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Abstract: In polyp segmentation, the latest notable topic revolves around polyp generalization,
which aims to develop deep learning-based models capable of learning from single or multiple
source domains and applying this knowledge to unseen datasets. A significant challenge in real-
world clinical settings is the suboptimal performance of generalized models due to domain shift.
Convolutional neural networks (CNNs) are often biased towards low-level features, such as style
features, impacting generalization. Despite attempts to mitigate this bias using data augmentation
techniques, learning model-agnostic and class-specific feature representations remains complex.
Previous methods have employed image-level transformations with styles to supplement training
data diversity. However, these approaches face limitations in ensuring style diversity due to restricted
style sources, limiting the utilization of the potential style space. To address this, we propose a
straightforward yet effective style conversion and generation module integrated into the UNet
model. This module transfers diverse yet plausible style features to the original training data
at the feature-level space, ensuring that generated styles align closely with the original data. Our
method demonstrates superior performance in single-domain generalization tasks across five datasets
compared to prior methods.

Keywords: polyp generalization; polyp segmentation; domain generalization; image segmentation

1. Introduction

In the development of effective convolutional neural networks (CNNs) for polyp seg-
mentation, numerous approaches have been proposed and have demonstrated satisfactory
performance over time [1–3]. Traditional deep learning models typically assume that train-
ing and testing data are identical and independently distributed. However, in real-world
scenarios, especially when deploying segmentation models to predict polyps from entirely
new centers, it becomes crucial to accurately segment them regardless of variations in
styles, features, shapes, or illumination not present in the training data. Unfortunately, a
significant challenge arises due to the domain shift problem, where the distribution of data
in the testing environment differs from that of the training data, leading to a drop in the
performance of trained CNN models [4,5]. Style discrepancy is one of the factors that can
impede the generalization ability of deep learning models [6]. The discrepancy in style
features between datasets exacerbates the domain shift problem, causing issues in real-time
applications such as inaccurate polyp diagnosis and analysis, potentially impacting patient
screening and treatment plans. Usually, style discrepancy refers to differences in visual
characteristics, such as texture, color, or contrast, between datasets used for training and
testing CNN models. These style features encompass various aspects of image appearance
that may vary significantly across different sources or environments. For instance, varia-
tions in lighting conditions, imaging equipment, or image processing techniques can lead to
distinct visual styles in the data, as shown in Figure 1. The presence of style discrepancies
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between training and testing datasets can pose a significant challenge to CNN models, as
they may struggle to generalize across these divergent visual styles, ultimately leading to
performance degradation when deployed in real-world settings.

Figure 1. (Best viewed in color). Style feature statistics of five datasets. Note that each feature
represents concatenation of mean and standard deviation from earlier layers of EfficientNet for
all datasets.

To address the challenge of domain shift, extensive research has been conducted to
develop a generalized model capable of performing effectively in novel environments.
Domain adaptation is one approach that aims to align the feature distributions between
training source data and target data in a domain-invariant setting [7]. However, this
method typically requires access to target domain samples during training, which may not
always be feasible in medical contexts. Alternatively, domain generalization (DG) involves
incorporating multiple domains from various sources into a target domain without directly
using target domain data. DG aims to train a model from one or more related domains to
enable direct generalization to any unseen target domain without additional adjustments [8].
The primary objective of DG is to enhance the generalization ability of trained models
across diverse domains and facilitate adaptation to new scenarios. Nonetheless, a common
assumption in DG is that testing data share the same distribution as the training set, which
may not always hold true in real-world medical applications.

Among recent advances in domain generalization (DG) models, those based on data
manipulation show promising performance [9]. These models utilize data augmentation
techniques with a learning-based approach to generate diverse data, complementing the
original data and simulating unseen domains to enhance the learning process. Existing
DG methods in data augmentation primarily focus on image-level manipulation in the
source domain, such as translating images based on styles from auxiliary datasets [10] or
converting images from different training domain styles [11]. In computer vision tasks,
applying neural style transfer for image-level data augmentation has shown improvement
in robustness against domain shift problems [12]. Geirhos et al. [6] highlighted that con-
volutional neural networks (CNNs) tend to be biased towards textural features rather
than class-specific features, such as shape, leading to challenges in adapting to unseen
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styles. They proposed stylized versions of datasets using style transfer to enhance accuracy
and generalizability.

Similarly, image-level data augmentation using Generative Adversarial Networks
(GANs) has been employed, but it cannot be applied universally across tasks [10]. In [13],
Adaptive Instance Normalization (AdaIN) was employed to match the mean and variance
of the content features with those of the style features. It takes both a content and style
image as inputs, encoding them into the feature space at the encoder side. These encoded
representations are then passed to an AdaIN layer, which adjusts the mean and variance
of the content feature maps to match those of the style feature maps, thereby producing
stylized feature maps. The final output is generated by a decoder from these stylized
feature maps. In contrast, methods such as MixStyle [14] aim to boost style diversity by
augmenting features directly at the feature level. This approach generates new styles by
blending existing styles from seen source domains. However, existing style augmentation
methods have limitations in fully representing real styles in unseen target domains, leading
to reduced diversity in samples and potential performance decrements, particularly when
significant differences exist between generated virtual styles and real unseen styles.

