
Citation: Fan, Y.; Mao, S.; Li, M.; Wu,

Z.; Kang, J.; Li, B. Rectification for

Stitched Images with Deformable

Meshes and Residual Networks. Appl.

Sci. 2024, 14, 2821. https://doi.org/

10.3390/app14072821

Academic Editor: João M.

F. Rodrigues

Received: 26 February 2024

Revised: 24 March 2024

Accepted: 26 March 2024

Published: 27 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Rectification for Stitched Images with Deformable Meshes and
Residual Networks
Yingbo Fan , Shanjun Mao *, Mei Li , Zheng Wu , Jitong Kang and Ben Li

Institute of Remote Sensing and Geographic Information Systems, Peking University, No. 5 Summer Palace Road,
Beijing 100871, China; ybfan@stu.pku.edu.cn (Y.F.); mli@pku.edu.cn (M.L.); zheng_wu@pku.edu.cn (Z.W.);
2101210061@stu.pku.edu.cn (J.K.); benli@pku.edu.cn (B.L.)
* Correspondence: sjmao_pku@163.com

Abstract: Image stitching is an important method for digital image processing, which is often prone to
the problem of the irregularity of stitched images after stitching. And the traditional image cropping
or complementation methods usually lead to a large number of information loss. Therefore, this
paper proposes an image rectification method based on deformable mesh and residual network. The
method aims to minimize the information loss at the edges of the spliced image and the information
loss inside the image. Specifically, the method can select the most suitable mesh shape for residual
network regression according to different images. Its loss function includes global loss and local loss,
aiming to minimize the loss of image information within the grid and global target. The method in this
paper not only greatly reduces the information loss caused by irregular shapes after image stitching,
but also adapts to different images with various rigid structures. Meanwhile, its validation on the
DIR-D dataset shows that the method outperforms the state-of-the-art methods in image rectification.

Keywords: image rectangular; deformable mesh; width residual network; global loss function

1. Introduction

With the rapid development of image stitching and image fusion technologies, meth-
ods for obtaining multi-view or even global perspectives through multiple single view-
points have been widely applied in human production and daily life [1–5]. For instance,
the extensive use of technologies such as panoramic images, autonomous driving, and
virtual reality (VR) enables the precise remote observation of scenes by individuals [6–8].
However, in the process of stitching multiple single-view images, it is necessary to align
the overlapping regions of different images by adjusting their positions, angles, and local
distortions [9]. This often results in irregular boundaries in non-overlapping regions, mak-
ing it challenging for individuals to adapt and making them prone to misjudgments when
observing panoramic images [10].

Some studies have solved irregular boundary selection by directly using smaller
rectangular boxes to crop images [11,12]. However, such methods may result in the
loss of a large amount of information, which contradicts the original purpose of image
stitching, which aims to expand the field of view [13,14]. Additionally, image completion
can be employed to predict missing portions of an image and restore its integrity to some
extent [15,16]. Nevertheless, its limitations are evident, particularly in cases where the
missing portions contain complex structures or highly personalized information, making
it challenging for image completion to accurately predict the missing areas [17–19]. This
limitation renders image completion unsuitable for applications in fields with high security
requirements, such as autonomous driving and industrial production monitoring [20].

To address the aforementioned challenges, this study proposes a deep learning-based
image rectification algorithm named RIS-DMRN (Rectification for Image Stitching with
Deformable Mesh and Residual Network). The algorithm defines a deformable target
mesh for irregularly stitched images, which can be predicted during model training. The
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selection of the deformable mesh shape is based on the judgment of the current image’s
rigid structure by a convolutional neural network, offering three options: triangle, rectangle,
and regular hexagon. Once the mesh shape is determined, the prediction network generates
an initial predicted mesh based on the input irregular image and its mask matrix. The
training process employs a width residual network to predict the initial mesh by the
content-aware processing of irregularly stitched images. Subsequently, the input irregular
image, predicted initial mesh, and predefined target mesh are collectively input into
the width residual neural network for rectification regression. The loss function of the
width residual network comprises local and global parts. The local loss function controls
the deformation loss of targets within the mesh, while the global-related loss function
helps avoid global information loss during the deformation process. Finally, the image
rectangular restoration is achieved through continuous iterative regression using residual
neural networks (Figure 1).
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In response to the current problems of a large loss of edge information and severe
deformation of internal details in image rectangles, this paper proposes a method based
on variable grids and residual neural networks. The highlights of this study include
the following:

• This approach utilizes a deformable mesh as the initial mesh, allowing for more ver-
satile directional movement during mesh restoration and achieving better correction
effects for targets within irregular images.

• The introduction of local and global-related loss functions significantly mitigates the
drawbacks of traditional methods that focus only on partial regions, enhancing the
overall coherence during the deformation recovery process and preserving content
more effectively after image rectification.

• In the experiment of randomly parallelizing 300 irregular images on the public dataset
DRI-D [21], SSIM and PSNR reached 0.7234 and 22.65, respectively, achieving a rela-
tively accurate level.
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2. Related Work

Faced with the problems of image rectangles, researchers have conducted some related
work and research, including feature matching-based methods, optimization algorithm-
based methods, and deep learning methods. However, each method has its own limitations;
for example, the feature matching-based method is easily affected by the mismatch and
instability of the feature points in the image, resulting in discontinuous or irregularly
shaped edges of the spliced image. While the class uses optimization algorithms to adjust
the image, it usually needs to define the global or local loss function of the spliced image
and use optimization algorithms to minimize the loss function so as to obtain smoother and
more regular image edges. However, since these methods require complex optimization
calculations on the image and may be affected by local optimal solutions, their effectiveness
may be limited when dealing with large-scale images or complex scenes.

For example, in terms of feature matching, Zhu et al. [22] proposed adjusting the
stitched image by computing a perspective transformation matrix to make it closer to a
rectangular shape. However, this method often relies on the estimation of the geometric
structures in specific regions of the image, such as lines or corners. Some approaches
suggest transforming local quadrilateral mesh regions on the stitched image to make the
overall image more rectangular [23–25]. Building upon the aforementioned research, He
et al. [26] proposed optimizing the preservation of line meshes and deforming the rigid
structures within the mesh. Li et al. [27] improved the preservation term from line meshes
to geodesic lines. However, the applicability of this method is restricted due to the common
occurrence of curved ground lines in panoramic images. Some researchers introduced
Seam Carving, an algorithmic approach that alters the size of an image by carving or
inserting pixels in different parts of the image, thereby transforming irregular images into
rectangular forms [28–32]. Meanwhile, Lang et al. [21] proposed DRIS (Deep Rectangling
for Image Stitching), employing a residual progressive regression strategy for fully convo-
lutional network prediction of mesh deformations. Based on the predicted mesh, irregular
images are corrected. This method partially addresses the challenges of flexible structural
distortions for image rectification and computational acceleration. Moreover, the approach
utilizes a residual progressive regression strategy for fully convolutional network predic-
tion of mesh deformations and subsequent correction of irregular images. However, DRIS
still faces certain challenges. For instance, its loss function focuses solely on the situation
within the initial mesh, without considering global information for further adjustments.
This limitation results in deformation errors in panoramic information. Additionally, the
method concentrates on horizontal and vertical objectives within the mesh, making it prone
to deformation errors when correcting targets in other scale directions [33,34]. Currently,
there is relatively limited research on image rectification, and achieving image rectification
while ensuring minimal loss of information remains a challenging task [35–38].

