. In parallel, a review of economic articles utilizing graphs was conducted to
demonstrate the contributions of this article, as detailed in Section 2.2.

2.1. Graphs Clustering

Identifying communities within graphs is a core issue that has applications in various
domains, notably economics, which we will detail in Section 2.2. In this section, we offer
a summary of current methodologies, algorithms, and techniques used for community
detection in mathematical graphs. It explores the key concepts, focusing on both statistical
and deep learning approaches.

Statistical community detection in graphs aims at detecting clusters of closely inter-
connected nodes, known as communities or clusters. Modularity-based methods [13] have
gained significant popularity in the field of community detection due to their ability to
uncover cohesive and well-separated communities within a graph. Assessing the quality of
community structure in a graph often involves using modularity as a commonly adopted
metric. It measures the discrepancy between the observed edges within communities and
the anticipated edges in a random graph with equivalent node degrees [24]. Maximizing
the modularity value indicates the presence of communities defined by the graph topology.
The Louvain method, proposed by Blondel et al. [14], is one of the most popular modularity-
based algorithms for community detection. It is a hierarchical and iterative approach that
optimizes modularity in a two-step process. In the first step, nodes are moved between
communities to maximize the increase in modularity. During the subsequent phase, the
communities identified in the initial step are regarded as singular entities, and this pro-
cedure iterates until there is no additional enhancement in modularity [14]. Based on the
same modular design, the stochastic block model (SBM) serves as a robust probabilistic
generative model utilized for examining the community structure within networks. It
assumes that nodes in a network can be partitioned into communities, and the connectivity
patterns within and between communities follow certain probabilistic rules. SBM provides
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a framework for studying the fundamental properties of network communities, enabling a
deeper understanding of complex network structures and dynamics [25].

Modularity methods [13] have been extensively used for community detection in
networks due to their simplicity and interpretability. One limitation of modularity methods
is their resolution limit, where they struggle to detect smaller or overlapping communities.
Graph Neural Networks (GNNs), on the other hand, can capture more complex structural
patterns and capture node and edge features, allowing for the detection of fine-grained
and overlapping communities. GNNs offer parallel and scalable operations, making them
suitable for handling massive networks efficiently. Additionally, GNNs can leverage both
the network structure and node attributes to improve community detection accuracy. The
main limitation of modularity-based methods is that they only use graph topology and not
node data.

In recent years, many publications have demonstrated the positive value and good
results of new machine and deep graph learning methods, popularized by Kipf and
Welling [26] for deep learning. To exploit graphs and node data, GNNs, rely on the
assumption that many pieces of information of a node reside in its neighborhood. Indeed,
nodes and edges data, in the form of embedding (numerical vector), can be inferred by
neural networks. However, it is crucial to acknowledge a broader perspective on the
mathematical modeling of node data. These variables can manifest not only as scalars but
also as vectors, matrixes, and even functions [27]. In our case, given that node data are of
finite texts, we will utilize scalars, as elaborated in Section 4.1.

GNNs transmit messages between pairs of nodes to update their embedding thanks
to the exchange of information with their neighbors. In this way, GNNs provide better
representations of nodes within their environment. From these new embeddings, it is
possible to predict links between nodes, to form clusters of nodes (clustering), or to perform
classification. Several different GNN architectures have been proposed. Like pixels in an
image, structured graphs are grids of nodes, so Graph Convolutional Networks (GCNs) [26]
are GNNs applied to grids of nodes like Convolutional Neural Networks (CNNs). Based
on this method, Dynamic Graph Convolution Neural Network (DGCNN) has proved
efficient in the segmentation of coal mining data with the aim of reducing its environ-
mental footprint [28]. Other GNN architecture is proving effective, such as parsimonious
neighbor selection in GraphSAGE [29] or adding the attention mechanism [30] in Graph
Attention Networks [31]. These examples implement different types of messages passing
between nodes.

While general methods for graph clustering have demonstrated their efficiency in
various domains, the application of graph learning techniques, particularly in the field of
economics, holds significant potential for uncovering intricate patterns and insights from
complex economic systems.

2.2. Economics Graph Learning

Economists are mainly interested in understanding economic phenomena using net-
work concepts. The attention toward graph clustering in economic research has increased
significantly owing to its capability to capture the intrinsic structure and interconnections
present within economic networks. The clustering of economic agents, such as firms, indus-
tries, or regions, allows for a deeper understanding of their interactions and the emergence
of complex economic phenomena [32].

Recently, there has been an emergence of several graph clustering methodologies,
predominantly rooted in classical statistical techniques that solely rely on the topology of
the graphs. Many statistical indicators are used in economics such as centrality, clustering
tendency, or modularity optimization [33,34]. Modularity optimization aims to increase the
density of connections within clusters while decreasing the connections between clusters.
Moreover, when nodes are economic agents, their assignments to a community allow
predicting economic phenomena related to potential business ecosystems [32]. These
economic studies have also shown that graph community detection provides a better
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cluster than classical clustering on non-relational economic data. When networks are large,
community detection on economic graphs use frequently Louvain [35,36], Stochastic Block
Model [37] or Leiden algorithms [32]. All these methods obtain good clusters using only
graph topography but without exploiting nodes and edges features.

Linkage prediction methods are applied in economics to predict the evolution of future
economic networks to guide policymakers. Authors use these methods to predict possible
linkages in the future labor market [38]. However, these methods use adjacency matrix
perturbations, for example, but without capitalizing on the data within the graphs [39]. The
use of data within graphs (embedding) remains rare in economics. For example, Mungo
et al. [40] used node data to reconstruct supply chain networks by performing a classi-
fication of possible connection pairs with Gradient Boosting. Additionally, Wu et al. [41]
used node data in a classification task, although in a different context from our work which
is clustering.