In this study, we introduce a novel style-based data augmentation module operating
at the feature-space level, tailored for the task of polyp generalization. Our approach
aims to address challenges stemming from differences in style distribution between source
and target images, which can solve generalization in the polyp domain, as shown in
Figure 2. To tackle this, we extract style statistics, such as mean and standard deviation,
from the early layers of a convolutional neural network (CNN). The basic assumption
behind the style transfer between the polyp is that the network may have confirmation bias
towards the style features (color and textural information) while learning. Transferring
such features facilitates learning style-agnostic representations, which eventually improves
the generalization problem. Our proposed method employs a style-aware encoder–decoder
UNet network, integrating style information in the feature space. We utilize Adaptive
Instance Normalization (AdaIN) to transfer or generate diverse style features, thereby
reducing the style gap between training and unseen testing sources of polyp images
while preserving original semantic features for segmentation. Through experiments, we
demonstrate the effectiveness of transferring style features from unseen target images to
source images during training, enhancing model generalizability. Additionally, increasing
style diversity by mixing style features of two images improves model performance. We
also introduce a novel approach to generating synthetic yet plausible styles to ensure
minimal deviation in generated style features. Our primary objective is to mitigate domain
shifts in polyp segmentation tasks while transferring knowledge from one source domain
to multiple unseen domains. This scenario can be viewed as a single-domain generalization
problem, wherein the segmentation model is trained on a single polyp dataset and applied
to multiple unseen datasets. Extensive experiments conducted on five public polyp datasets
validate the efficacy of our proposed method. Additionally, we evaluate our method by
comparing it with the style augmentation technique conducted at the image level, as
demonstrated in the study by Yamashita et al. [15].

The contributions are listed below:

• We introduce a novel style-aware UNet approach for the task of polyp generaliza-
tion. This method enables the model to learn diverse style features from target style
source images, thereby enhancing its generalization ability and effectiveness in unseen
target sources.

• We propose a novel style synthesis module (NSSM) aimed at generating diverse
yet plausible style features dynamically during training, while also constraining the
transfer of unnecessary and highly deviated styles to the source features.

• Our evaluation encompasses five public polyp datasets: Kvasir-SEG [16] (used
for training), CVC-Clinic [17], CVC-COLONDB [18], ETIS [19], and KvasirCapsule-
SEG [20] (utilized for testing). The experiments conducted demonstrate the effective-
ness of our proposed method in the generalization task.
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• Finally, we conduct qualitative analysis and quantitative studies to validate the efficacy
of our method.

Figure 2. Our proposed method attempts to minimize the domain discrepancy between two polyp
domains.

2. Related Work
2.1. Polyp Segmentation

The encoder–decoder-based U-Net architecture [21] is widely recognized for its effec-
tiveness in medical segmentation tasks. Recently, numerous U-Net variants have emerged
to improve segmentation performance [22–25]. UNet++ [22] introduced a redesigned skip
connection path to minimize the semantic gap between decoder and encoder networks.
PraNet [23] proposed a parallel reverse attention network to address the diverse size, color,
and texture variations of polyps. Similarly, ACSNet [26] proposed a local and global context
attention module to handle polyps of varying sizes. HarDNet-MSEG [24] is a lightweight
network incorporating the HarDNet68 [27] module as an encoder and a cascaded partial
decoder to enhance accuracy. DCRNet [28] was devised to capture both intra-image and
inter-image contextual information. MKDCNet [29] introduced multiple kernel dilated
convolution to expand the spatial field of view at deep layers for improved feature repre-
sentation. Despite their advancements, these methods rely on fully supervised training
strategies and have not been thoroughly investigated for their ability to generalize across
diverse datasets or adapt to multi-center unseen environments. Thus, while these tech-
niques show promise in specific contexts, their robustness and generalization capabilities
to unseen environments require further exploration and validation.

2.2. Style Transfer

Style transfer, a process of translating the style of one image into another without
altering its content, has garnered significant attention. Notably, Gatys et al. [30] achieved
impressive results by matching neural activation Gram matrices from different convolution
layers. Li et al. [31] proposed a novel style loss, aligning the feature statistics (mean and
standard deviation) of feature maps between generated and stylized images. Additionally,
Huang et al. [13] introduced AdaIN, enabling real-time style transfer by replacing content
image feature statistics with those of the style image. In our study, we focus on learning
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domain-invariant features using feature-based style randomization for both seen source
domains and unseen target domains.

Previous studies in domain adaptation and generalization [32,33] have employed
methods to augment styles using Adaptive Instance Normalization (AdaIN). Luo et al. [32]
utilized a pre-trained Random Adaptive Instance Normalization module with adversarial
style mining to iteratively generate diverse style images. Similarly, Wang et al. [33] replaced
the scaling and shifting statistics of AdaIN with learnable parameters to produce novel
style images. However, these methods have limitations in terms of the diversity of style
features they can generate. AdaIN primarily focuses on adjusting the mean and standard
deviation of feature maps to match the style of a reference image, which may result in
limited variations in style. Moreover, the reliance on pre-trained or learnable parameters
within AdaIN modules might restrict the range of styles that can be effectively synthesized.
Thus, while these approaches have shown promise in enhancing style diversity, further ad-
vancements are necessary to overcome these inherent limitations and enable the generation
of a broader spectrum of style features. In Luo et al. [32], an anchor style is used to guide the
generated domain distribution since the target domain is known in advance. Conversely,
Wang et al. [33] mixed learnable parameters to generate style statistics, potentially leading
to overfitting of the source domain due to the lack of additional information.

3. Methodology

We train the model on a single source domain Ds and generalize it to an unseen
multiple domain DT . All of the datasets may have different data distributions but share
same label space. To solve the domain shift problem, we propose the style conversion
and generation module, which has three parts: the (1) Style Conversion Module, (2) Style
Generation Module, and (3) Novel Style Synthesis Module. We utilize the AdaIN method
to deal with style transfer of the target style images during the training. An overview of
the proposed method is shown in Figure 3.

