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Abstract: In this study, we identified culturable microscopic fungi in soil from areas frequented by
people (parks, allotments, and other green areas) in the city of Wrocław (Poland). In addition to
general species analysis, attention was focused on keratin-degrading fungi. From 60 soil samples
(12 study sites), we obtained 75 isolates of keratinophilic and keratinolytic fungi using the hair bait
method, and 54 isolates of fungi were isolated on PDA (Potato Dextrose Agar) medium. Based on
morphological and molecular analyses, a total of 37 strains were identified, classified into 2 phyla,
11 families, 17 genera, and 30 filamentous species. The mean values of the Shannon Diversity Index for
both experimental variants ranged from 0.074 to 0.117. The most common species was the Penicillium
genus, which accounted for 33.33% of all fungal species obtained in these studies. These fungi are
common in both indoor and outdoor environments. However, particularly noteworthy in this study
are the species belonging to the group of dermatophytes (Arthroderma uncinatum, Keratinophyton
wagnerii, Nannizzia gypsea, and Paraphyton cookei), which may pose a real biological threat to
humans and animals due to their well-known potential to cause dermatomycosis.

Keywords: green areas; keratinophilic fungi; keratinolytic fungi; parks; soil-borne fungi

1. Introduction

Fungi, being cosmopolitan organisms, are common in many parts of the world and can
thrive across a wide range of pH and temperatures [1,2]. Soil is one of the ecosystems that
serves as their natural reservoir [3]. The diversity and activity of soil fungi are regulated
by a variety of biotic (e.g., plant roots, soil fauna) and abiotic (e.g., moisture, temperature)
factors [4,5]. Fungi are involved in the transformation of dead organic matter into biomass,
carbon dioxide, and organic acids, among other processes [6]. Their ability to produce a
wide range of extracellular enzymes allows them to decompose all types of organic matter,
breaking down soil components, thereby regulating the carbon and nutrient balance in the
soil [1]. As a result, fungi predominate in soils rich in organic matter, while their presence is
reduced in soils subjected to intensive mineral exploitation [3]. Moreover, many species of
fungi have the ability to biosorb toxic metals by accumulating them in fruiting bodies [7].

A large array of keratinolytic and keratinophilic fungi occur in both natural habitats
and those affected by anthropogenic activity. They can be found in soil, sewage, freshwater,
and many other samples in either urban areas or outside them [8]. Based on their occurrence,
these fungi have been categorized by their preferred habitats: antropophilic (inhabiting
and causing mycosis in humans), geophilic (inhabiting soils), and zoophilic (inhabiting and
causing mycosis in animals). Their metabolic activity allows them to degrade keratinous
material, which is present in skin or hair [9]. There is a specific group among them called
dermatophytes. They are an etiological factor causing dermatophytosis both in humans
and animals, although primarily they are considered as soil saprophytes [9,10]. They are
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classified into genera of Microsporum, Epidermophyton, Trichophyton, Lophophyton,
Nannizzia, and Arthroderma. On a global scale, approximately 20–25% of the population
has experienced mycosis, predominantly dermatophytosis [10].

Keratin, especially important in epidemiological terms, is a component decomposed by
fungi. This filamentous polypeptide compound [11] is found in the cells of all of the known
mammals [12]. The main function of the keratin is to protect epithelial cells. Damage to
keratin may lead to ruptures and the death of epithelial cells. It is also found in appendages
like hair or nails [11,13]. There is a group of enzymes called keratinases, capable of degrad-
ing keratin due to their proteolytic activity. This group has significant biotechnological
potential due to its stability across a broad range of temperatures. Moreover, keratinases are
active in alkaline to neutral pH, with optimal activity between pH 7.0 and 9.0. Keratinases
can be found in a large quantity of microorganisms. Fungi are being recognized as great
keratin decomposers due to their extracellular keratinase production [13].

Despite increasing urbanization, which affects the levels of diversification of human-
related fungi found in urban soil, they are not systematically studied [14,15]. Therefore, the
study of urban ecology, especially fungal communities, is becoming increasingly important
for biodiversity conservation and maintaining biological safety. Relatively only a few studies
focusing on fungal communities in soils in green urban areas are available [15–18]. An interesting
study was presented by Abrego et al. [19], who compared fungal communities in the air and soil
from natural and urban areas in Finland. In the research, they discovered that fungal abundance
and diversity were significantly higher in samples from natural habitats than in urban habitats,
both in air and soil [19].

The aim of this research is to present and compare the cultivable fungal diversity present
in the soil across various urban locations in the city of Wrocław, Poland, with a particular focus
on keratinophilic and keratinolytic species due to their potentially higher health risks.

2. Materials and Methods
2.1. Study Area

The city of Wrocław is located in southwestern Poland (51◦ N, 17◦ E) and is situated along
the Oder River (Figure 1). The population is about 640,000 in a city area of 293 square kilometers.
Most of Wrocław’s area (>60%) is covered by green and agricultural land. Buildings, both
residential and industrial, make up about 1/3 of the city’s area [20]. The climate is mild and
generally warm and temperate. Wrocław has a significant amount of rainfall during the year
(ca. 700 mm). In Wrocław, the average annual temperature is 10.0 ◦C [21].
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V—Bełza Square, VI—Słoneczny Park, VII—Allotment “Pod Topolami”, VIII—Tołpa Park, 
IX—Skowroni Park, X—Na Niskich Łąkach Park, XI—Grabiszyński Park, XII—Południowy Park. 
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2.2. Sampling

Soil samples for the study were taken in October 2021 from 12 sites frequently used by
people (Figure 1, Table 1). For this purpose, 5 soil samples were taken from each research
site (parks, allotments, and other green areas), resulting in a total of 60 samples from
all study sites. Each sample (0.5–1 kg) was collected from 0 to 30 cm of soil layer with
a sterile spoon into appropriately labeled sterile string bags and then stored in a cooler
(approximately 10 ± 0.5 ◦C) until mycological testing.

