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Damaševičius, Lalit Garg,

Nebojsa Bacanin and

Justyna Patalas-Maliszewska

Received: 28 January 2024

Revised: 21 March 2024

Accepted: 21 March 2024

Published: 26 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Manhole Cover Classification Based on Super-Resolution
Reconstruction of Unmanned Aerial Vehicle Aerial Imagery
Dejiang Wang * and Yuping Huang

School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China;
1873835005@shu.edu.cn
* Correspondence: djwang@shu.edu.cn

Abstract: Urban underground pipeline networks are a key component of urban infrastructure,
and a large number of older urban areas lack information about their underground pipelines. In
addition, survey methods for underground pipelines are often time-consuming and labor-intensive.
While the manhole cover serves as the hub connecting the underground pipe network with the
ground, the generation of underground pipe network can be realized by obtaining the location
and category information of the manhole cover. Therefore, this paper proposed a manhole cover
detection method based on UAV aerial photography to obtain ground images, using image super-
resolution reconstruction and image positioning and classification. Firstly, the urban image was
obtained by UAV aerial photography, and then the YOLOv8 object detection technology was used to
accurately locate the manhole cover. Next, the SRGAN network was used to perform super-resolution
processing on the manhole cover text to improve the clarity of the recognition image. Finally, the
clear manhole cover text image was input into the VGG16_BN network to realize the manhole cover
classification. The experimental results showed that the manhole cover classification accuracy of this
paper’s method reached 97.62%, which verified its effectiveness in manhole cover detection. The
method significantly reduces the time and labor cost and provides a new method for manhole cover
information acquisition.

Keywords: image super-resolution reconstruction; manhole cover recognition; manhole cover
positioning; drone aerial images

1. Introduction

Underground pipe networks play a crucial role in the daily operation of cities. As
part of the urban municipal system, they cannot be ignored in the process of urban intel-
ligent digitization. With the continuous development of smart cities and the continuous
enrichment of urban functions, the process of municipal public facilities construction is
gradually accelerating. This means that municipal, power, communications, and other de-
partments need more practical measures to manage a large number of municipal equipment
and assets.

At present, many old urban areas have a lack of information on underground pipelines,
which makes it impossible to carry out intelligent management of pipelines. In turn, the
precise lack of access to underground pipelines is a challenge for urban infrastructure
management. Although a variety of techniques, such as ground penetrating radar (GPR),
acoustic detection, stratigraphic detection, geomagnetic detection, and holographic inter-
ferometry, exist for the detection of underground pipe networks [1–3]. These methods
usually require a large investment of labor and resources, which limits their efficiency
and usefulness. These traditional methods are labor intensive and often lead to excessive
consumption of time and cost. Manhole covers, serving as critical connectors between the
underground pipeline network and the surface, play an essential role; thus, mapping the
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layout of the underground network can be achieved by acquiring information on the type
and location of manhole covers.