Figure 3. (a) Overall framework of the proposed method. We employ EfficientNet, which has 5 blocks
depending upon its feature map size, as an encoder backbone. We apply the Style Conversion and
Style Generation modules at earlier blocks.; (b) Style Conversion Module (SCM); (c) Style Generation
Module (SGM); and (d) Novel Style Synthesis Module (NSSM).
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3.1. Background

In style transfer, computing the instance-specific feature statistics, such as mean and
standard deviation, during normalization of the feature tensors is a widely accepted tech-
nique [34] known as instance normalization (IN) [34]. Let us consider that x ∈ RB×C×H×W

denotes the batch size, number of channels, and height and width of the tensor, respectively.
Instance normalization (IN) is formulated as

IN(x) = γ
x − µ(x)

σ(x)
+ β (1)

where γ, β ∈ RC are learnable parameters and µ(x), σ(x) are the mean and standard
deviation of each tensor computed across the spatial dimension with each channel. µ(x),
σ(x) can be computed as:

µ(x)b,c =
1

HW

H

∑
h=1

W

∑
w=1

xb,c,h,w, (2)

and

σ(x)b,c =

√√√√ 1
HW

H

∑
h=1

W

∑
w=1

(xb,c,h,w−µ(x)b,c
)2 (3)

Adaptive Instance Normalization (AdaIN) was designed to achieve arbitrary style
transfer by changing the scale and shift parameters in Equation (1) with the mean and the
standard deviation of the style image (y) as follows:

AdaIN(x) = γ(y)
x − µ(x)

σ(x)
+ β(y) (4)

In this manuscript, we will use the aforementioned feature statistics, such as channel-
wise mean and standard deviation, to generate the unique style feature in the feature space.
We employ AdaIN in order to replace the existing style features with generated unique
style features.

3.2. Style Conversion and Generation Module (SCGM)

In this section, we present the architecture of SCGM, as illustrated in Figure 3a. As
the style conversion and generation module is executed in the feature space, more diverse
transformations of the input images are expected, which ultimately cover more style
distribution compared to image-level augmentation.

The general polyp generalization framework consists of a pre-trained encoder, Pf , and
a decoder. We employ the Efficient UNet model, which comprises two main components:
(1) a UNet encoder leveraging EfficientNet [35] as its backbone, which facilitates the ex-
traction of diverse semantic details across multiple stages; and (2) a decoder module that
amalgamates spatial information from various stages to produce a highly accurate segmen-
tation mask. To accomplish the style mixing task, we draw inspiration from Mixstyle [14]
and apply it to the preceding two layers. Our main aim is to train the encoder and decoder
to focus on source-invariant semantic features across the polyp datasets through style
feature conversion and generation.

3.2.1. Style Conversion Module (SCM)

More specifically, the Style Conversion Module (SCM) was inspired by Adaptive
Instance Normalization (AdaIN) which replaces the learnable parameters in Equation (1)
with the feature styles of target images. It transfers the feature statistics of the target style
image to the source training images. It can easily be integrated into the batch while training
(as shown in Figure 3a). Given a batch of images {x1, x2, x3, x4....xs}, the SCM first integrates
the style image xs into the source training images. After concatenation on the same mini-
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batch training, the SCM computes the feature statistics of each image and transfers all of
them from the style to source images.

SCN(x) = γ(s)
xi − µ(xi)

σ(xi)
+ β(s) (5)

where µ(xi), σ(xi) are computed across the spatial dimension for source images and γ(s)
and β(s) are computed similarly for target images. An overview of the SCM is shown in
Figure 3b.

3.2.2. Style Generation Module (SGM)

Our method, the SGM, drew inspiration from MixStyle, which was designed with the
aim of regularizing the CNN by mixing the style information of the source domain during
the training. However, in our case, we collected the unique style images from different
datasets. Given a batch of images {x1, x2, x3, x4....xs1, xs2}, we sampled two random images
from the collection of style images into the mini-batch settings and performed a novel style
generation step. We computed the mixed style features as follows:

γmix = λσ(xs1) + (1 − λ)σ(xs2) (6)

Here, we set λ to 0.5 throughout the experiments. This formulation ensures an
equal contribution from each input style, resulting in a balanced proportion in the style
mixing process.

βmix = λµ(xs1) + (1 − λ)µ(xs2) (7)

Finally, the mixed style feature space is calculated by the following equation:

SGM(x) = γ(mix)
xi − µ(xi)

σ(x)
+ β(mix) (8)

An overview of the SGM is shown in Figure 3c.

3.2.3. Novel Style Synthesis Module (NSSM)

An overview of the NSSM is shown in Figure 3d. The problem with the SCM and
SGM is that they cannot produce diverse yet plausible style features in the iterations during
the training, as they only utilize a single statistic or a mere combination of two style feature
statistics from the batch. Therefore, we propose seeking a novel style that should not
deviate too much from the source styles and looks realistic. To achieve this, we first make a
queue of style features, which is generated by combining the style statistics of two images
within the batch size applying the best possible combinations (see Figure 4). We employ
a technique similar to the SGM but within each pair of batches. We compute the mean
and the standard deviations and mix the feature statistics following Equations (6) and (7).
Then, a subset of the images that are distinct in the queue are chosen, and the maximum
mean discrepancy (MMD) between the chosen styles and the other remaining target style
features is computed.

Given a batch of images {x1, x2, x3, x4....xs1, xs2...xsn} from both the training and target
style images, we randomly select one image as a base image and perform style mixing
individually with each target style image by applying Equations (6) and (7). Next, we
concatenate the mean and the standard deviation values of each by mixing statistics and
store them in queue S. We then compare the discrepancy of each computed distribution
with the base x1 feature statistics. Let us assume S1 represents the style feature distribution
of x1 and S2 represents the style queue. We adopt the square maximum mean discrepancy
(MMD) between the two distributions (S1 and S2) using a radial basis function (RBF) kernel
k as follows:
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MMD2
k(S1, S2) =

1
|S|2 ∑

si ,sj∈S1
k(si, sj)

− 2
|S1||S2| ∑

si∈S1,s2i∈S1
k(S1i, S2j) +

1
|S2|2 ∑

Pi ,Pj∈S1
k(S2i, S2j)

(9)

Note that we apply Equation (9) for all of the combinations and compare each original
style feature with the mixed one, taking those that have the minimum discrepancy.