Table 1. Basic information about study sites and their geographical coordinates.

Study Sites Name of Location Latitude (N) Longitude (E) Type of Usage Predominant Vegetation Accessibility for Animals

I “Gaj” Allotment
Garden 51◦07′75′′ 17◦05′52′′ Allotment garden Useful plants Occasionally

II Słowiańska Hill 51◦12′48′′ 17◦04′35′′ Other green areas Deciduous trees Yes

III Dąbrowskiego Street 51◦10′11′′ 17◦04′19′′ Other green areas Grass and individual
deciduous trees Occasionally

IV Staszic Park 51◦12′42′′ 17◦03′07′′ Park Deciduous trees Yes
V Bełza Square 51◦14′19′′ 17◦05′45′′ Other green areas Deciduous trees Yes
VI Słoneczny Park 51◦08′06′′ 17◦04′41′′ Park Deciduous trees Yes

VII Allotment “Pod
Topolami” 51◦06′98′′ 17◦02′85′′ Allotment garden Useful plants Occasionally

VIII Tołpa Park 51◦12′05′′ 17◦05′39′′ Park Deciduous trees Yes
IX Skowroni Park 51◦08′04′′ 17◦02′74′′ Park Deciduous trees Yes

X Na Niskich Łąkach
Park 51◦09′88′′ 17◦ .05′79′′ Park Deciduous trees Yes

XI Grabiszyński Park 51◦08′79′′ 16◦97′88′′ Park Deciduous trees Yes
XII Południowy Park 51◦07′28′′ 17◦01′45′′ Park Deciduous trees Yes

2.3. Culture

For the general isolation of microscopic fungi, 3 g of soil separately from each sample
was placed in polypropylene test tubes with 12 mL of sterile saline solution (0.85% NaCl).
The samples were shaken at room temperature (24 ± 0.5 ◦C) for 20 min, diluted 50×,
500×, and 5000×, and vortexed; 100 µL of each dilution was spread on plates with PDA
medium (Potato Dextrose Agar, BioMaxima, Lublin, Poland) in triplicate with the addition
of antibiotics according to Ogórek et al. [22]: ampicillin (50 mg·L−1), chloramphenicol
(50 mg·L−1), and cycloheximide (100 mg·L−1). They were incubated at room temperature
(24 ± 0.5 ◦C) for 5 to 21 days in the darkness. Pure cultures were obtained using the single
hyphal tip method, which involves cutting out fungal colony with a sterile scalpel and
placing it in the center of a Petri dish with PDA using a sterile inoculation needle and
incubated for 2 to 5 days at 24 ± 0.5 ◦C. Then, under aseptic conditions, a plate with a
cultured colony was placed under a dissecting microscope to locate the hyphal tips, which
were collected with a fungal inoculation loop and placed on the PDA slant for identification.

In order to isolate keratinophilic and keratinolytic fungi from the soil, a hair bait
method described by Vanbreuseghem was used [23]. For this purpose, in sterile glass Petri
dishes, under aseptic conditions, each tested soil sample was placed, onto which sterile
human hair was then deposited in triplicate. The material thus prepared was incubated
for eight/ten weeks at room temperature (24 ± 0.5 ◦C), constantly maintaining a moist
environment, by systematic watering with sterile deionized water. Macroscopically visible
mycelium was transferred to a PDA medium supplemented with ampicillin (50 mg·L−1),
chloramphenicol (50 mg·L−1), and cycloheximide (100 mg·L−1) [22]. Pure cultures were
obtained as mentioned above, and fungi on PDA slants were also used for identification.

2.4. Fungal Identification

Fungal identification was carried out both by morphological methods according to
available keys or monographs [22,24–44] and by molecular methods. The collection and
comparison of the results obtained from both methods enabled the identification of the
tested fungal cultures to the species level.

Overall, preliminary phenotypic identification was performed on PDA [37,45] and in
the case of Aspergillus and Penicillium spp. additionally on CYA (Czapek yeast autolysate
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Agar) and MEA (malt extract agar, BioMaxima, Lublin, Poland) [40,46]. For this purpose, ob-
servations were made of the macromorphology of fungal colonies (inter alia colony growth
rates and/or growth at various temperatures, texture, degree of sporulation, production
of cleistothecia, colors of mycelia, sporulation, soluble pigments, exudates, and colony re-
verses) [37,40,45,46] and micromorphology (presence or absence of hyphae, spores and their
size and appearance) using preparations from cultures on PDA and/or MEA [22,24–46].
Moreover, depending on the genus, other micromorphological features were also deter-
mined, e.g., the number of branching points between vesicle and phialides, shape of conidial
heads, color of stipes, and the dimensions, shapes, and textures of stipes, vesicles, metu-
lae, phialides, and conidia were determined in Aspergillus [46]; the number of branching
points between stipe and phialides, dimension, shape and texture of stipes, vesicles, metu-
lae/branches (when present), phialides, and conidia were determined in Penicillium [40]; the
absence or presence and appearance of macro- and microconidia and chlamydspores were
determined in Fusarium [37]; the absence or presence and appearance of macro- and micro-
conidia were determined in dermatophytes [37]. Then, molecular identification was per-
formed. For this purpose, genomic DNA was isolated from pure cultures using a Bead-Beat
Micro AX Gravity kit (A&A Biotechnology, Gdansk, Poland). Fungal internal transcribed
spacer regions (ITS) were amplified using primers: ITS1 (5′-TCCGTAGGTGAACCTGCGG-
3′) and ITS4 (5′-TCCTCCGCTTATTGATGC-3′) [47]. PCR was performed using a T100
thermocycler (Bio-Rad, Berkeley, CA, USA) according to Ogórek et al. [48]. The PCR
product was purified using the Clean-Up Kit (A&ABiotechnology, Gdansk, Poland) and
sequenced at Macrogen Europe by using high-quality Sanger sequencing.