As artificial intelligence technology progresses and the use of unmanned aerial vehi-
cles (UAVs) becomes more widespread in engineering applications, more and more deep
learning techniques are being leveraged to solve engineering-related problems [4–6]. For
example, many researchers have applied object detection algorithms to the task of locating
manhole covers. Ying [7] and colleagues had introduced a method termed MA-FPN, which
integrated the core concepts of attention mechanisms with feature pyramid networks,
aiming to improve the accuracy of object detection in remote sensing. Liu et al. [8] designed
a diversity feature extractor based on a VGG feature extractor to improve the performance
of manhole cover localization by increasing the size of the receptive field. These methods
obtained the city image by using UAV aerial photography, and then used the object detec-
tion technology to detect the aerial image to obtain the localization of the manhole cover. It
greatly reduced the consumption of manpower and material resources, and also improved
the survey efficiency. However, these methods had not solved the problem of obtaining the
category information of manhole covers, and could only obtain the location information of
manhole covers. However, in the process of urban digitization, the category information of
manhole cover is indispensable. Only by correctly obtaining the category information of
manhole cover can we build a complete municipal pipe network system. Other scholars
have proposed using vehicles equipped with cameras and lidars to collect ground images
and combine target detection methods to obtain manhole cover information [9,10]. For
example, Wei et al. [11] used a combination of multiple symmetrically arranged cameras
and lidars to classify manhole covers through descriptors and support vector machine
algorithms. Pang et al. [12] proposed a real-time road manhole cover detection method
based on deep learning model. By optimizing the network structure and reducing the size
of the model and the number of parameters, the effect of deployment on vehicle-mounted
embedded devices is achieved. Mattheuwsen et al. [13] developed a fully automatic method
for manhole cover detection using mobile mapping point cloud data. Although the above
method can solve the problem of manhole cover classification, due to the limitation of
vehicle-mounted tools, a large number of manhole covers are located in places where
cars cannot reach. It is also labor-intensive and time-consuming to collect ground images
through radar- and camera-equipped vehicles, which are still inefficient methods. However,
it is a feasible way to classify manhole covers after obtaining ground images by UAV. How
to realize the classification of manhole covers is the main problem to be solved in this paper.
Classification of manhole covers is mainly realized by recognizing the text on the cover;
however, the manhole covers acquired from aerial images often lose the detail information
of the text on the cover, so directly classifying manhole covers by target detection is not a
feasible method. Image super-resolution reconstruction methods were designed to enhance
the detail performance of low-resolution images. By recovering high-frequency detail
information from low-resolution images, the image becomes clearer and has a higher detail
resolution. These methods are widely used in the fields of aeronautics, medicine, and
engineering [14,15]. In the field of aviation, a variety of image super-resolution reconstruc-
tion algorithms had been proposed [16–20]. Zhou et al. [18] proposed a super-resolution
reconstruction strategy based on self-attention generative adversarial networks, which
improves the details of remote sensing images by adding self-attention modules. Yue
et al. [21] proposed an improved enhanced super-resolution generative adversarial network
(IESRGAN) based on enhanced U-Net structure, which is used to perform a four-fold scale
detail reconstruction of LR images using NaSC-TG2 remote sensing images. The above
method can improve the detail of aerial images well. Therefore, it becomes possible to
recover the details of manhole cover text by reconstructing the manhole cover from aerial
photographs through super-resolution reconstruction network.

Based on the above analysis, this paper proposed a method to localize and classify
manhole covers based on super-resolution generative adversarial network reconstruction of
UAV aerial images. Initially, the YOLOv8 object detection network was employed to localize
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manhole covers. Post-localization, these covers were segmented from the captured images.
Further text localization was conducted on the segmented images using YOLOv8. This was
followed by the application of the SRGAN super-resolution network to enhance the image
quality of the manhole covers. The final step involved classifying the manhole covers using
the VGG16_BN image classification network. The method used in this paper can greatly
improve the efficiency of manhole cover survey and reduce the loss of manpower and
material resources.

2. Methods

Among the many categories of manhole covers, the text on the cover is the most
important feature to distinguish the cover. Classifying manhole covers by recognizing
the text on the cover is the most effective way. This study introduces an approach for the
classification of manhole covers. It began with the acquisition of aerial datasets through
unmanned aerial vehicle (UAV) photogrammetry. Then, the object detection network,
image super-resolution reconstruction network, and image classification network for the
manhole cover classification were combined.

First, the ground aerial dataset is collected using UAV aerial photography, the collected
data were cropped to the input size of the network, and the collected aerial images were
labeled using labeling software to produce the dataset for manhole cover localization, and
then the produced dataset was input into the object detection network for training. The
trained network was used to localize the manhole cover and cut out the localized manhole
cover. Next, the cropped manhole cover was used to create the text recognition dataset,
then the object detection network was used to train the text localization network, and finally
the text was localized and cropped according to the trained text localization network.

At the same time, high-resolution images of manhole covers were collected at low
altitude using UAV, and after cropping and data enhancement, they were fed into an image
super-resolution reconstruction network for training, and finally the cropped images of
manhole covers were fed into the super-resolution reconstruction network to obtain a clear
text of the manhole covers, and the clarified images of the text of the manhole covers were
used to produce a dataset for classifying the manhole covers.