We then normalize the feature maps following Equation (1) and inject the novel
dynamic styles, which were chosen by applying the MMD for the mixed features. The
plausible style injection can be formulated by:

NSSM(x) = γ(Ns)
x − µ(x)

σ(x)
+ β(Ns) (10)

We adopted a combination of the Dice loss Ldice and the cross-entropy loss function to
train the network parameters. The Dice loss was proposed by [36] and defined as follows:

Ldice = 1 − Dice(Y, Y′) (11)

where Dice is indicated by Dice coefficient score, which represents the spatial overlap
regions between the ground truth (Y) and the predicted mask (Y’). It can be calculated
as follows:

Dice = Mean( ∑ Y′ ∗ Y + e
∑ Y′ + ∑ Y + e

) (12)

In the above Equation (12), ∗ indicates element-wise multiplication and e is a very
small parameter in case of unfavorable conditions. The combination of the binary cross-
entropy loss and Dice loss have been proven efficient in handling the gradient problem [37].
We can formulate the binary cross-entropy loss as follows:

Lce = −∑(Y ∗ ln(Y′) + (1 − Y)ln(1 − Y′) (13)

Finally, we combine the two loss functions as follows:

TotalLoss = w1Ldice + w2Lce (14)

where w1 and w2 are the weights for the Dice loss and the binary-cross entropy loss,
respectively.

Figure 4. Overall framework of the NSSM. The network processes all target images to extract style
features, which are symbolically represented by different colors. These features are then transformed
into the RKHS, where a style with minimal deviation is selected.
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At last, we apply both the original features and the augmented stylized features
to train the network using cross-entropy and the Dice loss function aforementioned in
Equation (14). The cumulated loss function is stated as follows:

FinalLoss = TotalLossOriginal + TotalLossNSSM (15)

Similar settings were applied for the SCM and the SGM.

3.3. Datasets

We conducted experiments using five different datasets to demonstrate the effective-
ness of our proposed method for polyp generalization. Our experimental settings closely
followed those outlined in PraNet. Unlike some previous studies that utilized Kvasir-SEG
and CVC-ClinicDB as training sets and other datasets as testing sets, we exclusively uti-
lized Kvasir-SEG for training. We divided Kvasir-SEG and CVC-ClinicDB into training,
validation and testing subsets with ratios of 80%, 10% and 10%, respectively. Additionally,
we utilized other test datasets, such as CVC-ColonDB, ETIS and Hyper-Kvasir, which
contain 380, 196 and 55 images, respectively, for testing purposes. In our manuscript, we
present the testing results obtained from models trained on Kvasir-SEG and evaluated on
other datasets. However, we also include results from models trained on CVC-ClinicDB
and evaluated on other datasets, including Kvasir-SEG.

For the experiment, we resized the images to 384 × 384 pixels, consistent with the size
used in many prior works. During training, we performed augmentation on the fly while
loading the data into the model. This augmentation included rotation, scaling, flipping
and shearing.

3.4. Implementation Details

The proposed method was implemented using the PyTorch framework [38] v1.10.2.
We utilized a V100 GPU with two 32 GB integrated GPUs for training. As a baseline,
we employed the EfficientUNet network, which utilizes EfficientNet as a pre-trained
network. The hyperparameters chosen were consistent with those used in prior work [23].
Specifically, we trained the model using stochastic gradient descent (SGD) with a batch size
of 16, a momentum of 0.9 and a weight decay of 5 × 10−4. The total number of epochs was
set to 200.

3.5. Evaluation Metrics

We employed various metrics to evaluate and compare our proposed method with
state-of-the-art (SOTA) methods. These metrics include mean Intersection over Union
(mIoU), Dice coefficient score (Dice), weighted F-measure (FM), structure measure (SM),
mean absolute error (MAE) and max enhanced-alignment measure (EM). Among these
metrics, Dice and mIoU are similar, as both assess the degree of similarity at the region level
and measure consistency within. To compute the Dice, FM and IoU, we utilized 256 pairs of
recall and precision values between the predicted mask and the ground truth. Specifically,
we transformed the predicted output into a total of 256 binary masks by varying the
threshold from 0 to 255.

Dice Coe f f icient =
2 ∗ TP

2 ∗ TP + FP + FN
(16)

Jaccard Index =
TP

TP + FP + FN
(17)

Precision =
TP

TP + FP
Recall =

TP
TP + FN

(18)

Weighted F-measure =
Precision ∗ Recall
Precision + Recall

(19)
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MAE =
1
N ∑

(x,y)
|P(x, y)− G(x, y)| (20)

The F-measure is employed to evaluate a segmentation model’s performance by
considering both precision and recall simultaneously, providing a single metric that reflects
the model’s overall effectiveness. The structure measure (SM) quantifies the structural
consistency between the predicted mask and the ground truth [39]. Additionally, the E-
measure (maxE) evaluates the output at both the region and pixel level [40]. Similarly, the
MAE serves as a pixel-level similarity comparison metric, computing the average absolute
per-pixel difference between the predicted mask and the ground truth. In Equation (20),
P(x,y) denotes the pixel value of the ground truth, and G(x,y) represents the pixel value
location of the predicted polyp mask.

4. Results

In this section, a comparison of the proposed method with the state-of-the-art methods
is presented.