2.5. Data Analyses

The raw fungal sequence reads were analyzed using the BioEdit Sequence Alignment
Editor and compared with those deposited in the GenBank of the National Center for
Biotechnology Information (NCBI, Bethesda, MD, USA) using the BLAST algorithm. The
criteria according to Zhang et al. [49] were used to interpret sequences from the GenBank
database. The acquired sequences were submitted to the GenBank database. The Shannon
Diversity Index (H) was used to determine the diversity of fungal species [50,51].

3. Results

Overall, 129 fungal isolates were cultured by using two methods from 60 soil samples
obtained from 12 study sites (Table 1). Of the isolates obtained, 72 were isolated using the hair
bait method, targeting keratinophilic and keratinolytic fungi. In turn, 57 were cultured on a PDA
medium, intended for general isolation without targeting a specific group of fungi. However,
keratinophilic and keratinolytic species can also be obtained using this medium (Table 2).

Fungi were divided into groups based on macro- and micromorphological charac-
teristics. Through genetic analyses based on ITS primers, fungi cultured using the hair
bait method were classified as 19 strains within 13 species and 11 genera, while fungi
obtained on PDA were classified as 18 strains within 17 species and 6 genera. A total of
37 strains were identified from among 30 fungal species. PCR products of the ITS rDNA
from fungal cultures obtained in these studies ranged from 358 to 585 bps. All values of
query cover for obtained fungal ITS sequences were 100%, and all E values were zero. In
turn, the identity of the obtained sequences ranged from 99.49% to 100%. Generated rDNA
ITS fungal sequences were submitted to NCBI GenBank under accession numbers from
PP034006 to PP034042 (Table 2).

Overall, fungi belonging to the genus Penicillium were the most frequently isolated
species in this study (33.33% species—Table 2), and the frequency of their isolation from
samples was 21.62%, generally, and 39.50% in the case of fungi cultured on PDA. Conversely,
within keratinophilic and keratinolytic species isolated using the hair bait method, the
genus Fusarium was the most frequently isolated, constituting 23.88% of all fungal species
(Figure 2). Fungi of the genera Arthroderma, Keratinophyton, Metacordyceps, Nannizzia,
Paraphyton, Simplicillium, and Trichocladium were isolated only by using the hair bait method.
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In turn, Clonostachys, Lecanicillium, Linnemannia, Penicillium, Pochonia, and Trichoderma were
cultured only using the general culture method with a PDA medium. Species from the
genera Aspergillus, Fusarium, Marquandomyces, and Purpureocillium were isolated using both
isolation methods—the hair bait method and PDA medium (Figure 2).

Table 2. Fungi cultured from the soil of parks and estates in the city of Wrocław. The BLAST analysis was
performed on 18 November 2022. All values of query cover were 100%, and all E values were zero. ”V”
indicates the fungi isolation by serial dilution on PDA medium and “P” indicates the fungi isolation by
Vanbreuseghem hair bait, i.e., targeted mycological analysis for keratinophilic and keratinolytic fungi.

Fungi Obtained in the Study Identity with Sequence
from GenBank

Isolate
Number Identified Species Phylum Family Isolation

Method

GenBank
Accession

No.

The
Sequence

Length (bp)

Identity,
% Accession

UWR_390 Arthroderma uncinatum

A
sc

om
yc

ot
a

Arthrodermataceae V PP034006 575 100 KP132800.1
UWR_391 Aspergillus flavus Aspergillaceae V, P PP034007 511 100 OK663515.1
UWR_392 Clonostachys rosea Bionectriaceae P PP034008 358 100 MT447494.1
UWR_393 Clonostachys solani Bionectriaceae P PP034009 393 100 MH860460.1
UWR_394 Fusarium chlamydosporum Nectriaceae V, P PP034010 483 100 MN737771.1
UWR_395 Fusarium oxysporum Nectriaceae

V, P PP034011 415 100 OQ155213.1
UWR_396 V, P PP034012 389 99.49 MT557539.1
UWR_397

Fusarium solani Nectriaceae
V, P PP034013 435 100 KT876722.1

UWR_398 V, P PP034014 426 100 MT560378.1
UWR_399 V, P PP034015 361 100 MT557344.1
UWR_400 Keratinophyton wagneri Onygenaceae V PP034016 542 100 MT903275.1
UWR_401 Lecanicillium psalliotae Cordycipitaceae P PP034017 450 100 AB360366.1

UWR_402 Linnemannia elongata

M
uc

or
om

yc
ot

a

Mortierellaceae P PP034018 556 100 MH860032.1

UWR_403 Marquandomyces
marquandii

A
sc

om
yc

ot
a

Clavicipitaceae V, P PP034019 377 100 MH063648.1

UWR_404 Metacordyceps
chlamydosporia Clavicipitaceae V PP034020 491 100 AB378544.1