In Table 1, we review recent studies exploring graph clustering methods for applica-
tions in economics. Our analysis indicates that most of the selected studies concentrate
solely on analyzing the graph topology, without any study focusing on the features of
nodes and edges. Consequently, these studies restrict the generalizability of the proposed
methods to leverage all available information. Moreover, it is noticeable that these methods
do not capture high-level dependencies. For example, using attributes of nodes repre-
senting economic agents, it becomes possible to group entities that are similar in terms of
economic behavior, even if they are not directly connected in the graph’s topology. Hence,
in our research, we propose a more versatile approach that incorporates node and edge
features to capture higher-level dependencies among graph entities. In summary, our
approach enables us to take fuller account of the information available, better capture
high-level dependencies, improve the accuracy and interpretability of the results, and
provide greater flexibility and adaptability to specific economic contexts. In addition, the
potential application of advanced GNNs in economic graph analysis could explore aspects
such as market dynamics, risk assessment, and supply chain optimization.

This literature review shows that the key scientific novelty in our research emerges
from our application of deep graph learning techniques within the realm of economics.
To be more precise, our study introduces an innovative method for understanding and
utilizing economic graphs, which goes beyond conventional analyses by encompassing the
learning of node-specific data in addition to network structure.

Table 1. Comparative analysis of our proposed framework, highlight in bold, with recent pertinent
graph clustering methods in economics.

Economic Graph
Study

Use Nodes/ Edges
Data Year Micro/

Macroeconomics
Graph Clustering

Methods Application

Tajoli [33] No, but it could have
been possible 2019 Macroeconomics Modularity,

clustering coefficient World trade

Korniyenko et al. [34] No, but it could have
been possible 2017 Macroeconomics Modularity,

clustering coefficient World supply shock

De Nicolò et al. [32] Use edges data but
not nodes data 2022 Macroeconomics Leiden, Spin glass Territorial

Development
Chessa et al. [35] No, Hypergraph 2023 Macroeconomics Louvain Trade agreements

Zhang et al. [36] No 2021 Microeconomics Louvain Customer product
affinity

Kafkas et al. [37] No 2021 Microeconomics Stochastic Block
Modeling (SBM)

Product
segmentation;
Market basket

analysis

Benita et al. [42] No 2020 Macroeconomics Louvain Nation industrial
clusters

This research Yes 2024 Macroeconomics GraphSAGE. Diversifying
industrial production
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3. Graph Clustering Methods

This section explains the graph clustering benchmark algorithms. The popular Lou-
vain method is introduced [14], centered around optimizing the modularity score. Af-
terward, the extension, I-Louvain [43], is presented, which combines modularity with
the consideration of the statistical proximity of feature nodes. Lastly, the GraphSAGE
method [29], a graph neural network utilized for community detection, is discussed
in detail.

3.1. Louvain and Modularity

Modularity serves as an assessment of how effectively the nodes within a graph are
divided into distinct partitions. This concept suggests a prevalence of connections within
each partition, known as intra-community edges, contrasted with a lower occurrence of
connections between different partitions, termed inter-community edges. Essentially, it
indicates that nodes within the same community are more strongly connected to each other
compared to nodes in different communities [13]. The modularity score evaluates, for a set
of nodes, the ratio of observed edges to expected edges (based on a comparable graph with
edges distributed randomly, akin to the Erdös-Rényi model [24]). If the observed edges
exceed the expected count, it indicates the likelihood of a community structure. This score
quantifies the partitioning quality of a graph using the following formula:

Qmodularity =
1

2m ∑
i,j

(
Aij − Pij

)
δ
(
Ci, Cj

)
(1)

Here, Aij represents the value at position ij in the adjacency matrix. m denotes the
total number of edges, while 2m signifies the total count of half-edges. The symbol δ refers
to the Kronecker delta: δ(Ci, Cj) = 1 if nodes i and j belong to the same community C
(i.e., Ci = Cj), and δ(Ci, Cj) = 0 otherwise. Pij represents the probability of the number
of connections between nodes i and j under a null Erdös-Rényi model, which generates
a uniformly connected graph. Consequently, maximizing the modularity Q involves
identifying sets of nodes exhibiting an unusually high level of connectedness.

Modularity serves as the foundational principle for extracting communities within
graphs, and the Louvain method [14] stands out for its efficacy, especially when dealing
with large datasets.

This method operates hierarchically, where in the initial phase, it identifies small
communities through local optimization of modularity for each node. Subsequently, nodes
within the same community are amalgamated into a single node. This process is iteratively
repeated on the updated network until no further increase in modularity is achievable
(Figure 2 [14]).

Figure 2. Visualization of the steps of Louvain algorithm.



Appl. Sci. 2024, 14, 2833 8 of 19

Unlike the Louvain algorithm, which merges communities at each level, the Leiden
algorithm [44] primarily focuses on splitting and merging clusters at each level. As a result,
it ensures the formation of more well-connected clusters. In comparison to the Louvain
algorithm, the Leiden algorithm incorporates a fast local move approach, enabling the
movement of one or more nodes from one cluster to another to enhance the quality of
clusters during each iteration of community detection. Nodes are selected for movement
only if they are considered unstable. This distinction improves the runtime efficiency of the
Leiden algorithm compared to the Louvain method. Additionally, the Leiden algorithm
addresses a major inefficiency of the Louvain method, which occasionally generates poorly
connected nodes as a community and may result in a fragmented network community.