3. Materials and Methods

This paper proposes a deformable mesh structure for the initial prediction of irregular
images, enhancing its adaptability in various spatial scene structures. In light of this mesh
structure, the paper establishes two methods for mesh application. One approach involves
predicting the rigid structure of the input image through a simple convolutional neural
network. Based on the prediction results, the most suitable mesh shape for the image is
selected (Figure 2a). Subsequently, the input image and the chosen mesh shape are input
into a width residual network for initializing mesh prediction. Finally, the predicted initial
mesh and the input irregular image are jointly used for image rectification regression,
resulting in the output image.

Another option is to input the input image and predefined target meshes for all shapes
into a width residual neural network to generate initial mesh predictions (Figure 2b).
Subsequently, image rectification regression is performed with the input image. The
optimization is then based on the regression loss of the rectified image, selecting the one
with the minimum information loss as the final output image.
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Figure 2. Image rectification with different mesh shape selection modes. (a) Selecting a mesh
shape based on the image. Predicting the most suitable mesh shape for an input image through a
convolutional neural network. Subsequently, the predicted initial mesh based on this shape and the
predefined mesh are jointly input into a residual network for image rectification. (b) Selecting all
mesh shapes for loss comparisons. Applying all mesh shapes to the input image and jointly inputting
them into a residual network for rectification. The rectified image with the lowest loss is selected as
the final output.

A model of image rectification algorithms based on deformable meshes and residual
networks is illustrated in Algorithm 1, which consists of two strategies to choose from,
namely, the image-based and loss-based strategies. The image-based strategy selects the
grid shape that best suits the current image based on the number and distribution of rigid
structures within the image. After that, the selected mesh shape and the input image are fed
into the residual neural network to obtain the initialized prediction mesh. The initialized
prediction grid and the input image are then subjected to rectangle regression together
until it meets the accuracy requirements; otherwise, the network continues to be trained.
The loss-based strategy, on the other hand, inputs the input image directly into the residual
network to obtain initialized prediction grids for the three meshes. Then, after the rectangle
regression of the three initialized prediction grids along with the input image, the rectangle
image with the lowest loss is selected as the final output.
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Algorithm 1 RIS-DMRN algorithm

Input: Irregular images: I; deformable target mesh: triangle(T), rectangle(R), and regular hexagon(H);
mesh selection strategy: image-based, loss-based; neural network training parameters (such
as learning rate, batch size, etc.)

Output: Rectangle images

1: for image-based do:
2: Obtain predicted rigid structure after I input CNN
3: Select the optimal mesh (such as H) based on the rigid structure
4: Input H and I into RNN to obtain the predicted initialization mesh (PIM)
5: if significant losses do:
6: Rectangle regression based on PIM and I
7: else do
8: Retrain the network
9: end for
10: for loss-based do:
11: I Input RNN to obtain the PIM of three meshes
12: Rectangle regression based on PIM and I
13: Select the best rectangle image based on three losses
14: end for

3.1. Deformable Mesh

This paper introduces deformable meshes to meet the application demands in dif-
ferent scenarios. Traditional rectangles exhibit weaker generalization capabilities when
dealing with complex scenes. Therefore, the paper introduces two additional mesh models:
hexagonal and triangular meshes. Hexagonal meshes have more uniform relationships
between adjacent pixels, with each hexagon having six neighbors with equal adjacency
properties. This provides better spatial consistency for image rectification. For example,
during the image interpolation process, hexagonal meshes can offer smoother and more
natural transitions. Moreover, hexagonal meshes closely resemble the shapes of many ob-
jects and structures found in the natural world, such as beehives and crystal structures [39].
Therefore, they may provide a more natural representation of images related to natural
landscapes. Triangular meshes, on the other hand, excel in realistically reconstructing
the shapes in images, especially when the images contain curves and surfaces [40]. The
use of triangular meshes allows for better adaptation to irregular image regions, enabling
more flexible shape approximation and, consequently, a more accurate capture of details in
the images.