UWR_405 Nannizzia gypsea Arthrodermataceae V PP034021 585 100 MH858847.1
UWR_406 Paraphyton cookei Arthrodermataceae V PP034022 583 100 OW984928.1
UWR_407 Penicillium brasilianum Aspergillaceae P PP034023 442 100 MK543248.1
UWR_408 Penicillium canescens Aspergillaceae P PP034024 493 100 KY684281.1
UWR_409 Penicillium chrysogenum Aspergillaceae P PP034025 512 100 MT312739.1
UWR_410 Penicillium cosmopolitanum Aspergillaceae P PP034026 444 100 MT573489.1
UWR_411 Penicillium manginii Aspergillaceae P PP034027 465 100 MK390495.1
UWR_412 Penicillium ochrochloron Aspergillaceae P PP034028 512 100 MK304092.1
UWR_413 Penicillium roseopurpureum Aspergillaceae P PP034029 506 100 MK179263.1
UWR_414 Aspergillaceae P PP034030 455 100 MN206951.1
UWR_415 Penicillium scabrosum Aspergillaceae P PP034031 501 100 MT995062.1
UWR_416 Penicillium subrubescens Aspergillaceae P PP034032 500 100 OW984373.1
UWR_417 Penicillium virgatum Aspergillaceae P PP034033 421 100 KY989162.1
UWR_418 Pochonia bulbillosa Clavicipitaceae P PP034034 440 99.77 AB709835.1
UWR_419

Purpureocillium lilacinum Ophiocordycipitaceae

V, P PP034035 520 100 MT254824.1
UWR_420 V, P PP034036 459 100 MT279298.1
UWR_421 V, P PP034037 535 100 MT420635.1
UWR_422 V, P PP034038 396 100 MT446187.1
UWR_423 Simplicillium aogashimaense Cordycipitaceae V PP034039 491 100 MK579180.1
UWR_424 Trichocladium asperum Chaetomiaceae V PP034040 488 100 MN643061.1
UWR_425 Trichoderma hamatum Hypocreaceae P PP034041 487 100 MF383138.1
UWR_426 Trichoderma virens Hypocreaceae P PP034042 509 100 MK459332.1

The location from which the most keratinophilic and keratinolytic different fungal
species (9 different species—the hair bait method) were isolated was location V (Bełza
Square), and the least from location VI (Słoneczny Park)—3 different species (Table 3). In
turn, the largest number of 13 different species of fungi cultured on PDA was isolated from
location XII (Południowy Park), and 4 species were obtained from locations VIII (Tołpa
Park) and XI (Grabiszyński Park)—Table 4.
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Figure 2. The percentage contribution of each genus from the soil samples to the total.

Table 3. Keratinophilic and keratinolytic fungal species cultured by using the hair bait method in
each location. A (+) indicates the fungi were isolated from the study site and a (–) indicates the fungi
were not isolated from the study site.

Fungi Species Fungi Isolate
Study Sites

I II III IV V VI VII VIII IX X XI XII

Arthroderma
uncinatum UWR_390 + + − + + − + + + + − +

Aspergillus flavus UWR_391 − − − − − − − − + − − −
Fusarium

chlamydosporum UWR_394 + + − − + + + + − − + +

Fusarium oxysporum UWR_395 − − − − + − − − + + − −
UWR_396 − − − − − − − + − + − −

Fusarium solani
UWR_397 − − − − − − − − − − − +
UWR_398 − + − − − − − − − − − −
UWR_399 − + + − − − + − − − − −

Keratinophyton
wagneri UWR_400 − + + + + − + + + + − +

Marquandomyces
marquandii UWR_403 − + − − + − + − − − − +

Metacordyceps
chlamydosporia UWR_404 − − − − + − − − − + + +

Nannizzia gypsea UWR_405 + + − + + + − − − − + +
Paraphyton cookei UWR_406 − − − − − − − − − − + −

Purpureocillium
lilacinum

UWR_419 + − − − − − − − − − − −
UWR_420 + − + − + − − − − − − −
UWR_421 + + − + − − − − − − − −
UWR_422 − + − − − − − − − − − −

Simplicillium
aogashimaense UWR_423 + − + + + + + + + − + −

Trichocladium asperum UWR_424 − − − − − − − − + + − −
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Table 4. Fungal species cultured on a PDA medium in each location. A (+) indicates the fungi were
isolated from the study site and a (–) indicates the fungi were not isolated from the study site.

Fungi Species Fungi Isolate
Study Sites

I II III IV V VI VII VIII IX X XI XII

Aspergillus flavus UWR_391 − − − − − − − − + − − −
Clonostachys rosea UWR_392 − − − − − − + − − + − +
Clonostachys solani UWR_393 − − − − − − − − − − + +

Fusarium
chlamydosporum UWR_394 + + − − + + + + − − + +

Fusarium oxysporum UWR_395 − − − − + − − − + + − −
UWR_396 − − − − − − − + − + − −

Fusarium solani
UWR_397 − − − − − − − − − − − +
UWR_398 − + − − − − − − − − − −
UWR_399 − + + − − − + − − − − −

Lecanicillium
psalliotae UWR_401 − − − + − − − − − − − +

Linnemannia elongata UWR_402 + + + − − − − + + + − +
Marquandomyces

marquandii UWR_403 − + − − + − + − − − − +

Penicillium
brasilianum UWR_407 + + + − + + + − + + − +

Penicillium canescens UWR_408 − − + − − − − − − − − −
Penicillium

chrysogenum UWR_409 − − − − − − + − + − − −

Penicillium
cosmopolitanum UWR_410 + + − + − + − − + − − −

Penicillium manginii UWR_411 − − − − − − − − − − − +
Penicillium

ochrochloron UWR_412 + − − + − − + − − − + −

Penicillium
roseopurpureum

UWR_413 + − − − − − − − − + − −
UWR_414 + − + − − − − − − + − +

Penicillium scabrosum UWR_415 − − − − − + − − − − − −
Penicillium

subrubescen UWR_416 − − + − − + + + − − − −

Penicillium virgatum UWR_417 − − − − − − − − − − − +
Pochonia bulbillosa UWR_418 − − + − − + − − + − + +

Purpureocillium
lilacinum

UWR_419 + − − − − − − − − − − −
UWR_420 + − + − + − − − − − − −
UWR_421 + + − + − − − − − − − −
UWR_422 − + − − − − − − − − − −

Trichoderma hamatum UWR_425 − − − − − − − − + − − +
Trichoderma virens UWR_426 − − + + − − − − − − − −

Overall, the most frequently isolated species in this (16 times) study was Fusarium
chlamydosporum and it constituted 10.81% of all cultured fungi. In turn, Paraphyton cookei,
Penicillium canescens, Penicillium manginii, Penicillium scabrosum, and Penicillium virgatum
were isolated only from one study site, and each of these species represented 0.67% of all
fungal species (Figure 3, Tables 3 and 4).