Finally, the manhole cover classification model was obtained by training the generated
manhole cover classification dataset using VGG16_BN network. The specific technology
roadmap is shown in Figure 1.
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2.1. Manhole Cover Positioning

In this paper, manhole cover classification is realized by recognizing the text on
manhole covers. However, as text recognition in natural scenes, there are huge difficulties
in directly utilizing aerial pictures for text recognition. Due to the complexity of the
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image background obtained from aerial photography, a single image may contain multiple
manhole covers and other text and other external factors interference [22]. Therefore, this
paper compares the manhole cover localization effect of three target detection networks,
YOLOv8, Faster R-CNN, and EfficientNet. The best network is selected and then the text is
cropped out to avoid the interference of other manhole covers and other text in the scene.

2.1.1. YOLOv8 Network Architecture

YOLOv8 is composed of three parts: Backbone, FPN, and Yolo Head [23,24], as shown
in Figure 2. The Backbone network uses CSPDarknet to extract the effective feature layer,
and then realizes the feature fusion of the effective feature layer in FPN. By combining the
feature information of different scales, the detection ability of FNP for targets of different
sizes can be enhanced. Finally, the localization classification task is realized by Yolo
Head. Because YOLOv8 network has strong detection ability for targets of different scales,
YOLOv8 has great advantages in manhole cover detection task.
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2.1.2. YOLOv8 Network Data Set Production

YOLOv8 network training was achieved by giving the detection box of the detection
object and setting the corresponding labels for different objects. Therefore, it is necessary
to make a manhole cover data set with annotation before network training. In this paper,
aerial images were used to make a manhole cover positioning data set. There are many
types of manhole covers, but for some special manhole covers, their categories do not need
to be identified by text recognition, such as the rainwater grate in Figure 3, which can be
distinguished by manhole cover positioning. Therefore, the manhole cover positioning
only needs to pay attention to the categories of rainwater and sewage, rather than the
image classification and recognition of the rainwater grate.
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Figure 3. Manhole cover positioning data set display.

In the process of dataset production, it is necessary to cut the image according to the
input size of 416 × 416 required by the network. As shown in Figure 4a. However, cutting
the image directly into a 416 × 416 size will cause the manhole cover to be cut incompletely,
eventually leading to the manhole cover category cannot be obtained. Because in the aerial
image, the pixel value of the manhole cover is only approximately 80 pixels. Therefore, to
ensure that the manhole cover is complete in at least one picture, it is only necessary to
set the cutting overlap rate to 20%. The method of setting the overlap ratio is shown in
Figure 4a. From Figure 4b, it can be seen that the left side of manhole cover 1 and 2 and
3 is complete by setting the overlap rate when cutting. After the cutting is complete, the
aerial image is labeled by the target detection labeling software Labelimg 1.8.6, and the
labeling result is shown in Figure 3. Finally, the dataset diversity is filled by means of data
enhancement.
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2.2. Text Localization

Character recognition first needs to locate and segment the text. Therefore, after
obtaining the manhole cover image, the character recognition cannot be directly carried
out [25]. It is also necessary to locate the text to obtain the text image. In this paper, the text
positioning network still uses the YOLOv8 network.

Text Positioning Data Set Production

Text localization and manhole cover localization are the same need to mark the de-
tection object location and label in advance. While the text localization dataset was the
aerial image input into the trained manhole cover localization network, the manhole cover
would be localized and cropped out. Cropping needed to be eliminated after the residual
manhole cover does not contain the text, and then the LabelImg software was used to
annotate the image.
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2.3. Super-Resolution Network Reconstruction Manhole Cover Text

As text recognition in natural scenes, manhole cover text recognition is often affected
by factors such as illumination changes and image sharpness, resulting in unclear text and
the loss of many important features [26]. Due to the shooting distance and camera pixel
limitations, manhole cover text captured by UAV loses a large number of details, as shown
in Figure 5. The direct use of UAV images for manhole cover text recognition would result
in a very low recognition accuracy, and the use of such fuzzy text for manhole cover classi-
fication training would result in the inability to obtain accurate manhole cover categories.
Therefore, in this paper, SRGAN image super-resolution reconstruction technique was used
to reconstruct the aerial images of manhole cover text at super-resolution, to recover the
detailed features of manhole cover text, and to improve the accuracy of text recognition.
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2.3.1. SRGAN Network