Simultaneously, this paper proposes two operational modes for the deformable meshes:
speed-oriented and quality-oriented. In the speed-oriented mode, the input image under-
goes the detection of rigid structures within irregular images using a simple recognition
network. Based on the detected structure count and orientation, the mesh shape that best
fits the threshold is directly selected. Currently available mesh shapes include triangles,
rectangles, hexagons, and more. In the quality-oriented mode, each mesh shape conducts
residual regression predictions on the input image, generating a rectified image. Ultimately,
the optimal output is selected based on the loss values of the rectified images, choosing the
one with a relatively superior rectification effect.

3.2. Network Architecture

The network architecture proposed in RIS-DMRN consists of two components (Figure 3):
the rigid target recognition network and the width residual regression network [41]. The
input comprises irregularly stitched images and their stitching mask matrix. The input
image is initially processed by a simple recognition convolutional neural network to detect
the quantity and orientation of rigid structures. Based on the detection results, the most
suitable mesh shape is chosen for rectification. For instance, if there are predominantly
horizontal or vertical rigid structures in the image, a preference is given to selecting a
rectangular mesh. In the case of a higher prevalence of curved surfaces or curved structures,
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a triangular mesh is chosen. If the quantities of vertical rigid structures and curved
structures are comparable, a hexagonal mesh is selected for image rectification.
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The main structure of the rigid structure detection in this paper is a convolutional
neural network (Figure 4), with input images resized to a unified 448 × 448. The CNN
consists of six convolutional blocks, each composed of various combinations of 3 × 3
convolutional kernels, 1 × 1 convolutional kernels, and 2 × 2 max-pooling layers with a
stride of 2. After extracting image features into a 1000-dimensional 7 × 7 feature vector, a
1000-dimensional vector is generated through average pooling. This vector is then input
into Softmax for rigid structure detection. The network also incorporates normalization
and dropout operations, although they are not explicitly shown in the diagram.
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Once the mesh shape is determined, the irregularly stitched image and its mask matrix
are fed into the Wide Residual Neural Network (Wide ResNet) for the rectification process.
The choice of Wide ResNet as the recovery prediction network for image rectification is
motivated by its ability to enhance feature dimensions in each residual block through
increased channel numbers. This augmentation enables the network to capture richer
feature representations, playing a crucial role in the recovery of content items after mesh
transformation and minimizing the loss in rectified content. Moreover, due to significant
internal variations within the meshes during the rectification process, some meshes experi-
ence a gradual decrease in gradients during the backward propagation of model training,
leading to convergence challenges. The introduction of wider residual blocks in the Wide
ResNet facilitates easier gradient flow, mitigating the issue of gradient vanishing during
training [42,43].

The architecture of the Wide ResNet employed in RIS-DMRN consists of four residual
convolutional blocks followed by an average pooling layer (Table 1). In the network, “k”
represents the multiplier for the convolutional kernels in the original module, “N” indicates
the number of residual modules in that layer, and “B (3,3)” signifies each residual module
consisting of two 3 × 3 convolutional layers. After feature extraction through the residual
network, a simple fully convolutional structure is utilized as a mesh motion regressor to
predict the horizontal and vertical movements of each vertex based on the regular mesh,
facilitating the output of the rectified image.

Table 1. Schematic structure of width residual neural network. In the table, “k” represents the
multiplier for the convolutional kernels in the original module, “N” indicates the number of residual
modules in that layer, and “B (3,3)” signifies each residual module consisting of two 3 × 3 convolu-
tional layers. The image undergoes processing through a mean pooling layer, resulting in the final
output image.

Type Block Type = B(3,3) Output

conv1 [3 × 3, 16] 32 × 32
conv2

[
3 × 3, 16 × k
3 × 3, 16 × k

]
× N 32 × 32

conv3
[

3 × 3, 16 × k
3 × 3, 16 × k

]
× N 16 × 16

conv4
[

3 × 3, 16 × k
3 × 3, 16 × k

]
× N 8 × 8

avgpool [8 × 8] 1 × 1

3.3. Loss Function

The loss function of the proposed RIS-DMRN consists of two components: the local
loss function and the global loss function. The calculation is formulated as follows in
Equation (1):

ltotal = ωlocal llocal + ωglobal lglobal (1)

where ωlocal and ωglobal represent the weights assigned to the local loss and global loss,
respectively. The local loss llocal and global loss lglobal contribute to the overall loss, and
the weights control the balance between preserving local details and maintaining global
context during the rectification process.