Arthroderma uncinatum, Keratinophyton wagneri, and Simplicillium aogashimaense were
isolated most often as a variant of a hair bait experiment. Each of these species was obtained
in nine study locations and represented 13.43% of all fungi (Figure 3, Table 3). In addition,
Aspergillus flavus and P. cookei were also the least cultured among the keratinophilic species,
each accounting for 1.49% of all of them (Figure 3).

In the case of fungi cultured on PDA, the most frequently isolated species was Penicillium
brasilianum, which was obtained in nine study locations and constituted 11.11% of species from
this group of fungi. On the other hand, A. flavus, P. canescens, P. manginii, P. scabrosum, and
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P. virgatum were cultured from one study site, and each of them constituted 1.23% of the fungal
species obtained in the variant experimented with PDA (Figure 3, Table 4).
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The research sites showed variation in their Shannon Diversity Index values (Figure 4).
Overall, the mean Shannon Diversity Index values across all research locations and both
fungal isolation methods ranged from 0.074 for study sites VI (Allotment “Pod Topolami”),
VIII (Tołpa Park), and XI (Grabiszyński Park) to 0.117 for study site XII (Południowy Park).
In the case of fungi isolated using a PDA medium, the greatest species diversity of fungi
was recorded also for study site XII (0.128 for Południowy Park) and the least species
diversity index (0.065) for study sites VIII (Tołpa Park) and XI (Grabiszyński Park). In turn,
the lowest species diversity of fungi was noted for study site VI (Słoneczny Park) for fungi
isolated by the hair bait method (0.060), and the greatest species diversity index (0.117) was
recorded for study site V (Bełza Square) (Figure 4).
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4. Discussion

In this research, the most commonly isolated genus was Penicillium. Several of them,
such as P. brasilianum and P. cosmopolitanum, were isolated from multiple locations, while
P. canescens, P. manginii, P. scabrosum, and P. virgatum were isolated from only one location.
These data may indicate that while the genus is considered cosmopolitan, not all individual
species are ubiquitous. Since the Penicillium genus is one of the most common fungi found
in rhizosphere soil, it is suspected to overshadow the results [52], as it interacts positively
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with crop roots and enhances their growth. Some species exhibit antagonistic activities
against plant pathogens by producing antibiotics [53]. For instance, P. ochrlochloron is
known for producing antibiotic molecules with high activity against multidrug-resistant
bacteria [54]. Most species, however, are of dual environmental importance. On the one
hand, the genus contains many species that are considered plant endophytes and are adroit
at producing an extensive span of different active compounds that might have conceiv-
able applications in the fields of biotechnology or medicine (such as isolated P. virgatum,
P. canescens, P. subrubescens, and P. brasiliensis) [31,55–57]. On the other hand, some species
are capable of producing harmful mycotoxins, which may cause food spoilage or crop
damage [57]. Penicillium spp. spores commonly appearing in the environment in relatively
large quantities are known as strong risk factors for asthma [58]. Penicillium spp. are some
of the most predominant molds isolated from contaminated buildings with the so-called
sick building syndrome (SBS) [59].

The majority of isolated species pertaining to this genus was P. brasilianum. The most
of P. brasilianum strains reported in the literature are isolated from soil [57] and can cause
losses in onion crops [60]. Additionally, this species can be considered an etiological factor
in various human diseases. There is a report of a case of thumbnail infection in a patient
living with HIV-1, including P. brasilianum [61]. Other species like P. chrysogenum that were
isolated from the soil samples can also cause invasive infections in immunocompromised
patients [62,63], including children [64]. Alarmingly, the first case of meningoencephalitis
caused by P. chrysogenum was found in a patient previously considered immunocompetent
and was recently described [65]. It should be noted that currently there is no antifungal
remedy of choice for the management of penicilliosis [64].

Incorporating the general culture method with a PDA medium allowed for the isola-
tion of a greater quantity of keratin-independent species common in the soil. Trichoderma
hamatum and T. virens, identified in the study, represent the widely distributed Trichoderma
genus in soil. Trichoderma has the ability to colonize plant roots; therefore, it has a promising
prospect in the field of agriculture, especially in the context of biocontrol against the wide
range of soil phytopathogens [66]. Pochonia bulbillosa, Lecanicillium psalliotae, Clonostachys
solani, and C. rosea are recognized as entomopathogenic fungi [67–69]. P. bulbillosa can pro-
duce urease [70], whereas L. psalliotae has the capability to produce antibiotic and antifungal
compounds [71]. On the other hand, Linnemannia elongata (basionym: Mortierella elongata)
can decompose various toxic organic substances, potentially improving soil conditions and
positively affecting plant development [72,73].