4.1. Comparison with Image-Level Data Augmentation

To compare our proposed approach with the traditional method of style-based data
augmentation, we created a dataset of 30,000 images for a generalization task. Here, we
transfer the style features from polyp images in other datasets onto the Kvasir-SEG dataset
while keeping its original content features intact, inspired by the work of Geirhos et al. [6].

We applied a commonly used style transfer technique, AdaIN [13], following the
methodology outlined by Yamashita et al. [15], to generate stylized versions of the Kvasir-
SEG dataset as shown in Figure 5. Each dataset in Kvasir-SEG was stylized using style
features extracted from randomly selected images from CVC-ClinicDB, CVC-ColonDB,
ETIS and KvasirCapsule. Additionally, we manually selected 50 target images from unseen
datasets for training purposes. The selection of 50 target images was a deliberate choice
aimed at achieving a balance between computational efficiency and maintaining style
diversity within the dataset. A higher number of target images would impose a greater
computational burden during the style transfer process, potentially hindering the practical
feasibility of the approach. Conversely, a lower number of target images might compromise
the diversity of styles represented in the dataset, limiting the model’s ability to learn and
generalize effectively. Therefore, the selection of 50 target images was aimed at striking a
balance between these considerations, ensuring both computational feasibility and stylistic
diversity. The rationale behind this selection was to transfer unique style characteristics
from the target set and optimize the model accordingly. By curating a subset of images
showcasing diverse style variations, we aimed to capture a representative sample of the
style space present in the non-training set. This selective approach allows us to prioritize
the most relevant style information for adaptation while mitigating potential computational
burdens associated with incorporating the entire non-training dataset. No additional image
transformation techniques, such as rotation, scaling or flipping, were applied. Furthermore,
the image size remained consistent at 384 × 384 pixels across all experimental settings.

We present the quantitative results of the baseline model, traditional augmentation
method and style augmentation in Table 1. The baseline Efficient UNet model trained on
the stylized dataset achieved superior segmentation results across all evaluation metrics
compared to the baseline model. This indicates that the use of style transfer as a data
augmentation strategy significantly impacts the model’s generalization performance. Fur-
thermore, retraining the model on the original dataset led to marginal improvements in
terms of Dice score and mIoU. Both the SCM and SGM achieved similar scores to those
of style augmentation, with the distinction being that the SCM and SGM were applied
in the feature space while style augmentation was performed at the image level. Lastly,
our proposed method (the NSSM) demonstrated better performance compared to other
methods, indicating its ability to learn more domain-irrelevant feature representations.
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Figure 5. (a) Overview of stylized dataset. By applying Adaptive Instance Normalization, we generate
30,000 stylized images using target style images. In this process, we transfer the style characteristics of
the target images onto the original images while preserving their original content features. (b) A few
samples of target style images, which were taken manually from five datasets.

Table 1. Comparision of baseline model, traditional augmentation method (stylized dataset) and the
proposed method in different settings on the five datasets.

Method
Kvasir-SEG CVC-ClinicDB CVC-ColonDB ETIS Dataset KvasirCapsule

mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

Efficient UNet 0.892 0.805 0.840 0.73 0.728 0.580 0.643 0.492 0.612 0.436
Efficient UNet + Stylized Dataset 0.902 0.834 0.853 0.749 0.778 0.689 0.746 0.610 0.804 0.719
Efficient UNet + Stylized Dataset + Re-train 0.909 0.846 0.858 0.751 0.785 0.693 0.766 0.636 0.824 0.732
SCM 0.903 0.841 0.852 0.759 0.781 0.697 0.773 0.683 0.836 0.739
SGM 0.897 0.835 0.868 0.776 0.788 0.704 0.781 0.696 0.848 0.759
NSSM 0.920 0.867 0.881 0.798 0.808 0.730 0.779 0.694 0.854 0.760

4.2. Experimental Results of Kvasir-SEG

Quantitative results are presented in Table 2, while qualitative results are illustrated in
Figures 6 and 7. Observing Table 1, we find that our proposed method achieves comparable
performances across all metrics compared to other state-of-the-art (SOTA) methods. No-
tably, it demonstrates approximately a 3% improvement in the Dice score and IoU compared
to PraNet and HardNet-MSEG. Additionally, the proposed method exhibits enhancements
in other metrics such as FM, SM and MAE. In contrast, while FRCNet and HardNet-MSEG
achieve MAE scores of 0.024 and 0.028, respectively, these values are slightly higher than
those achieved by our proposed method. The model’s performances on challenging im-
ages can be observed in the accompanying figure, showcasing its effectiveness in polyp
segmentation and generalization.



Appl. Sci. 2024, 14, 2780 12 of 19

Figure 6. Qualitative comparison of the different methods on the challenging images from Kvasir-SEG
testing subset and CVC-CliniCDB when trained on Kvasir-SEG.

Figure 7. Qualitative comparison of the different methods on the images from challenging CVC-
ColonDb (top), ETIS-LaribPolypDB (middle) and KvasirCapsule-SEG (bottom) when trained on
Kvasir-SEG.
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Table 2. Result comparison of the proposed method on the Kvasir-SEG. Note that mDice, mIoU, FM,
SM, maxE and MAE represent mean dice coefficient, mean intersection over union, mean weighted
F-measure, structure measure [39], max enhanced-alignment measure and mean absolute error,
respectively. Evaluation scores of FRCNet [41], TransFuse [42] and SwinE-Net [43] are referred from
their own research whereas evaluation scores for U-Net [21], UNet++ [22], DCRNet [28], ACSNet [26],
PraNet [23], HardNet-MSEG [24] and MKDCNet [29] are computed.