3.3.1. Local Loss

The content loss term in the RIS-DMRN consists of two components: content loss and
mesh loss. The content loss term, represented by Equation (2), involves the comparison
between the predicted mesh (m) applied to the input irregular image (Ip) and the warped
version of the irregular image (D

(
Ip, m

)
) using the bending operation. Additionally, the

content loss incorporates the difference between the predicted mesh and the ground truth
mesh (T). The function C, denoting the “conv4” convolutional layer in the width recognition
network, plays a role in shaping the content loss term. This formulation aims to ensure that
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the rectified image aligns closely with both the original irregular content and the ground
truth mesh structure.

lcontent =
∥∥T − D(Ip, m)

∥∥
2 +

∥∥C(T)− C(D(Ip, m))
∥∥

2 (2)

For the mesh loss term in RIS-DMRN, the formula can be expressed as Equation (3):

lmesh = ∑
i,j

∥∥W(Ip, mi,j)− W(Ip, Ti,j)
∥∥ (3)

where lmesh represents the mesh loss term, i and j are indices within the mesh, mi,j is
the predicted mesh by the model, Ti,j is the ground truth label mesh, and W is the mesh
generation function. This loss term aims to encourage the model to better learn and preserve
the mesh structure of the image by comparing the differences between the predicted mesh
by the model and the true label mesh.

3.3.2. Global Loss

The global loss term in RIS-DMRN proposed in this paper consists of two components:
global structural loss term and boundary loss term, expressed as shown in Equation (4):

lglobal = lms + lborder (4)

The computation of the global structural loss term is expressed as Equation (5), where
Ic
p represents the irregular image cropped based on the mask matrix, µIc

p is the mean of Ic
p,

µT is the mean of T, σ2
Ic
p

is the variance of Ic
p, σ2

T is the variance of T, and σIc
pT is the covariance

between Ic
p and T. Constants c1 and c2 are constants used to stabilize the formula.

lms(Ic
p, T) =

(2µIc
p µT + c1)(2σIc

pT + c2)

(µ2
Ic
p
+ µ2

T + c1)(σ
2
Ic
p
+ σ2

T + c2)
(5)

The expression for the boundary loss term is given by Equation (6), where Im represents
the mask matrix of the original irregular image, and E represents the target template of
an all-ones matrix. The boundary loss is adjusted based on the 0/1 mask matrix of the
irregular stitched image, with an all-ones matrix as the true target, gradually approaching
the rectangularization.

lborder = ∥E − D(Im, m))∥2 (6)

4. Results

The experimental implementation of the RIS-DMRN algorithm in this study was con-
ducted on the following workstation configuration: Processor (CPU): Intel Core i9-13900HX
(2.2 GHz, 6 cores, 12 threads), Memory (RAM): 16GB DDR4 2400MHz, Graphics Card
(GPU): NVIDIA GeForce GTX 4070 Ti (8GB GDDR5X). The algorithm was implemented
using Python 3.6 + TensorFlow 1.13.1 for program design. Due to the limited availability of
publicly accessible datasets for image rectification research, this study conducted validation
on the DIR-D dataset [21]. Following the consistent approach outlined in the paper [21],
RIS-DMRN set the batch size to 8 during the training process, initialized the learning rate
to 1 × 10−3, and performed exponential decay on the learning rate at every 50 epochs.
The parameters ωlocal and ωglobal were set to 0.7 and 0.3, respectively, aiming to preserve
detailed content while simultaneously focusing on the global shape changes. After the
experimentation, this combination was found to be the better choice.