Super-resolution generative adversarial network (SRGAN) is composed of generator
and discriminator [27], as shown in Figure 6. The high-resolution degradation model is
used to reduce the high-resolution manhole cover to a low-resolution image. The generator
then upsamples the low-resolution image to generate a realistic high-resolution image and
inputs it into the discriminator. The discriminator is used to distinguish the difference
between the generated image and the real image to optimize the parameters of the image
generated by the generator, and finally realize the super-resolution reconstruction of the
manhole cover text.
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2.3.2. The Production and Enhancement of SRGAN Network Dataset

SRGAN, a single-image super-resolution reconstruction network, requires only the ac-
quisition of high-resolution images. The corresponding low-resolution images are derived
by downgrading these high-resolution images. Therefore, this paper described a process
of capturing high-resolution images of manhole covers using unmanned aerial vehicles
(UAVs) at low altitudes, followed by cropping the textual segments from these covers to
compile the training dataset. To increase the variety within the dataset, data augmentation
methods were employed, enhancing the dataset as illustrated in Figure 7. The specific data
enhancement parameters are shown in Table 1:

Aerial pictures with different lighting conditions can be simulated by changing the
brightness, while flipping can simulate the drone shooting from different directions. More-
over, noise and Gaussian blurring can simulate the drone’s noise due to the shooting height
and the environment and the image brought about by not focusing accurately.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 21 
 

 
Figure 6. SRGAN network structure. 

2.3.2. The Production and Enhancement of SRGAN Network Dataset 
SRGAN, a single-image super-resolution reconstruction network, requires only the 

acquisition of high-resolution images. The corresponding low-resolution images are de-
rived by downgrading these high-resolution images. Therefore, this paper described a 
process of capturing high-resolution images of manhole covers using unmanned aerial 
vehicles (UAVs) at low altitudes, followed by cropping the textual segments from these 
covers to compile the training dataset. To increase the variety within the dataset, data 
augmentation methods were employed, enhancing the dataset as illustrated in Figure 7. 
The specific data enhancement parameters are shown in Table 1: 

Table 1. Data enhancement method and its corresponding parameters. 

Methods Operation Execution 
Brightness Brightness factor = 0.8;1.2;1.4 

Flip Horizontally flip; Vertically flip 
Gauss blur Blur radius =1.5;2;2.5 

Noise Noise factor = 30;40;50 

Aerial pictures with different lighting conditions can be simulated by changing the 
brightness, while flipping can simulate the drone shooting from different directions. 
Moreover, noise and Gaussian blurring can simulate the drone’s noise due to the shooting 
height and the environment and the image brought about by not focusing accurately. 

 
Figure 7. Enhanced display of text super-resolution reconstruction dataset. Figure 7. Enhanced display of text super-resolution reconstruction dataset.

Table 1. Data enhancement method and its corresponding parameters.

Methods Operation Execution

Brightness Brightness factor = 0.8;1.2;1.4
Flip Horizontally flip; Vertically flip

Gauss blur Blur radius =1.5;2;2.5
Noise Noise factor = 30;40;50

2.3.3. SRGAN Network Training

The training of the SRGAN network is conducted in two steps, as depicted in Figure 8.
Initially, once the manhole cover text dataset had been compiled, the data were fed into the
degradation model to produce low-resolution images. These images were then passed to
the generator model for training, which synthesized high-resolution images. Subsequently,
these images were submitted to the discriminator for assessment. Thereafter, the generator’s
parameters were refined based on the discriminator’s evaluation of the authenticity of
the images generated by the generator. Ultimately, this process results in the creation of
high-resolution manhole cover text images.
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2.4. Image Classification Realizes Manhole Cover Classification

Traditional text recognition is achieved through optical character recognition (OCR)
technology [28,29], whereas the text obtained from drone aerial photography loses a large
number of textual features, and the text is not in the form of a standardized font. It is not
feasible through traditional text recognition methods, and this can be ignored by using
image classification networks for text recognition. Therefore, this paper compares three
image classification networks, Mobilenetv1, Swin_transformer_tiny, and VGG16_BN, and
selects the one with the best effect as the network for manhole cover classification.