3.2. I-Louvain

I-Louvain [43] is a technique for identifying groups within a graph, where each node
has numerical attributes. It improves upon the modularity measure [13] and includes
an additional measure for further optimization. I-Louvain therefore measures the inertia
between the data of two nodes to attempt to group together the most similar elements in the
embeddings, which are the numerical vectors of each node. This measure of inertia-based
modularity is defined by Combe et al. [43] as follows:

Qinertia = ∑
(v,v′)V.V

(
I(V, v) · I(V, v′)
(2N.I(V))2 − ∥v − v′∥2

(2N.I(V))

)
δ(Cv, Cv′) (2)

Let V denote a set comprising N elements, represented within a real vector space,
where each element v ∈ V is characterized by a vector of attributes v = (v1, . . . , vn) ∈ R.
The inertia of V about its center of gravity, denoted as I(V), and the inertia of V about a
specific element v, denoted as I(V, v), are defined as the sum of the squared Euclidean
distances between v and the other elements of V. Similar to the modular quality metric
Qmodularity, δ represents the Kronecker delta.

Qinertia evaluates the discrepancy between the anticipated and observed distances
between pairs of elements (v, v′) within the same community. If the observed distance
is less than the expected distance, it suggests that v and v′ are potential candidates for
belonging to the same cluster.

I-Louvain is a community detection technique tailored for real attributed graphs, lever-
aging inertia-based modularity Qinertia in conjunction with Newman’s Qinertia. Essentially,
this method revolves around optimizing the global criterion QI−Louvain, defined as follows:

QI− Louvain = Qmodularitv + Qinertia (3)

As with the Louvain method, I-Louvain works by evaluating the gain in QI− Louvain
those results from moving each node v and its adjacent nodes in the graph to different
communities. During each iteration, node v is assigned to the community that yields the
maximum gain in the global criterion QI− Louvain . This process is repeated sequentially for
all nodes until no further improvement in QI− Louvain can be achieved.

3.3. Graph Neural Networks for Community Detection

Graph Neural Networks (GNNs) represent a category of deep learning algorithms
designed to extract features from graph data. Traditional deep learning methods are typically
tailored for structured data. However, graphs can vary significantly in size, exhibit multimodal
features, and possess intricate topologies. By leveraging node-level information, GNNs can
directly facilitate predictions, classifications, or other analytical tasks.

In leveraging graph data, GNNs operate under the assumption that significant amounts
of node information are contained within their neighborhoods. In this way, the topology
of the graph can be encoded in node embeddings. These node embeddings contain the
initial data relating to the node itself, and neighborhood data thanks to the updating of the
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node embeddings carried out by the GNNs. Thus, a GNN uses a neural network on the
neighbors of each node; this is referred to as a GNN layer.

A single GNN layer compresses a set of embeddings into a single embedding in two
steps: the message passing and the aggregation. Equation (4) presents a single layer of
Graph Convolutional Network (GCN) [26] where the invariant aggregation function is a
sum, and the message passing is a linear matrix operation with a weight matrix U.

Formula (4) delineates the process by which input information, derived from both the
target node ht

i and its neighboring nodes ht
j, undergoes aggregation by neural networks

to generate the updated representation ht+1
i . This mechanism is depicted in the gray and

black blocks in Figure 3 [45].

ht+1
i = σ

ht
iW + ∑

jN(i)

1
cij

ht
jU

 (4)

• ht
i represents the initial vector comprising the node features.

• ht+1
i denotes the updated vector encompassing information regarding the node’s

neighbors and the graph’s topology. This augmentation furnishes richer insights and
enhances the representation of the node hi.

• W represents the weight matrix from a neural network, discerning significant elements
to retain within the initial vector ht

i .
• U is another weight matrix originating from a neural network, tasked with processing

the vectors of neighboring nodes ht
j.

• The expression
(

∑j∈N(i)
1

Cij

)
represents an aggregation function, which normalizes

the representations of neighboring nodes in N(i). This necessitates a permutation-
invariant function, as we must be agnostic to the order of neighbors to obtain consistent
results regardless of their arrangement.

• σ denotes an activation function similar to sigmoid.

Figure 3. Overview of graph encoding with the GNNs neighborhood aggregation methods.

To determine U and W, supervised learning of a neural network involves adjusting
the weights of the network to minimize the difference between the predictions and the
expected outputs. This iterative process allows the network to gradually improve its ability
to make accurate predictions on new data. However, this supervised learning requires
data labeling.

Graph clustering performs unsupervised learning without label data. Indeed, our goal
is to do clustering with the new embeddings updated by GNNs to detect communities in
the graph. So, GraphSAGE will be used to generate a labeled training sample that will be
used to update the node’s embeddings.

3.4. Graphsage for Community Detection

GraphSAGE (Graph Sample and Aggregated) [29] is a variant of a Graph Neuronal
Network (GNN) in the family of deep learning methods for graphs. GraphSAGE lever-
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ages the concept of graph convolution [26], which enables the aggregation of information
from adjacent nodes to update the representation of a target node like GCNs. How-
ever, in GraphSAGE neighbor sampling to handle large graphs efficiently, GraphSAGE
adopts a sampling strategy where it randomly selects a consistent number of neighbors
for every node. This helps reduce computational overhead while preserving the overall
graph structure.