4.1. Quantitative Comparison of Image Rectification

The algorithm proposed in this paper was primarily tested on 300 samples selected
from the DIR-D dataset. The DIR-D dataset consists of 5839 samples for training and
519 samples for testing. The resolution of each image in the dataset is 512 × 384, where
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each sample is a ternary consisting of a spliced image, a mask, and a rectangular label. The
image content covers most of the scenes in human daily life with good generalization and
usefulness, and, thus, serves as the experimental dataset for this paper. A quantitative
comparison was performed against mainstream rectification methods, and the results
are presented in Table 1. The term “Initialization” denotes the initial state of the freshly
stitched image without image rectification processing. The quantification metrics include
the average values of SSIM, PSNR, and FID within the samples for comparison [44–46].

It is evident that the proposed RIS-DMRN outperforms RPIW [26] and DRIS [21]
in all metrics (Table 2). Additionally, it surpasses traditional seam carving and image
completion. This superiority is attributed to the configurations in the loss functions of the
deep learning rectification algorithm, which includes the design of content loss and mesh
loss. These designs minimize the deformation of target content within the image during
rectification, resulting in a more effective image rectification. Compared with the three loss
terms of boundary, content, and grid adopted by DRIS, the global structure loss term and
boundary loss term in RIS-DMRN better preserve global information. Preserving global
information is crucial for the algorithm to better understand the contextual relationships
of objects in the image. This understanding is vital for interpreting the relative positions,
sizes, and interrelationships of objects. Additionally, global information contributes to
maintaining consistency between different regions of the image, ensuring that the algorithm
produces coherent output throughout the entire image, especially in tasks like image
rectification [47–49].

Table 2. Quantization comparison of image rectification on DIR-D. Structural Similarity Index (SSIM),
Peak Signal-to-Noise Ratio (PSNR), Mean-Square Error (MSE), and Fréchet Inception Distance (FID)
are employed to assess image quality from different perspectives. SSIM measures the structural
similarity between two images, considering brightness, contrast, and structure. And the SSIM values
range from −1 to 1, with 1 indicating identical images. PSNR compares original and processed images
by measuring signal-to-noise strength. Higher PSNR values in decibels (dB) indicate better image
quality. MSE evaluates the similarity between images by calculating the difference between pixels,
with lower values indicating more similar images. FID primarily assesses dissimilarity between
generated and real images in terms of distribution. Lower FID values indicate greater similarity in
latent space. An upward arrow in the table indicates that the larger its value, the higher the image
quality, and vice versa.

Method SSIM ↑ PSNR ↑ MSE ↓ FID ↓
Reference 0.3354 11.42 3180.97 43.57
RPIW [26] 0.3805 15.03 2893.10 37.51
DRIS [21] 0.7173 21.57 1796.83 21.26

Ours 0.7234 22.65 1512.74 20.05

Simultaneously, by performing comparisons with the method based on the image’s
minimum energy line and rectangular mesh division adopted by RPIW, it can be observed
that using a hexagon as the initial mesh shape yields slightly better results than traditional
rectangular meshes (Table 2). This improvement is attributed to hexagons having more
rigid directional choices and better shape adjacency relationships. While hexagons may
increase the computational time to some extent compared to rectangles, they often produce
superior results.

Consistent with the settings in [21], in this study, we also acknowledge that there
may be differences in quantitative measurements when objects undergo slight positional
variations in the generated rectangular results. Although the visual perception may still
appear very natural in such cases, it could weaken the persuasiveness of quantitative
experiments. Therefore, in this study, we also incorporate BIQUE [50] and NIQE [51]
as “no-reference” evaluation metrics (Table 3). These two evaluation methods are no-
reference image quality assessment metrics dedicated to quantifying the quality of images
without the need for any additional reference data [52,53]. It is noteworthy that RIS-DMRN
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produces higher quality results under these blind image quality evaluation metrics. This
indicates that the proposed method not only excels in preserving global information but
also achieves significant improvements in overall image quality.