Method U-Net UNet++ DCRNet ACSNet PraNet HardNet FRCNet MKDCNet TransFuse SwinE-Net NSSM

mDice 0.818 0.821 0.886 0.898 0.898 0.897 0.915 0.888 0.918 0.920 0.920
mIoU 0.746 0.743 0.825 0.838 0.840 0.839 0.849 0.826 0.868 0.891 0.867
FM 0.794 0.808 0.865 0.882 0.885 0.885 0.911 0.75 N/A 0.913 0.910
SM 0.858 0.862 0.911 0.92 0.915 0.912 0.919 0.830 N/A 0.926 0.924
maxE 0.893 0.91 0.941 0.952 0.948 0.948 0.959 0.903 N/A N/A 0.959
MAE 0.055 0.048 0.035 0.032 0.03 0.028 0.024 0.052 N/A 0.024 0.022
Params 31.38 9.16 28.99 29.45 32.50 33.34 0.78 19.84 26.30 - 30.60
FPS 41.04 30.67 35 34.82 48.25 85.3 - 47.54 98.7 - -

4.2.1. Generalizability on CVC-ClinicDB

The experiment utilized CVC-ClinicDB as the second dataset for training. Table 3
presents the quantitative results of our proposed method alongside various state-of-the-art
(SOTA) methods. Our method achieves a Dice coefficient score of 0.881 and a mean IoU
of 0.798, slightly surpassing DCRNet, ACSNet and HardNet-MSEG. Notably, there is a sub-
stantial performance gap between U-Net, UNet++ and our proposed method. Additionally,
SwinE-Net, FRCNet and TransFuse exhibit commendable scores using all metrics, including
FM, SM, maxE and MAE, surpassing our proposed method with marginal improvements.
However, it is worth noting that these networks are trained on multi-source datasets. De-
spite being trained on a single-source dataset, our proposed method achieves comparable
performance, approaching the performance levels of FRCNet, TransFuse and SwinE-Net.

Table 3. Result comparison of the proposed method trained on Kvasir-SEG and tested on the
CVC-ClinicDB dataset. Evaluation scores of FRCNet [41], TransFuse [42] and SwinE-Net [43] are
referred from their own research whereas evaluation scores for U-Net [21], UNet++ [22], DCRNet [28],
ACSNet [26], PraNet [23], HardNet-MSEG [24] and MKDCNet [29] are computed.

Method U-Net UNet++ DCRNet ACSNet PraNet HardNet FRCNet MKDCNet TransFuse SwinE-Net NSSM

mDice 0.633 0.635 0.787 0.837 0.901 0.763 0.933 0.824 0.918 0.938 0.881
mIoU 0.543 0.547 0.721 0.826 0.857 0.693 0.886 0.746 0.868 0.892 0.798
FM 0.711 0.725 0.774 0.873 0.896 0.935 0.915 0.529 N/A 0.936 0.935
SM 0.789 0.793 0.860 0.927 0.935 0.849 0.942 0.715 N/A 0.950 0.947
maxE 0.854 0.831 0.896 0.959 0.957 0.878 0.981 0.828 N/A 0.989 0.985
MAE 0.039 0.038 0.029 0.011 0.009 0.030 0.007 0.060 N/A 0.006 0.010

4.2.2. Generalizability on CVC-ColonDB

For the experimental evaluation of the generalization task, CVC-ColonDB serves as
the third dataset, with only Kvasir-SEG utilized for training. The quantitative results pre-
sented in Table 4 demonstrate that our proposed method outperforms previous approaches
across all evaluation metrics. Notably, the NSSM achieves outstanding scores with a Dice
coefficient of 0.808, mean IoU of 0.73 and MAE of 0.026. FRCNet, HardNet and ACSNet
also attain competitive scores, with MAE values of 0.036, 0.038 and 0.039, respectively.
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Table 4. Comparative result comparison of the proposed method on the CVC-ColonDB dataset. Eval-
uation scores of FRCNet [41], TransFuse [42] and SwinE-Net [43] are referred from their own research
whereas evaluation scores for U-Net [21], UNet++ [22], DCRNet [28], ACSNet [26], PraNet [23],
HardNet-MSEG [24] and MKDCNet [29] are computed.

Method U-Net UNet++ DCRNet ACSNet PraNet HardNet FRCNet MKDCNet TransFuse SwinE-Net NSSM

mDice 0.512 0.483 0.704 0.716 0.712 0.735 0.741 0.367 0.773 0.804 0.808
mIoU 0.444 0.41 0.631 0.649 0.64 0.666 0.67 0.296 0.696 0.725 0.730
FM 0.498 0.467 0.684 0.697 0.699 0.724 0.728 0.351 N/A 0.787 0.791
SM 0.712 0.691 0.821 0.829 0.82 0.834 0.831 0.627 N/A 0.869 0.871
maxE 0.776 0.76 0.848 0.851 0.072 0.875 0.878 0.766 N/A 0.910 0.915
MAE 0.061 0.064 0.052 0.039 0.043 0.038 0.036 0.103 N/A 0.028 0.026

4.2.3. Generalizability on ETIS Dataset

The results of our proposed method, trained on the Kvasir-SEG dataset and tested
on the ETIS dataset, are presented in Table 5. Our method achieves a Dice score of 0.779
and a mean IoU of 0.694, along with FM, SM, maxE and MAE values of 0.739, 0.853, 0.904
and 0.011, respectively. Among the models evaluated, SwinE-Net and TransUnet rank
second and third with Dice scores of 0.758 and 0.733, respectively. Notably, our proposed
method significantly outperforms U-Net and UNet++, demonstrating its robustness and
generalizability on unseen datasets.

Table 5. Comparative result comparison of the proposed method on the ETIS dataset. Evaluation
scores of FRCNet [41], TransFuse [42] and SwinE-Net [43] are referred from their own research
whereas evaluation scores for U-Net [21], UNet++ [22], DCRNet [28], ACSNet [26], PraNet [23],
HardNet-MSEG [24] and MKDCNet [29] are computed.