For a given central node i with current embedding ht
i the message passing the update

rule to transform it into ht+1
i is as follows:

ht+1
i = Wdst · ht

i + Wsrc · AGG
{

ht
j, ∀jN(i)

}
(5)

The aggregated representations are then combined with the current node embeddings
to create a new embedding that captures both local and global graph information. The new
embeddings are computed with Wdst and Wsrc learned by neural networks.

After sampling the neighbors, the information from the selected neighbors is aggre-
gated to create a summary representation for each node. This aggregation step is typically
performed using an aggregation function such as mean for example.

AGG
{

ht
j, ∀jN(i)

}
=

1
N(i) ∑

jN(i)

(
ht

j

)
(6)

The entire process of neighbor sampling, aggregation, and updating node embed-
dings is performed in multiple iterations, also known as training epochs. During train-
ing, GraphSAGE aims to minimize a loss function assessing the quality of the learned
node embeddings.

Our problem is to perform unsupervised learning to update the embeddings. Indeed,
the idea here is to update node embeddings using only the structure of the graph and
the characteristics of the nodes, without using any known class labels for the nodes. The
main goal is to do clustering with the new embeddings to detect communities in the graph.
Unsupervised GraphSAGE is adapted to updating node embeddings through the resolution
of a classification task [46]. For this, “positive” pairs of nodes are produced by conducting
random walks on the graph (Figure 4 [29]). Another equal set of “negative” node pairs is
randomly chosen from the graph based on a distribution linked to the average degree of
connection in the graph.

Figure 4. Illustration and explanation of GraphSAGE.

By mastering the straightforward binary classification task of node pairs, the model
naturally develops an inductive mapping that converts node attributes and their neigh-
boring nodes into node embeddings in a high-dimensional vector space. This mapping
efficiently preserves the structural and feature similarities among the nodes. Unlike em-
beddings generated by algorithms such as Node2Vec [47], this mapping is inductive in
nature. This means that when presented with a new node (accompanied by its attributes)
and its connections to other nodes in an unseen graph (absent during model training), we
can readily evaluate its embeddings without the need for retraining the model.
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Thus, the embeddings reflect not only node data, but also their relationships with their
peers. The resulting node embeddings are then subjected to a conventional unsupervised
learning algorithm to determine clusters accordingly. We present the product groups
obtained using the k-means algorithm [48]. The k-means algorithm is a data partitioning
technique that categorizes data logs into k clusters. Essentially, it aims to distribute the
samples into n groups with uniform variances while minimizing the inertia or intra-cluster
sum of squares, as defined by the following equation:

n

∑
i=0

(
min
µj∈C

(∣∣xi − µj
∣∣2)) (7)

The k-means algorithm partitions a set of n samples x into k distinct clusters C, with
each cluster characterized by its mean µj, commonly known as the cluster centroids.

Primarily, the experimental setup involves determining the optimal number of clusters
to retain. Various methods exist for this purpose, including analyzing the percentage of
variance explained relative to the number of clusters [49]. This typically entails solving
the clustering problem for different values of k and then employing suitable criteria to
select the most suitable value. Notably, the proposed method directly furnishes clustering
solutions for all intermediate values of k, thereby eliminating the need for additional
computational efforts. The selection of the number of clusters hinges on ensuring that the
addition of another cluster does not substantially improve data modeling. Specifically, as
the percentage of variance explained by clusters is plotted against the number of clusters,
the initial clusters contribute significantly to explaining variance. However, there comes a
point where the marginal gain diminishes. Thus, the number of clusters is chosen at this
juncture, where the addition of another cluster yields little improvement.

This section has presented benchmark algorithms for graph clustering such as statis-
tical methods from Louvain to deep learning methods such as GraphSAGE. To compare
the performances of these methods an experimental setup on reference datasets was imple-
mented using a systematic and rigorous approach. These reference algorithms serve as a
basis for evaluating the effectiveness and performance of clustering methods, with the aim
of improving industrial diversification recommendations using the Product Space graph.

4. Experimentations

This study introduces a machine learning approach aimed at clustering Product Space
nodes for the identification of communities, with the goal of enhancing recommendations
for industrial diversification. To optimize the task of graph community detection, our
approach relies on leveraging the information inherent in the graphs (nodes and edges)
to achieve superior results compared to conventional methods that solely rely on graph
topology. To validate this hypothesis, we conducted a comparative analysis of three
methods, as depicted in Figure 5 and detailed in the preceding section.

The goal of the Product Space [7] is to group product codes from the Harmonized
System (HS) [9] nomenclature by considering their dependency/linkage between them. To
guarantee the robustness of our results across multiple datasets, we test the same methods
on a state-of-the-art graph: Cora [50]. Both graphs contain textual data for each node.

• Product Space: This graph illustrates the proximity of industrial knowledge among
product classes within the HS nomenclature, irrespective of the observed country or
territory. It comprises 697 nodes and 5556 edges, with each node characterized by a
textual description.

• Cora dataset [50] : The Cora dataset comprises 2708 scientific publications categorized
into seven scientific domains. The citation network contains 5429 links. Each publi-
cation is represented by a binary word vector, indicating the presence or absence of
corresponding dictionary words. The dictionary contains 1433 unique words.
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Figure 5. The workflow of the three methods compared in the benchmark.

4.1. Word Embedding Process

To process the Product Space text data, we implemented the Word2Vec technique [51]
which consists of representing each word as a numerical vector (embedding) in its lin-
guistic context. By leveraging distributed word representations, Word2Vec captures the
semantic relationships between words and phrases in the product descriptions, effectively
transforming them into dense numerical vectors. The learning is based on specialized
neural networks. However, no labels are required for learning, as the ground truth is
directly inferred from the proximity of words within the training corpus. Thus, Word2Vec
is self-supervised learning. Word2Vec has already been used for calculating similarities in
industrial waste nomenclatures [52], analyzing taxonomy [53], or providing recommenda-
tions [18], although the embeddings cannot be interpreted directly.