Another group of fungi cultivated and isolated from the soil samples consisted of
keratinophilic/keratinolytic species obtained by the hair bait method. These fungi are
usually found in the ecosystems near the habitats of animals and humans due to keratin
degradation capabilities [74–76]. In this study, four species of geophilic dermatophytes were
cultivated and identified, i.e., Arthroderma uncinatum, Keratinophyton wagnerii, Nannizzia
gypsea, and Paraphyton cookei. Although infections by geophilic species are less common
than those caused by anthropophilic and zoophilic species, the inflammatory response is
usually more severe, and the duration of infection is generally shorter. Most likely, host-
fungal adaptation results in a weakened immune response and a prolonged replication
period. The reasoning behind this phenomenon is justified by the fact that geophiles are
not adapted to the human host equivalently to anthropophilic species [77,78].

Arthroderma uncinatum (formerly Trichophyton ajelloi) was the only species isolated from
the genus Arthroderma. It was found in 9 out of 12 presented sites. Widespread occurrence
of A. uncinatum was also recorded in another Polish city during a study of keratinophilic
fungal biodiversity in different soil types in Lublin. Arthroderma uncinatum was one of
the four most frequently isolated fungi and the second most frequently isolated geophilic
dermatophyte in that study [79–84]. Similar results were obtained by Mohanty and Prakash
in a study of the pathogenicity of keratinophilic soil fungi against Culex quinquefasciatus
mosquito larvae. At that time, A. uncinatum was also the only species isolated within the
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genus Arthroderma. Although it was not the most commonly isolated fungus, it was the
most effective against mosquito larvae [85].

Keratinophyton wagnerii was also commonly found in the samples. This was the only
fungus of the genus Keratinophyton that we isolated. It was first described by Labuda
et al. [29] who observed that the newly described fungi had keratinolytic properties and
the ability to degrade human hair. Ogórek et al. [86] also isolated K. wagnerii in their
speleomycological study of three caves in Slovakia in 2022.

Nannizzia gypsea (formerly Microsporum gypseum) was isolated in 7 of the 12 sites tested.
This fungus is one of the better-known representatives of the geophilic dermatophytes.
Nannizzia gypsea is a cosmopolitan fungus, and it hardly ever causes disease in humans [87].
Scientists from Slovenia conducted a study over a period of 15 years (2000-2015). A total
of 14,703 dermatophyte-positive cultures were isolated during the research period, and
N. gypsea accounted for 1.5% of them. Almost 40% of those infected were children under
the age of nine. It was also found that women were more likely to be infected than men
in every age group [88]. Although dermatoses caused by N. gypsea represent only a small
part of all dermatophyte mycoses, there are many reports of its isolation from patients in
different regions of the world. Soankasina and colleagues described an interesting case
of dermatophytosis of the smooth skin (tinea corporis) in a 22-year-old woman from the
Madagascar region. A detailed medical history revealed that she probably contracted the
infection through contact with free-living cats [89]. Infection with N. gypsea by contact
with an infected animal has also been observed in a 2-year-old boy from Italy with signs of
infection on the scalp [90]. In contrast, geophyte dermatophyte infections linked to direct
contact with the soil were observed in a study conducted in eastern Poland among farmers
and non-farmers with suspected fungal infections of the skin or its appendages. It should
be emphasized, however, that no significant differences in infection were found between
farmers and non-farmers, and the identified geophilic fungi were responsible for superficial
mycosis and/or onychomycosis [91].

In this study, the presence of Paraphyton cookei was observed at one of the sites. Paraphy-
ton cookei exhibits hair decomposition and a positive effect in the in vitro hair perforation
test, as observed by Ogórek et al. [22] studying a P. cookei strain isolated from a Slovakian
cave. The pathogenic activity of P. cookei has also been demonstrated by researchers in
Australia who isolated this species from skin lesions on the legs [92].

Several species of fungi that degrade keratin were isolated, although they do not
belong to the group of dermatophytes. The Fusarium genus was the most frequently isolated
among keratinophilic and keratinolytic fungi. The following species were isolated: Fusarium
solani, Fusarium chlamydosporum, and Fusarium oxysporum. Although many Fusarium species
are classified as soil saprophytes or plant pathogens, some have the ability to infect humans.
Fusarium fungi are often considered as an etiological factor causing fungal keratitis [93];
moreover, there are multiple reports of superficial infections such as onychomycoses caused
by Fusarium spp., mostly by F. solani [94]. Segal et al. [95] first described an invasive disease
caused by F. chlamydosporum. In that study of an immunocompromised patient, lesions
caused by F. chlamydosporum were localized in the nasal auricle. Many reports have focused
on the negative effects of Fusarium on crops. Recently, in the Kashmir division of the
northern Himalayan region of India, F. chlamydosporum has been observed as a dangerous
pathogen decimating crops. While F. oxysporum and F. solani have often been described as
pathogens causing chilli and brinjal diseases, F. chlamydosporum has been described for the
first time in this region [96].

Fungi of the genus Simplicillium may perform many different functions in the envi-
ronment whilst being found in many different ecological niches. Some are presenting
saprophytic activity in soil [33] or freshwater [97]. Others can cause plant diseases [98]
or maybe entomopathogenic [99]. In this study, there was one species of Simplicillium isolated
—S. aogashimaense. It was first discovered in the Japanese islands by Nonaka’s team. Besides
S. aogashimaense, other Simplicillium species such as S. subtropicum, S. minatense, S. cylindrospo-
rum, and S. sympodiophorum have been isolated [33]. Simplicillium aogashimaense can be a fungal
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endophyte of plants, as in Brachiaria brizantha [100]. This species can also present mycoparasitic
activity. Zhu et al. [101] demonstrated the inhibitory effect of this fungus on wheat powdery
mildew, whereas it causes some of the highest crop losses in the world.

Tricholadium asperum is commonly found in the rhizosphere and can positively affect plant
growth [102]. It is known for producing various enzymes, such as cellulases [103], elastase [104],
or keratinase, so it has already been isolated from soil by the hair trap method [105].