Method U-Net UNet++ DCRNet ACSNet PraNet HardNet FRCNet MKDCNet TransFuse SwinE-Net NSSM

mDice 0.398 0.401 0.556 0.578 0.628 0.70 0.712 0.432 0.733 0.758 0.779
mIoU 0.335 0.344 0.496 0.509 0.567 0.63 0.647 0.371 0.659 0.687 0.694
FM 0.366 0.390 0.506 0.560 0.60 0.671 0.682 0.409 N/A 0.726 0.739
SM 0.684 0.683 0.736 0.754 0.794 0.828 0.837 0.679 N/A 0.864 0.853
maxE 0.74 0.776 0.773 0.764 0.808 0.89 0.89 0.745 N/A 0.902 0.904
MAE 0.036 0.035 0.096 0.059 0.031 0.015 0.015 0.061 N/A 0.012 0.011

4.2.4. Generalizability on Hyper Kvasir Capsule

Table 6 provides quantitative results, indicating that our proposed method demon-
strates superior generalization capabilities compared to other approaches. It achieves
an exceptional Dice score of 0.854 and a mean IoU of 0.76. In contrast, U-Net, UNet++,
DCRNet, MKDCNet and ACSNet attain Dice scores of 0.384, 0.421, 0.213, 0.269 and 0.578,
respectively. The proposed method outperforms these methods not only in mean Dice but
also across all major metrics. During the training phase, our method effectively utilizes style
statistics from a diverse collection of target images from different datasets. Consequently,
despite the substantial domain gap, our method accurately predicts this domain compared
to prior methods.

4.3. Experimental Results of CVC-ClinicDB

To assess the efficacy of our proposed method, we trained it on the CVC-ClinicDB
dataset and evaluated its performance on the remaining datasets, including its own test
set. It is important to note that we utilized the same number of style images as those used
for training on Kvasir-SEG. The results are presented in Table 7. Our proposed method
demonstrates superior accuracy on unseen datasets compared to prior methods. It is
noteworthy that all methods perform well when the training and testing samples are from
the same source. However, we observed performance drops, particularly on the CVC-
ColonDB, ETIS and KvasirCapsule datasets. For instance, DCRNet, ACSNet, PraNet and
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HardNet-MSEG exhibit impressive performance when tested on their own testing sets but
struggle on other unseen datasets. In contrast, our proposed method consistently improves
performance across all datasets except for Kvasir-SEG. Although PraNet achieves a Dice
score of 0.876 and a mean IoU of 0.832, outperforming our proposed method in this specific
dataset, this is not the case for other datasets.

Table 6. Comparative result comparison of the proposed method on the Hyper KvasirCapsule dataset.
Evaluation scores of U-Net [21], UNet++ [22], DCRNet [28], ACSNet [26], PraNet [23], HardNet-
MSEG [24] and MKDCNet [29] are computed.

Method U-Net UNet++ DCRNet MKDCNet ACSNet PraNet HardNet Proposed Method (NSSM)

mDice 0.384 0.421 0.213 0.269 0.578 0.937 0.393 0.854
mIoU 0.343 0.345 0.136 0.142 0.509 0.890 0.292 0.760
FM 0.386 0.397 0.215 0.272 0.560 0.926 0.395 0.906
SM 0.673 0.694 0.318 0.335 0.754 0.873 0.436 0.759
maxE 0.68 0.746 0.323 0.349 0.764 0.951 0.426 0.771
MAE 0.034 0.032 0.523 0.510 0.059 0.074 0.436 0.164

Table 7. Comparison of the proposed method trained on CVC-ClinicDB and tested on other datasets.

Method
CVC-ClinicDB Kvasir-SEG CVC-ColonDB ETIS KvasirCapsule

mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

U-Net 0.874 0.806 0.748 0.682 0.586 0.527 0.557 0.419 0.358 0.301
UNet++ 0.886 0.835 0.752 0.689 0.604 0.548 0.603 0.517 0.416 0.349
DCRNet 0.930 0.876 0.793 0.715 0.694 0.625 0.397 0.338 0.701 0.630
MKDCNet 0.887 0.832 0.815 0.772 0.723 0.676 0.613 0.506 0.597 0.516
ACSNet 0.914 0.895 0.845 0.724 0.738 0.684 0.617 0.536 0.646 0.572
PraNet 0.915 0.867 0.876 0.832 0.716 0.644 0.630 0.575 0.737 0.664
HardNet-MSEG 0.924 0.891 0.840 0.73 0.712 0.634 0.652 0.574 0.541 0.437
Proposed Method (NSSM) 0.943 0.898 0.842 0.764 0.756 0.692 0.681 0.606 0.763 0.676

5. Discussion

We have introduced augmentation strategies operating in the feature space, which
have exhibited superior performance across various polyp datasets and demonstrated the
ability to generalize in challenging and unseen environments compared to traditional data
augmentation techniques and previous methodologies. We hypothesize that our proposed
method facilitates the learning of deep learning models to acquire domain-agnostic and
content-specific visual representations by substituting or exchanging original style compo-
nents with new ones, primarily focusing on domain-irrelevant and class-specific aspects.
Indeed, simply transferring style statistics at both the image level and feature space level
has led to significant performance improvements. Training on stylized versions of the polyp
dataset has resulted in notably enhanced performance compared to traditional augmenta-
tion methods. Similarly, experiments involving the transfer of style features at the feature
space level have yielded comparable performance gains. Furthermore, the experiments
on generating a more diverse style transfer technique (the NSSM) demonstrated that the
proposed method can deal with arbitrary styles, in contrast to traditional augmentation
approaches, the SGM and AGM, which rely on a fixed set of data style transformations.