However, to achieve optimal performance and meaningful embeddings for textual
descriptions, careful selection and fine-tuning of the hyperparameters are essential.

One of the key hyperparameters in Word2Vec is the dimensionality of the word
embeddings. Choosing an appropriate dimensionality ensures that the embeddings capture
sufficient semantic information while avoiding overfitting or excessive computational
overhead. After testing, in our case, 100 embeddings size were sufficient to represent
the words of each product code of the Product Space nodes. In addition, the window
size hyperparameter determines the context in which words are considered to learn their
representations. Adjusting this parameter allows the model to capture different levels of
word associations, which can significantly impact the quality of the encoded descriptions.
Product descriptions are short, so a window size of 3 is sufficient. Our word embedding
has five training iterations or epochs because there is a correct balance between training
time and convergence. Indeed, inadequate training may result in incomplete embeddings,
while excessive training may lead to overfitting. Furthermore, Skip-Gram was chosen for
its ability to capture word co-occurrence patterns effectively.

4.2. Characterization and Visualization

The clusters created using the three methods were characterized for the Product Space.
Indeed, a grouping of the textual descriptions of each product has been performed for each
cluster. By retrieving the most frequently mentioned words, we were able to characterize
each cluster by a few words (Figure 6).

Creating an effective two-dimensional visualization of a graph is challenging due
to the need to balance the representation of connections and node positions within a
confined space. To perform this task, we used the Fruchterman and Reingold force-directed
placement process [54] among the collection of edges and nodes within the Product Space
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(Figure 6). The algorithm uses a force-directed approach for network representation. It
treats edges as springs, which act to maintain proximity between nodes. Simultaneously,
it regards nodes as entities that repel each other, similar to an anti-gravity force. This
simulation continues until the positions of nodes reach an equilibrium state.

Figure 6. Product Space visualization and GraphSAGE clusters.

4.3. Clustering Performance Evaluation

Assessing the performance of our clustering algorithm is more complex compared to
classification. We have selected three evaluation metrics that do not rely on the absolute
values of cluster labels, but rather evaluate the clustering based on the separation of
similar data into groups akin to a set of ground truth classes. This approach allows us to
evaluate the effectiveness of the clustering algorithm in capturing meaningful patterns and
groupings within the data, irrespective of noise or non-standard cluster shapes. Moreover,
our methodology accounts for the dynamic nature of clustering tasks, wherein clusters may
evolve or merge over time, ensuring a comprehensive assessment of performance under
real-world conditions.

4.3.1. Rand Index

Therefore, we utilize the Rand Index [55], which calculates a similarity measure
between two clusters by considering all pairs of samples. It counts the pairs that are
assigned to the same or different clusters in both the predicted and true clusters. The
Rand Index is a function that quantifies the similarity between two assignments while
disregarding permutations.

Consider C as the ground truth class assignment and K as the clustering.

• a represents the count of pairs of elements that belong to the same set in both C and K.
• b denotes the number of pairs of elements that are in different sets within both C

and K.
• c

nsamples
2 represents the total number of potential pairs within the dataset, where nsamples

denotes the number of samples.

Rand Index =
a + b

c
nsamples
2

(8)

4.3.2. Mutual Information Score

Mutual Information [56] measures the similarity between two sets of labels assigned
to the same data. This metric is insensitive to the specific numerical values of the labels;
rearranging the values of class or cluster labels does not change the score. When |Ui|
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represents the number of samples in cluster Ui, and |Vj| denotes the number of samples in
cluster Vj, the Mutual Information for clustering U and V is defined as follows:

MI(U, V) =
|U|

∑
i=1

|V|

∑
j=1

∣∣Ui ∩ Vj
∣∣

N
log

N
∣∣Ui ∩ Vj

∣∣
|Ui|

∣∣Vj
∣∣ (9)

4.3.3. V-Measure

With access to the true class assignments of the samples, it becomes feasible to establish
a meaningful metric through the examination of conditional entropy. Specifically, Rosen-
berg and Hirschberg [57] delineated two commendable goals for any cluster allocation:

• Homogeneity: Every cluster is comprised solely of members belonging to a singular class.
• Completeness: Every member belonging to a particular class is assigned to one cluster.

The V-measure, which is their harmonic mean, is calculated using the following
formula, where we use β by its default value 1:

V =
(1 + β)× homogeneity × completeness

β × homogeneity + completeness
(10)

Rand Index, Mutual Information Score, and V-measure metrics address the inherent
complexity of clustering tasks by robustly evaluating the similarity between obtained
clusters and true classes. They accommodate challenges such as noise and varying cluster
shapes by focusing on structural correspondence rather than absolute label values. Thus,
we used these metrics to compare the clusters with the classification that is proposed in the
datasets. For the Product Space, each HS code (the nodes), belong to a sector of activity in
the sense of the HS nomenclature. For the Cora dataset, each publication is attached to a
potential scientific field.