The keratinolytic fungus Purpureocillium lilacinum (Paecilomyces lilacinus) was isolated from
five localizations included in the study. Other results have been obtained by scientists studying
soils from Slovakian national parks, where P. lilacinum was one of the most frequently isolated
fungi with keratinophilic potential [106]. The keratinolytic activity of P. lilacinum was reported in a
study by Cavello et al. [107], where the potential of a keratinase isolated from fungi of Argentine
has been proved. In turn, Kotwal and Sumbali presented that Purpureocillium lilacinum has the
ability to grow on animal (feathers) and human (hair, nails) tissues [108].

Two other species, Metacordyceps chlamydosporia and Marquandomyces marquandii, were
isolated from four parks in Wrocław. Similar results were obtained by Javoreková et al. [106],
where the isolation of M. chlamydosporia was claimed in soil from only one of the trialed
parks [106]. M. chlamydosporia was also isolated from a Korean island of volcanic origin by
other researchers. This was the first report of M. chlamydosporia in this area [109]. The ability
of M. chlamydosporia to utilize keratin from hair was observed by Scott and Untereiner [110].
Metacordyceps marquandii produces keratinases that present high stability and degradation
activity in a broad pH range. Gradišar and his research team studied keratinases isolated
from M. marquandii. Tests conducted on said keratinases exhibited strong activity against
stratum corneum and nails, while the ability of human and animal hair decomposition was
not observed [111]. In contrast, other researchers showed similar degradation of keratin by
M. marquandii and fungi of the genera Fusarium, Alternaria, and Lecanicillium in a bioassay
using the Keratin Azure reagent [112].

Another study found that of 300 common fungi tested, Aspergillus flavus produced the most
potent keratinases [113]. In this study, A. flavus was isolated from only one site—Skowroni Park.
In contrast, in the study conducted by Mohanty and Prakash, it was isolated in abundance from
soils near ponds. These fungi were isolated using the feather-baiting technique [85]. Aspergillus
flavus was shown to grow excellently on feathers and human nails but performed moderate
growth on human hair and slow growth on sheep wool [108].

The last species isolated was Clonostachys rosea, which has been observed at three
sites. It is a very common species worldwide, in many types of habitats. It is most
commonly isolated from soil [114]. Clonostachys rosea has been isolated in national parks in
Slovakia [106]. When testing its keratinophilic properties, researchers showed moderate
decomposition of feathers, human hair, and nails by C. rosea [108].

As previously mentioned, fungi contribute to soil ecosystems at various levels, includ-
ing geophilic dermatophytes involved in keratin degradation. Infection with soil pathogens
occurs through direct contact with contaminated soil. Therefore, it should be noted that
fungi may pose a serious threat to children, the elderly, and immunosuppressed people,
not only in the context of superficial dermatomycosis but also invasive infections [115].

5. Conclusions

This research has enabled a better understanding of the fungal communities that inhabit
soil in urban areas commonly frequented by people. Specifically, this soil, beyond harboring
standard saprotrophs, can also be a source of fungi with allergenic and pathogenic potential.
The most common genus identified was Penicillium, a cosmopolitan group that constituted
33.33% of all identified fungal species. Particularly noteworthy, however, are species belonging
to the group of dermatophytes (Arthroderma uncinatum, Keratinophyton wagnerii, Nannizzia gypsea,
and Paraphyton cookei), which may pose a real biological threat to humans and animals due to
their well-documented potential to cause dermatomycosis.
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48. Ogórek, R.; Dyląg, M.; Kozak, B. Dark stains on rock surfaces in Driny Cave (Little Carpathian Mountains, Slovakia). Extremophiles
2016, 20, 641–652. [CrossRef] [PubMed]

https://en.climate-data.org/europe/poland/lower-silesian-voivodeship/wroc%C5%82aw-4531/
https://en.climate-data.org/europe/poland/lower-silesian-voivodeship/wroc%C5%82aw-4531/
https://doi.org/10.3390/d11100191
https://doi.org/10.1007/s11046-019-00336-9
https://www.ncbi.nlm.nih.gov/pubmed/30976955
https://doi.org/10.1590/S1517-83822013000300047
https://www.ncbi.nlm.nih.gov/pubmed/24516465
https://doi.org/10.3114/sim.2011.70.02
https://www.ncbi.nlm.nih.gov/pubmed/22308046
https://doi.org/10.1017/S0953756205003515
https://www.ncbi.nlm.nih.gov/pubmed/16209303
https://doi.org/10.1186/s43008-021-00070-2
https://doi.org/10.1111/j.1574-6968.2011.02322.x
https://www.ncbi.nlm.nih.gov/pubmed/21631575
https://doi.org/10.1007/s10482-013-9915-3
https://www.ncbi.nlm.nih.gov/pubmed/23559042
https://doi.org/10.1016/j.simyco.2020.04.001
https://www.ncbi.nlm.nih.gov/pubmed/32855740
https://doi.org/10.1016/j.myc.2012.07.002
https://doi.org/10.1080/00275514.1999.12061028
https://doi.org/10.1007/978-3-319-64946-7_4
https://doi.org/10.1094/PDIS.2003.87.2.117
https://www.ncbi.nlm.nih.gov/pubmed/30812915
https://doi.org/10.1007/s13225-020-00455-5
https://www.ncbi.nlm.nih.gov/pubmed/33364917
https://doi.org/10.1016/j.simyco.2014.09.001
https://www.ncbi.nlm.nih.gov/pubmed/25505353
https://doi.org/10.1016/j.simyco.2018.07.001
https://doi.org/10.1127/nova.hedwigia/73/2001/1
https://doi.org/10.15244/pjoes/125006
https://doi.org/10.1016/j.simyco.2014.07.004
https://www.ncbi.nlm.nih.gov/pubmed/25492982
https://doi.org/10.1016/B978-0-12-372180-8.50042-1
https://doi.org/10.1007/s00792-016-0853-7
https://www.ncbi.nlm.nih.gov/pubmed/27315167