Allegedly, prior research has not employed style-based data augmentation, either at the
image level or the feature space level, for the task of polyp segmentation and generalization
using deep learning models. Some earlier studies have applied style transfer techniques
in different domains, such as skin lesion classification [44] and histology datasets [15].
However, these studies utilized transformations relevant to medical contexts to address
image scarcity and imbalance issues in datasets. One variant of our proposed method (the
SCM) bears some resemblance to this approach. Moreover, the study by [15] emphasized
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the use of medically irrelevant transformations with natural images and demonstrated their
superiority over previous approaches. This could be attributed to the potential of diverse
transformations enabled by employing a wider range of style features, unlike medically
relevant transformations, which are inherently limited. Our proposed methods, particularly
the SGM and NSSM, align with this concept. We achieved style diversification by leveraging
target images solely from different polyp datasets and generating plausible styles similar
to the source image. Learning features that are specific to classes and independent of
domains is crucial for deep learning models, akin to human cognition. Utilizing style
transfer techniques at the feature space level with extensive diversification can enhance the
model’s representation significantly.

While data augmentation at the image level is recognized as an effective technique
for enhancing the performance and generalization of deep learning models, its application
and potential in medical imaging remain largely unexplored, thus warranting further
investigation. Additionally, determining an optimal configuration for data augmentation
methods can vary depending on the datasets being utilized. As suggested by our proposed
method, employing style data augmentation at the feature space level holds promise
for learning domain-agnostic and class-specific representations. The findings presented
in Table 1 underscore the need for future research to explore optimal settings for data
augmentation and style transformation in a diverse and plausible manner, akin to the
approach proposed in the NSSM, alongside existing methods.

In clinical scenarios, the performance of deep learning models often diminishes due to
variations in domain shift. Models that can generalize across multiple datasets are highly
advantageous. While it is commonly believed that training deep learning models on diverse
multi-institutional datasets can facilitate generalization to unseen datasets, our proposed
method demonstrates that a well-curated dataset or thoughtfully designed architecture
can compel the model to learn features that are both class-specific and invariant to domain
shifts. Specifically, the NSSM achieved comparable performance within its dataset but
exhibits superior performance on other unseen datasets. For instance, when trained on
Kvasir-SEG and tested on CVC-ClinicDB, the NSSM achieved the highest Dice score of
0.933 and a mean IoU of 0.893. Similar performance gains are observed on the CVC-
ColonDB and ETIS datasets. Notably, the proposed method outperforms prior methods
significantly, as evidenced in Table 6, where it attains a Dice score of 0.844 and a mean IoU
of 0.750, surpassing other major metrics, while prior methods struggle with generalization.
Similarly, when trained on CVC-ClinicDB and tested on other datasets, the proposed
method achieves the highest scores on all metrics. Through extensive experimentation, the
results indicate that the proposed method exhibits superior generalizability, attributable to
its style augmentation approach at the feature space level, which consistently generates
diverse style features while preserving key content features.

We conducted ablation studies to determine the optimal settings. We experimented
with different mixing ratios between the source training images and target style images at
the feature space. Our findings indicate that an equal mixing ratio resulted in greater diver-
sity in the features, leading to improved performance on unseen datasets. The quantitative
results of these experiments are presented in Table 8.

One significant limitation of our study is that we tested our approach solely on a
simple UNet architecture. This decision was made to avoid potential interpretability issues
that could arise from using more complex models. However, future research endeavors
are necessary to investigate whether our approach can effectively address these limitations
and demonstrate its robustness and efficiency in various scenarios. Specifically, it would be
valuable to explore the applicability of our method within the frameworks of prior methods’
backbones. Additionally, extending the evaluation to other domains such as classification
and detection tasks, as well as different medical imaging domains including histopathology,
dermatology and radiology, would provide further insights into the versatility of our
approach. Another limitation worth mentioning is that our proposed method (the NSSM)
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requires longer training times compared to previous works, primarily due to the style
augmentation being performed at the feature space level on the fly.

Table 8. Ablation studies of the proposed method in different settings on the five datasets when
trained on Kvasir-SEG.

Method
Kvasir-SEG CVC-ClinicDB CVC-ColonDB ETIS KvasirCapsule

mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

Mixing ratios [0.9, 0.1] 0.892 0.805 0.840 0.73 0.768 0.680 0.733 0.662 0.812 0.736
Mixing ratios [0.8, 0.2] 0.902 0.834 0.853 0.749 0.788 0.693 0.746 0.610 0.814 0.738
Mixing ratios [0.7, 0.3] 0.909 0.846 0.858 0.751 0.784 0.691 0.766 0.636 0.849 0.742
Mixing ratios [0.6, 0.4] 0.903 0.841 0.872 0.783 0.791 0.714 0.773 0.683 0.829 0.735
Mixing ratios [0.5, 0.5] 0.920 0.867 0.881 0.798 0.808 0.730 0.779 0.694 0.854 0.760

In summary, we have introduced the NSSM, a novel style-based data augmentation
method designed to learn diverse style features from a comprehensive set of medically
relevant polyp images originating from various sources. Our approach aims to facilitate
the acquisition of domain-agnostic and class-specific feature representations within the
polyp domain. Through our experiments, we have demonstrated notable enhancements
in the performance of segmentation tasks across different unseen datasets, particularly
when confronted with domain shift challenges. Our investigation underscores two key
findings. Firstly, CNNs exhibit a bias towards style features and may rely on low-level
attributes such as color and texture, rendering them susceptible to domain shifts within
polyp domains. Secondly, we posit that the incorporation of a medically relevant NSSM can
serve as a practical strategy to alleviate this reliance, thereby offering a potential avenue for
acquiring domain-agnostic representations.
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