2.4.1. VGG16_BN Network Architecture

VGG16_BN is added to the batch normalization layer after each convolution layer of
VGG16 [30]. As shown in Figure 9. The convergence speed of the network will be faster
after the introduction of the batch normalization layer, and it has better generalization
performance. Deeper feature information can be learned, which is very beneficial for
manhole cover recognition. Therefore, the VGG16_BN network can more accurately identify
the category of manhole cover.

2.4.2. Text Recognition Data Set Production

Before training the VGG16_BN network, it is necessary to construct a dataset contain-
ing the text of the manhole cover. First, the text part of the manhole cover was extracted
from the images captured by the UAV. Then, after determining the categories of manhole
covers through field surveys, corresponding labels for manhole covers were set based on
the surveyed categories of manhole covers. The dataset produced in this paper includes
two categories of manhole covers, including rainwater manhole covers and wastewater
manhole covers, and the categories are shown in Figure 10.
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In order to assess the consistency and reliability of the results of the classification,
this paper uses the K-fold cross-validation method to divide the dataset for training, the K
value is taken as 5, and the division schematic is shown in Figure 11.
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3. Experiments
3.1. Software and Hardware

This experiment mainly used aerial images to evaluate the scheme of the manhole
cover classification network. The experiment is based on the deep learning framework
proposed in this paper. It runs on a 13th Gen Intel (R) Core (TM) i7-13700KF CPU, the GPU
is an NVIDIA 4090, it has 64 GB of memory, the Python version is 3.8, and the operating
system is Windows 10.

3.2. Dataset Acquisition
3.2.1. Manhole Cover Positioning Data Set Acquisition

In this experiment, the DJI UAV M300 RTK equipped with the Zenmuse P1 camera
(Manufacturer is DJI, company location is Shenzhen, China) was used for aerial photogra-
phy at a university in Shanghai. The flight height was set to 50 m, with a heading overlap
rate of 90% and a side phase overlap rate of 25%. To compare the experimental results under
different light and weather conditions, the experiment was conducted on both sunny and
cloudy days. Once the flight route was designed, the aerial photography was automatically
performed. A total of 1276 photos were collected, with each picture having dimensions of
8192 × 5460 pixels, as shown in Figure 12. Among these, 999 pictures were taken on sunny
days, and 277 pictures were taken on cloudy days. The resulting manhole cover positioning
dataset consisted of 5122 images. Among these, 3420 pictures required classification, while
1702 pictures did not require positioning. The dataset was divided into training, testing,
and validation sets in an 8:1:1 ratio.
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3.2.2. Text Location Data Set Acquisition

Manhole cover images are obtained by inputting aerial images into the trained man-
hole cover localization network, and a total of 3385 complete manhole cover images were
collected. The dataset was divided according to the ratio of 8:1:1 for the training set, test set
and validation set.

3.2.3. Manhole Cover Image Super-Resolution Data Set Acquisition

Text super-resolution reconstruction requires high-resolution manhole cover images,
so it requires low-altitude UAV acquisition when collecting text super-resolution reconstruc-
tion data sets. In this paper, DJI UAV M300 RTK (Manufacturer is DJI, company location is
Shenzhen, China) is used to carry Zenmuse P1 low-altitude shooting and acquisition. The
flight height was set to 20 m. A total of 188 manhole covers were obtained, with a pixel size
of 8192 × 5460, as shown in Figure 13. The pixel size after cutting is 71 × 81, including 109
rain manhole covers and 79 sewage manhole covers. The data set was expanded to 752 by
means of data enhancement such as adding noise, Gaussian blur, tone change, and flipping.
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3.2.4. VGG16_BN Network Data Set Production

The creation of the VGG16_BN network dataset involves several steps. Firstly, UAV
aerial images are utilized for manhole cover acquisition by performing manhole cover
positioning. The acquired manhole cover images are then processed to extract the text
present on them. Subsequently, the extracted text is inputted into the super-resolution
reconstruction network for the purpose of reconstruction. In this study, a total of 3249 man-
hole cover text images were collected, consisting of 1530 images from rainwater manhole
covers and 1719 images from sewage manhole covers. The dataset was partitioned using
the K-fold cross-validation method, with a value of K set to 5 for the division.