5. Results
5.1. Theoretical Evaluation

Tables 2 and 3 displays the outcomes delivered by Louvain and I-Louvain and Graph-
SAGE with k-means. In this experiment, we obtain identical results for both datasets when
using ground truth. These results confirm the effectiveness of employing the deep graph
learning method: GraphSAGE. For Product Space, the Mutual Info Score of GraphSAGE
is equal to 0.498, when it is equal to 0.378 for Louvain. Moreover, with a Mutual Info
Score of 0.498, GraphSAGE outperforms I-Louvain which obtains only 0.408. We obtain the
same results on the Cora dataset, except for I-Louvain. This variance can be elucidated by
the utilization of one-hot encoding for Cora’s textual data, so the calculation of inertia is
less efficient with binary data. For all the tests we have carried out on Product Space, the
order of performance is almost always the same, with I-Louvain slightly outperforming
Louvain and GraphSAGE outperforming the other two modularity-based methods by a
larger margin. These findings validate the value of deep graph learning in enhancing com-
munity detection. Indeed, the Louvain algorithm tends to restrict the number of discovered
communities, which can explain the results according to the Rand Index. By contrast, the
number of clusters for GraphSAGE tended to be higher and were better matches for the
expected number of categories. However, the whole Louvain process is relatively faster
than with the computationally intensive GraphSAGE method. This is an advantage when
applying these approaches to large networks. There were no significant differences in
computation time between the GraphSAGE and I-Louvain methods. However, it is during
the pre-processing of textual data into numerical representations using Word2Vec that the
learning time seems to increase in proportion to the volume of textual data to be encoded.
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Table 2. Evaluation of Product Space according to metrics. Assessments were calculated five times,
and the results are the mean and standard deviation for the five runs.

Louvain I-Louvain GraphSAGE

Rand Index 0.674 ± 0.003 0.675 ± 0.001 0.689 ± 0.001
Mutual Info Score 0.378 ± 0.014 0.408 ± 0.001 0.498 ± 0.003
V-measure 0.167 ± 0.006 0.176 ± 0.001 0.207 ± 0.002

Table 3. Evaluation of Cora according to metrics. Assessments were calculated five times, and the
results are the mean and standard deviation for the five runs.

Louvain I-Louvain GraphSAGE

Rand Index 0.839 ± 0.002 0.801 ± 0.001 0.848± 0.007
Mutual Info Score 0.911 ± 0.027 0.902 ± 0.001 0.924 ± 0.030
V-measure 0.448 ± 0.005 0.395 ± 0.001 0.498 ± 0.018

5.2. Practical Evaluation

To evaluate the influence of graph clustering on industrial diversification recommen-
dations, we conducted interviews with industrial professionals. For anonymization and
confidentiality regarding strategic details, we refrained from disclosing the names of the
companies involved. The focus of these companies predominantly revolves around the
production of two specific product codes:

• 9031: Measuring or checking instruments, appliances, and machines
• 8465: Machine tools, incl. machines for nailing, stapling, gluing or otherwise as-

sembling, for working wood, cork, bone, hard rubber, hard plastics, or similar
hard materials.

From these product codes and Hidalgo’s Product Space, the diversification recommen-
dations follow the edges of the graph (as in Figure 1). In our work, we made the choice to
also use neighboring products at the second level (neighbor of neighbor), so we had many
possible recommendations for the products 9031 and 8465, respectively.

Thus, the use of graph clustering methods in the Product Space makes it possible to
refine the number of recommendations to select only the neighbors that belong to the same
clusters as the products 9031 and 8465.

This filtering of industrial diversification recommendations by Product Space cluster-
ing reduces the possibilities by offering more relevant recommendations. The relevance
of the recommendations was verified through interviews with industrial companies that
manufacture products 9031 and 8465. The results of these interviews show that the rec-
ommendations filtered in the GraphSAGE algorithms are the most relevant and possible
for manufacturers without much modification of their production equipment. In addition,
for a manufacturer, GraphSAGE’s recommendation for the 8465 product provided the
8480 product, which is a product that the manufacturer already produced several years
ago, which is a molding box for a metal foundry.

These field results show that the filtering of recommendations by GraphSAGE pro-
vides more relevant industrial diversification recommendations than with the Louvain and
I-Louvain methods. Moreover, the filtering of these modularity-based methods is less im-
portant because they maintain many more irrelevant recommendations than GraphSAGE.

6. Conclusions and Perspectives

This study assesses the effectiveness of graph learning techniques for filtering recom-
mendations from macroeconomic graphs such as the Product Space. The proposed graph
learning method is applied to the Product Space dataset, which reflects the similarity in
industrial expertise among product classes within the HS nomenclature, irrespective of
geographical boundaries. The resulting clusters filter the many recommendations offered
by the Product Space. The recommendations propose diversifications of production for
manufacturers to mitigate the risk of shortages while promoting local innovation and green
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economic growth. The use of deep graph learning methods, in particular, GraphSAGE,
allows updating node embedding for better representation in their graph. This approach
demonstrates improved performance in community detection across multiple datasets,
compared with alternative methods that are based on modularity. Additionally, the rec-
ommendations offered by GraphSAGE filtering are more relevant when tested in the field
with manufacturers.