Table 3. Quantitative comparison of non-referenced assessment indicators. Blind Image Quality
Evaluator (BIQUE) and Natural Image Quality Evaluator (NIQE) are “no-reference” metrics designed
to assess image quality without an original reference image. BIQUE estimates image quality by
considering local contrast, structural information, and global color and brightness variations. NIQE
focuses on natural images, assessing quality through the analysis of statistical features such as
gradients, luminance, and color distribution. An upward arrow in the table indicates that the larger
its value, the higher the image quality, and vice versa.

Method BIQUE ↓ NIQE ↓
RPIW [26] 14.045 16.927
DRIS [21] 13.796 16.421

Label 11.017 14.763
Ours 13.562 16.027

4.2. Qualitative Comparison of Image Rectification

To visually demonstrate the effectiveness of RIS-DMRN in image rectification, we
divided the test set into two parts—one with more global contextual information and the
other with more local detailed information. The algorithm was tested on both sets, and the
results were compared qualitatively (Figure 5). Specifically, the study showcases the effects
of different input irregular images, image completion results, RIS-DMRN processed images,
and ground truth label images in scenes where global correlations are more prominent,
such as natural landscapes.
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It is evident that image completion can fully rectify the image into a rectangle (Figure 5),
but it relies heavily on pixel-level adjustments based on context, making it overly depen-
dent on surrounding information. This dependency may lead to the inaccurate filling of
missing parts, resulting in generated images that appear unrealistic or unnatural, and may
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even cause a certain degree of decrease in image clarity [36,54]. In contrast, the rectangu-
lar images generated by RIS-DMRN closely resemble the real label images. RIS-DMRN
performs well in maintaining the global rigidity or curvature of target objects in the im-
age, attempting to preserve the original appearance without introducing local barrel or
pincushion distortions.

In scenarios with dense local information, we compare the results of image completion
and RIS-DMRN processing when dealing with irregular images (Figure 6). It is observed
that image completion methods often lead to deformations in local rigid structures during
the rectification process. Moreover, when addressing the boundaries of missing regions,
noticeable boundary effects are common, as image completion methods need to ensure
smooth transitions between the filled area and the surrounding region, leading to promi-
nent boundary artifacts [55–57]. In addition, this article also presents other qualitative
comparison results, as shown in Appendix A Figures A1 and A2.
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RIS-DMRN, with its finer mesh design, can control the loss and deformation of local
information within a certain range. This ensures that local shape changes do not excessively
impact the deformation of adjacent meshes, guaranteeing the preservation of local informa-
tion during the rectification process. Additionally, constraints in different mesh directions
in RIS-DMRN allow it to adapt to various deformations of rigid and curved structures,
enabling a better fit to the original shape of the image during the deformation process.

4.3. Impact of Deformable Mesh and Loss Functions on Image Rectification

In accordance with practical application requirements, we designed three types of
deformable meshes—triangle, rectangle, and regular hexagon—for predicting the rectifi-
cation of irregular images. For the input size of the dataset at 512 × 384, a uniform mesh
resolution of 16 × 12 was employed for rectification prediction. In terms of loss functions,
both local and global loss terms were designed for regression prediction. Taking a random
selection of 300 images from the test set of the DIR-D dataset as an example, we tested the
quantitative metrics for image rectification under different method combinations (Table 4).
In the table, “W” indicates the inclusion of the current mesh shape or loss function in
the combination.
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Table 4. Influence of different loss functions and mesh shapes on image rectification. SSIM, PSNR, and
FID are utilized as components in various combinations. The symbol “W” denotes the inclusion of
the current grid shape or loss function in the combination. The “model” column represents different
combinations, where L stands for “Localized loss”, G for “Global loss”, T for “Triangle”, R for
“Rectangle”, and H for “Hexagon”. Various colors are employed in the table for clear correspondence
with the combination methods illustrated in Figure 7. An upward arrow in the table indicates that
the larger its value, the higher the image quality, and vice versa.