3.3. Evaluation Parameters and Indicators

This study assessed the performance of the manhole cover localization network uti-
lizing metrics such as precision, recall, and mean average precision (mAP). The image
super-resolution reconstruction was evaluated using peak signal-to-noise ratio (PSNR) and
a mean squared error (MSE) as the benchmark indices. Additionally, the text classifica-
tion network was gauged through parameters including precision, recall, and F1_Score.
Detailed computational methods for these indicators are delineated below.

Precision =
TP

TP + FP
(1)

Recall =
TP

(TP + FN)
(2)

mAP =
∑n−1

i=1 APi

k
(3)

top − 1 accuracy =
TP + TN

TP + FP + FN + TN
(4)

F1_Score = 2 × Precision × Recall
Precision + Recall

(5)

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)((
σ2

x + σ2
y + c2

) (6)

PSNR = 20 × log10
MAX I√

MSE
(7)

In this study, as shown in Figure 14. TP (true positive) quantifies the number of
instances where the model accurately identifies actual positive cases as such. Conversely,
FP (false positive) counts the instances where the model erroneously labels actual negative
cases as positive. FN (false negative) tabulates the number of cases in which actual positive
instances are misclassified as negative, while TN (true negative) records the correct clas-
sification of actual negative cases. Here, x denotes the original image, and y signifies the
reconstructed image. µx and µy are the mean values of the respective images, while σx and
σy represent their variances. σxy is the covariance between x and y. The constants c1 and
c2 are utilized to maintain computational stability. Precision is the metric that quantifies
the ratio of true positive predictions out of all positive predictions made by the model.
Recall assesses the fraction of relevant instances that the model correctly identifies out of
the total number of actual positives, reflecting the model’s sensitivity. The mean average
precision (mAP) is an aggregate measure that computes the average of the individual mean
average precisions across multiple categories, with a value range from 0 to 1. A higher
mAP value indicates superior model precision across various classes. Top-1 accuracy is
the metric that evaluates the model’s overall predictive accuracy by measuring the ratio of
the number of correctly predicted samples to the total number of samples. F1 score is an
evaluation index that considers both precision and recall. The structural similarity index
(SSIM) serves as an indicator for assessing the perceptual similarity between two images.
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The peak signal-to-noise ratio (PSNR) is employed to compare the maximum potential
power of the original signal against the power of distortion noise, thereby quantifying the
reconstruction quality of the image.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 21 
 

𝑆𝑆𝐼𝑀 𝑥, 𝑦 2𝜇 𝜇 𝑐 2𝜎 𝑐𝜇 𝜇 𝑐 𝜎 𝜎 𝑐  (6)

𝑃𝑆𝑁𝑅 20 𝑙𝑜𝑔10 𝑀𝐴𝑋𝐼√𝑀𝑆𝐸 (7)