While GraphSAGE performs better for node clustering in graphs, it is essential to
consider these scientific limitations when applying them in specific contexts. GraphSAGE
can be computationally and memory-intensive, especially for large graphs. Handling mas-
sive graphs requires significant computational power, which may limit its usage in certain
applications. Like many neural-network-based machine learning techniques, interpreting
GraphSAGE results can be challenging. Understanding how clusters are formed and why
certain nodes are grouped together is complex. Also, the random neighbor sampling
approach can lead to sampling bias and in some cases not adequately explore the various
neighborhoods of the graph. GraphSAGE might exhibit suboptimal performance on graphs
characterized by a high degree of homophily, wherein nodes sharing similar attributes are
likely to be connected. To make diversification recommendations based on the Product
Space, we are limited by this data. Indeed, the high degree of homophily in the Product
Space graph is a limitation. The consequence is that products with similar text descriptions
tend to be already connected. So, for products with a low number of neighbors, recom-
mendation filtering will not add value in these cases. One of the shortcomings of our work
concerns the generalization of our results to other industry-specific contexts. By working
with Product Space, the application of our methods limits us to other contexts such as the
service sector and made-to-measure production, as we are working with products from the
harmonized system. This specificity limits the contribution of our results and highlights
the need for caution when extrapolating them to different fields. The lack of adaptability
to sectors other than industrial production justifies further research on databases other
than Product Space to obtain results in non-standardized or service-oriented environments.
As a result, Product Space may lack universality, underlining the importance of context-
specific interpretations and applications. Working with Product Space means being time
sensitive. Indeed, industrial production is subject to changes over time, such as market
dynamics, technological advances, and economic fluctuations. Although we have worked
with several historical versions of Product Space, the time dimension influences future
recommendations for industrial diversification.

The limitations described above will guide future plans and research prospects. This
study may spark further research into more advanced and tailored graph learning tech-
niques for Product Space clustering. Exploring variations in existing graph-based methods
or developing novel algorithms can lead to more accurate and efficient clustering results,
especially in scenarios where the Product Space is complex and high-dimensional. Explor-
ing innovative algorithms and incorporating advanced methods like federated learning or
edge computing could enhance the accuracy and efficiency of clustering results, especially
in complex and high-dimensional Product Space scenarios. Considering the dynamic
nature of industrial production and economic activities, future studies could investigate
how to incorporate temporal dynamics into Product Space clustering. This may involve
analyzing the evolution of product connections and studying how the clustering results
change over time, enabling policymakers to make informed decisions about diversification
strategies. Leveraging external data sources, such as trade data, supply chain informa-
tion, or macroeconomic indicators, could enrich the Product Space analyses. Integrating
such data could lead to a more comprehensive understanding of the factors that influence
industrial diversification and help in identifying potential growth opportunities. Also,
the study can expand its applicability by developing a framework that accommodates
industries beyond the standard harmonized system nomenclature proposed by Product
Space, such as service-based sectors and custom production. This could involve devising
new clustering and graph learning techniques tailored to diverse industrial landscapes.
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Focusing on interpreting the cluster insights obtained from the Product Space clustering
can provide valuable knowledge for policymakers and industry stakeholders. This will
require the development of user-friendly software tools or platforms that enable industry
professionals and policymakers to obtain diversification recommendations without the
need for a comprehensive grasp of the underlying technology. By pursuing these research
directions, the study does not just contribute to a more comprehensive understanding of in-
dustrial diversification, but also offers practical solutions and insights for decision-makers
in various industries.

This study offers a foundation for further research in the fields of economic diversifi-
cation and industrial development. These scientific perspectives can advance the under-
standing of Product Space analysis and provide valuable insights for policymakers and
industrial stakeholders seeking to promote economic growth and diversification.

Author Contributions: Conceptualization, K.C.; methodology, K.C.; software, K.C.; validation, K.C.;
formal analysis, K.C.; investigation, K.C.; resources, K.C.; data curation, K.C.; writing—original
draft preparation, K.C.; writing—review and editing, K.C. and F.C.; visualization, K.C.; supervision,
A.A.-K. and F.C.; project administration, A.A.-K. and F.C.; funding acquisition, A.A.-K. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported in part by the company OpenStudio through a Conven-
tion Industrielle de Formation par la Recherche (CIFRE) implemented by the Association National
Recherche Technologie (ANRT) N°2021/0563 supported by the French Ministry of Higher Education,
Research, and Innovation (MESRI). The APC was funded by OpenStudio.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data, experimentations and results presented in this study are
openly available in CodeOcean at https://doi.org/10.24433/CO.5620796.v1.

Acknowledgments: This paper and the research behind it would not have been possible without
the help of Jérôme Cuny and our team at OpenStudio: Taoufik Jarmouni, Jean-Luc Marini, Marion
Laurent and Jérémy Boiraud.

Conflicts of Interest: The authors declare that this study received funding from OpenStudio. The
funders had no role in the design of the study, in the collection, analyses, or interpretation of data, in
the writing of the manuscript or in the decision to publish the results.

References
1. Hendricks, K.B.; Singhal, V.R.; Zhang, R. The effect of operational slack, diversification, and vertical relatedness on the stock

market reaction to supply chain disruptions. J. Oper. Manag. 2009, 27, 233–246. [CrossRef]
2. Grillitsch, M.; Asheim, B. Place-based innovation policy for industrial diversification in regions. Eur. Plan. Stud. 2018,

26, 1638–1662. [CrossRef]
3. Wagner, J.E. Regional Economic Diversity: Action, Concept, or State of Confusion. J. Reg. Anal. Policy 2000, 30, 22. . [CrossRef]
4. Sierzchula, W.; Bakker, S.; Maat, K.; Van Wee, B. Technological diversity of emerging eco-innovations: A case study of the

automobile industry. J. Clean. Prod. 2012, 37, 211–220. [CrossRef]
5. Lu, J.W.; Ma, X. The Contingent Value of Local Partners’ Business Group Affiliations. Acad. Manag. J. 2008, 51, 295–314. [CrossRef]
6. Hidalgo, C.A.; Hausmann, R. The building blocks of economic complexity. Proc. Natl. Acad. Sci. USA 2009, 106, 10570–10575.