Loss Function Mesh Shape Model Quantitative Index

Localized Loss Global Loss Triangle Rectangle Hexagon Color SSIM ↑ PSNR ↑ FID ↓
W W R + G 0.4753 15.12 74.68

W W R + L 0.6169 18.96 24.70
W W W T + G + L 0.7071 20.46 22.02
W W W R + G + L 0.7126 21.05 21.74
W W W H + G + L 0.7203 21.97 20.68
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When combining local and global loss terms on the basis of using a rectangular mesh,
the overall rectification regression performance is poorer. Comparatively, the absence of the
local loss term has a more significant impact on rectification. This is because the global loss
term introduces substantial stretching and bending during the regression process, while
the local loss term predicts the regression of rigid or curved structures based on the actual
content within the mesh. If only the global loss term is used, the rectification may result in
severe deformation within local structures, as they are not adequately repaired.

The figures provide a more intuitive sense of the image loss resulting from different
combinations, offering a direct visual representation of the changes in evaluation metrics
under various combinations (Figure 7). In terms of the overall rectification performance
with deformable meshes, it can be observed that the hexagon performs the best, followed
by the rectangular mesh, while the triangular mesh exhibits the poorest rectification effect.
This is because the hexagonal mesh has better adaptability compared to other meshes;
it can effectively cover and adapt to various irregular contours, thereby enhancing the
performance of the regression model [58,59].

Simultaneously, the hexagonal mesh can more compactly cover the image area, reduc-
ing redundancy. It can decrease edge effects when handling image boundaries, reducing
the likelihood of extensive deformation at the image edges and thereby improving repre-
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sentation efficiency [60]. In contrast, rectangular meshes may require more mesh points
to represent the same image area, resulting in larger input dimensions [61]. Although
triangular meshes, compared to rectangular meshes, can better adapt to irregular shapes
and exhibit greater flexibility in handling complex image structures [62,63], the special
interpolation between triangular meshes and the relationships between neighboring trian-
gles may result in the need for more mesh points to represent the same image area, thus
increasing redundancy [64]. Additionally, when dealing with image boundaries, triangular
meshes may encounter issues of discontinuity or lack of smoothness at the borders.

5. Conclusions and Future Work

This paper proposes a method for rectifying irregularly stitched images using de-
formable meshes and residual networks. The approach involves predicting initial mesh
models for irregular images using three types of shapes: triangles, rectangles, and regular
hexagons. The selection of different meshes can be dynamically adjusted based on the
requirements of predicting rigid structures or actual image content. The predicted mesh
model, predefined mesh model, and irregular input image are jointly input into a width
residual network for rectification regression. The loss function comprises local and global
loss terms, ensuring that the loss of image information within the mesh and global contex-
tual information is minimized. The final output rectifies the irregularly stitched image into a
rectangularized image. The generated rectangularized image not only reduces the informa-
tion loss in image deformation, but can also be adapted according to different actual input
image structures, which further improves the effect of image rectangularization. The image
rectangularization has significant advantages in the practical application of image stitching,
including simplifying the processing flow, increasing accuracy and stability, and improving
the accuracy of stitching results. This enables it to have a wide range of applications in
fields such as geographic information systems and medical image processing.

There is still room for further improvement and optimization of the algorithms in this
paper. When constructing non-traditional rectangular grids such as triangles or hexagons,
the complex calculations require further optimization. For example, calculating the relative
positions or distances between neighboring cells may involve more complex geometric
operations. Compared to rectangular grids, triangle and hexagonal grids have more
complex vertex coordinates and connectivity, and they typically require more storage to
represent the same regions. In addition, using neural network structures in deep learning
networks for non-rectangular meshes may require more parameters and more complex
processing layers, which may lead to slower training and inference. In the future, we will
continue to investigate and improve the efficiency of these areas.
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