Appl. Sci. 2024, 14, 2782 15 of 17

49. Zhang, T.; Wei, X.L.; Zhang, Y.Q.; Liu, H.-Y.; Yu, L.-Y. Diversity and distribution of lichen-associated fungi in the Ny-Ålesund
Region (Svalbard, High Arctic) as revealed by pyrosequencing. Sci. Rep. 2015, 14, 14850. [CrossRef]

50. Spellerberg, I.F.; Fedor, P. A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species
diversity and the ‘Shannon–Wiener’ Index. Glob. Ecol. Biogeogr. 2003, 12, 177–179. [CrossRef]

51. Shannon, C.E.; Wiener, W. The Mathematical Theory of Communication; University Illinois Press: Urbana, IL, USA, 1963; p. 360.
52. Workneh, F.; Van Bruggen, A.H.C. Microbial density, composition, and diversity in organically and conventionally managed

rhizosphere soil in relation to suppression of corky root of tomatoes. Appl. Soil Ecol. 1994, 1, 219–230. [CrossRef]
53. Srinivasan, R.; Prabhu, G.; Prasad, M.; Mishra, M.; Chaudhary, M.; Srivastava, R. Penicillium. In Beneficial Microbes in

Agro-Ecology, 1st ed.; Amaresan, N., Kumar, M.S., Annapurna, K., Kumar, K., Sankaranarayanan, A., Eds.; Elservier: Amsderdam,
The Netherlands, 2020; pp. 651–667. [CrossRef]

54. Vrabl, P.; Siewert, B.; Winkler, J.; Schöbel, H.; Schinagl, C.W.; Knabl, L.; Orth-Höller, D.; Fiala, J.; Meijer, M.S.; Bonnet, S.;
et al. Xanthoepocin, a photolabile antibiotic of Penicillium ochrochloron CBS 123823 with high activity against multiresistant
gram-positive bacteria. Microb. Cell Factories 2022, 21, 1. [CrossRef]

55. Chen, Y.; Wang, H.; Sang, Z.; Qiu, K.; Wei, S.; Duan, F.; Zou, Z.; Tan, H. Two new secondary metabolites isolated from the fungus
Penicillium virgatum T49-A. Fitoterapia 2023, 168, 105513. [CrossRef] [PubMed]

56. Zang, Y.; Gong, Y.; Shi, Z.; Qi, C.; Chen, C.; Tong, Q.; Liu, J.; Wang, J.; Zhu, H.; Zhang, Y. Multioxidized aromatic polyketides
produced by a soil-derived fungus Penicillium canescens. Phytochemistry 2022, 193, 113012. [CrossRef]

57. Bazioli, J.M.; Amaral, L.D.S.; Fill, T.P.; Rodrigues-Filho, E. Insights into Penicillium brasilianum Secondary Metabolism and Its
Biotechnological Potential. Molecules 2017, 22, 858. [CrossRef]

58. Licorish, K.; Novey, H.S.; Kozak, P.; Fairshter, R.D.; Wilson, A.F. Role of Alternaria and Penicillium spores in the pathogenesis of
asthma. J. Allergy Clin. Immunol. 1985, 76, 819–825. [CrossRef] [PubMed]

59. Schwab, C.J.; Straus, D.C. The roles of Penicillium and Aspergillus in sick building syndrome. Adv. Appl. Microbiol. 2004, 55,
215–238. [CrossRef] [PubMed]

60. Sang, M.K.; Han, G.D.; Oh, J.Y.; Chun, S.C.; Kim, K.D. Penicillium brasilianum as a novel pathogen of onion (Allium cepa L.) and
other fungi predominant on market onion in Korea. Crop Prot. 2014, 65, 138–142. [CrossRef]

61. Kaplun, O.; Kekatos, P.; Creed, M.; Psevdos, G. Penicillium brasilianum Fungal Infection of Thumb Nail in a Patient Living with
HIV-1. Infect. Dis. Clin. Pract. 2019, 27, e11. [CrossRef]

62. Barcus, A.L.; Burdette, S.D.; Herchline, T.E. Intestinal invasion and disseminated disease associated with Penicillium chrysogenum.
Ann. Clin. Microbiol. Antimicrob. 2005, 4, 21. [CrossRef] [PubMed]

63. Shokouhi, S.; Tehrani, S.; Hemmatian, M. Mixed Pulmonary Infection with Penicillium notatum and Pneumocystis jiroveci in a
Patient with Acute Myeloid Leukemia. Tanaffos 2016, 15, 53–56. [PubMed]

64. Avilés-Robles, M.; Gómez-Ponce, C.; Reséndiz-Sánchez, J.; Rodríguez-Tovar, A.V.; Ceballos-Bocanegra, A.; Martínez-Rivera, Á.
Disseminated penicilliosis due to Penicillium chrysogenum in a pediatric patient with Henoch–Schönlein syndrome. Int. J. Infect.
Dis. 2016, 51, 78–80. [CrossRef] [PubMed]

65. de Oliveira, R.V.M.; Corrêa-Moreira, D.; Mendes, T.V.; da Costa, G.L.; Vieira, R.M.; Buchele, C.M.N.; Lins, R.S.; Ferreira, A.B.T.B.C.;
Veira, D.B.; Pedroso, R.S.A.; et al. First report of fungal meningoencephalitis by Penicillium chrysogenum in Brazil. Int. Infect. Dis.
2023, 126, 94–97. [CrossRef] [PubMed]
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