[CrossRef] [PubMed]
7. Hidalgo, C.A.; Klinger, B.; Barabási, A.L.; Hausmann, R. The Product Space Conditions the Development of Nations. Science

2007, 317, 482–487. [CrossRef] [PubMed]
8. Hausmann, R.; Hidalgo, C.A. The network structure of economic output. J. Econ. Growth 2011, 16, 309–342. [CrossRef]
9. Chaplin, P. An Introduction to the Harmonized System. NCJ Int’l L. Com. Reg. 1987, 12, 417.
10. Desmarchelier, B.; Regis, P.J.; Salike, N. Product space and the development of nations: A model of product diversification. J.

Econ. Behav. Organ. 2018, 145, 34–51. [CrossRef]
11. Pachot, A.; Albouy-Kissi, A.; Albouy-Kissi, B.; Chausse, F. Production2Vec: a hybrid recommender system combining semantic

and product complexity approach to improve industrial resiliency. In Proceedings of the 2021 2nd International Conference on
Artificial Intelligence and Information Systems, Chongqing, China, 26–28 Novermber 2021; pp. 1–6. [CrossRef]

12. DuBois, T.; Golbeck, J. Improving Recommendation Accuracy by Clustering Social Networks with Trust. Recomm. Syst. Soc. Web
2009, 532, 1–8.

https://doi.org/10.24433/CO.5620796.v1
http://doi.org/10.1016/j.jom.2008.09.001
http://dx.doi.org/10.1080/09654313.2018.1484892
.
http://dx.doi.org/10.22004/ag.econ.132170
http://dx.doi.org/10.1016/j.jclepro.2012.07.011
http://dx.doi.org/10.5465/amj.2008.31767261
http://dx.doi.org/10.1073/pnas.0900943106
http://www.ncbi.nlm.nih.gov/pubmed/19549871
http://dx.doi.org/10.1126/science.1144581
http://www.ncbi.nlm.nih.gov/pubmed/17656717
http://dx.doi.org/10.1007/s10887-011-9071-4
http://dx.doi.org/10.1016/j.jebo.2017.10.020
http://dx.doi.org/10.1145/3469213.3469218


Appl. Sci. 2024, 14, 2833 18 of 19

13. Newman, M.E.J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577–8582. [CrossRef]
[PubMed]

14. Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory
Exp. 2008, 2008, P10008. [CrossRef]

15. Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and
applications. AI Open 2020, 1, 57–81. [CrossRef]

16. Fraccascia, L.; Giannoccaro, I.; Albino, V. Green product development: What does the country product space imply? J. Clean.
Prod. 2018, 170, 1076–1088. [CrossRef]

17. Nomaler, Ö; Verspagen, B. Some New Views on Product Space and Related Diversification. arXiv 2022, arXiv:2203.16316.
18. Pachot, A.; Albouy-Kissi, A.; Albouy-Kissi, B.; Chausse, F. Multiobjective recommendation for sustainable production systems.

In Proceedings of the MORS workshop held in conjunction with the 15th ACM Conference on Recommender Systems (RecSys),
Amsterdam, The Netherlands, 27 September–1 October 2021; Volume 1.

19. Moradi, P.; Ahmadian, S.; Akhlaghian, F. An effective trust-based recommendation method using a novel graph clustering
algorithm. Phys. A Stat. Mech. Appl. 2015, 436, 462–481. [CrossRef]

20. Rostami, M.; Oussalah, M.; Farrahi, V. A Novel Time-Aware Food Recommender-System Based on Deep Learning and Graph
Clustering. IEEE Access 2022, 10, 52508–52524. [CrossRef]

21. Li, X.; Hu, Y.; Sun, Y.; Hu, J.; Zhang, J.; Qu, M. A Deep Graph Structured Clustering Network. IEEE Access 2020, 8, 161727–161738.
[CrossRef]

22. Yang, L.; Wang, S.; Tao, Y.; Sun, J.; Liu, X.; Yu, P.S.; Wang, T. DGRec: Graph Neural Network for Recommendation with Diversified
Embedding Generation. In Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining,
Singapore, 27 February–3 March 2023; pp. 661–669. [CrossRef]

23. Ren, Y.; Ni, H.; Zhang, Y.; Wang, X.; Song, G.; Li, D.; Hao, J. Dual-Process Graph Neural Network for Diversified Recommendation.
In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, CIKM ’23, Birmingham,
UK, 21–25 October 2023; pp. 2126–2135. [CrossRef]

24. Erdös, P.; Renyi, A. On the Strength of Connectedness of a Random Graph. Acta Math. Hung. 1961, 12, 261–267. [CrossRef]
25. Abbe, E. Community Detection and Stochastic Block Models: Recent Developments. J. Mach. Learn. Res. 2018, 18, 1–86.
26. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2017, arXiv:1609.02907.
27. Gómez, A.M.E.; Paynabar, K.; Pacella, M. Functional directed graphical models and applications in root-cause analysis and

diagnosis. J. Qual. Technol. 2021, 53, 421–437. [CrossRef]
28. Xing, Z.; Zhao, S.; Guo, W.; Meng, F.; Guo, X.; Wang, S.; He, H. Coal resources under carbon peak: Segmentation of massive laser

point clouds for coal mining in underground dusty environments using integrated graph deep learning model. Energy 2023,
285, 128771. [CrossRef]

29. Hamilton, W.L.; Ying, R.; Leskovec, J. Inductive Representation Learning on Large Graphs. arXiv 2018, arXiv:1706.02216.
30. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.

arXiv 2017, arXiv:1706.03762.
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