In this study, as shown in Figure 14. TP (true positive) quantifies the number of in-
stances where the model accurately identifies actual positive cases as such. Conversely, 
FP (false positive) counts the instances where the model erroneously labels actual negative 
cases as positive. FN (false negative) tabulates the number of cases in which actual positive 
instances are misclassified as negative, while TN (true negative) records the correct clas-
sification of actual negative cases. Here, x denotes the original image, and y signifies the 
reconstructed image. 𝜇  and 𝜇  are the mean values of the respective images, while 𝜎  
and 𝜎  represent their variances. 𝜎  is the covariance between x and y. The constants 𝑐   and 𝑐   are utilized to maintain computational stability. Precision is the metric that 
quantifies the ratio of true positive predictions out of all positive predictions made by the 
model. Recall assesses the fraction of relevant instances that the model correctly identifies 
out of the total number of actual positives, reflecting the model’s sensitivity. The mean 
average precision (mAP) is an aggregate measure that computes the average of the indi-
vidual mean average precisions across multiple categories, with a value range from 0 to 1. 
A higher mAP value indicates superior model precision across various classes. Top-1 ac-
curacy is the metric that evaluates the model’s overall predictive accuracy by measuring 
the ratio of the number of correctly predicted samples to the total number of samples. F1 
score is an evaluation index that considers both precision and recall. The structural simi-
larity index (SSIM) serves as an indicator for assessing the perceptual similarity between 
two images. The peak signal-to-noise ratio (PSNR) is employed to compare the maximum 
potential power of the original signal against the power of distortion noise, thereby quan-
tifying the reconstruction quality of the image. 

 
Figure 14. Evaluation index diagram. 

3.4. Setting of Training Parameters 
The Pytorch framework was used to train the YOLOv8 network, SRGAN network, 

and VGG16_BN network. The learning rate of YOLOv8 was 1 × 10−2, the optimizer used 
SDG, the loss function was the cross entropy loss function, the training batch was set to 
50, the batch size was set to 16, momentum was 0.937, the reconstruction size of SRGAN 
network was 4, the learning rate was 2 × 10−4, the optimizer was Adam, the training batch 
epoch was set to 300, the batch size was 8, and the loss function was L1 Loss. The learning 

Figure 14. Evaluation index diagram.

3.4. Setting of Training Parameters

The Pytorch framework was used to train the YOLOv8 network, SRGAN network,
and VGG16_BN network. The learning rate of YOLOv8 was 1 × 10−2, the optimizer used
SDG, the loss function was the cross entropy loss function, the training batch was set to
50, the batch size was set to 16, momentum was 0.937, the reconstruction size of SRGAN
network was 4, the learning rate was 2 × 10−4, the optimizer was Adam, the training batch
epoch was set to 300, the batch size was 8, and the loss function was L1 Loss. The learning
rate of VGG16_BN was 1 × 10−2, the training batch Epoch was set to 100, the batch size
was 32, and the optimizer used SGD.

4. Results
4.1. Analysis of Manhole Cover Positioning Results

The data set was input into three target detection networks for training, and the cover
positioning network obtained the training results after 50 iterative trainings. The results
are shown in Table 2.

Table 2. Indicators for evaluating manhole cover location networks.

Evaluating Indicator YOLOv8 Faster R-CNN EfficientNet

Precision 97.41% 93.01% 96.88%
Recall 97.13% 99.43% 97.14%
mAP 99.63% 96.84% 97.33%

F1_Score 97.27% 96.11% 97.01%

By analyzing the values of the evaluation indicators in the table, it can be clearly ob-
served that YOLOv8 performs better than other networks in the manhole cover positioning
task. In particular, mAP was used as the evaluation index of positioning error, and the
score of YOLOv8 was as high as 99.63%, indicating that YOLOv8 had excellent positioning
accuracy. This result was helpful for the accuracy of subsequent manhole cover cutting.
From the precision point of view, YOLOv8 also had a good performance. This meant that
YOLOv8 could identify the manhole cover target with high accuracy.

In addition, by analyzing Figure 15c,d, it could be seen that the YOLOv8 network
could also locate the incomplete manhole cover well. From the Figure 15e, it could be
seen that the YOLOv8 network could also accurately locate the manhole cover after it was
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blocked by stains. At the same time, it could be seen from Figure 15b,e that YOLOv8 also
had good recognition ability for manhole covers of different shapes and sizes, and can
accurately locate.
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4.2. Analysis of Text Positioning Results

The text localization dataset was fed into the YOLOv8 network for training, and the
training results of the text localization network were obtained through 50 iterations of
network training, as shown in Table 3.

Table 3. YOLOv8 text positioning results.

Evaluating Indicator YOLOv8

Precision 98.54%
Recall 96.31%
mAP 99.76%

F1_Score 97.41%

Table 3 showed that YOLOv8 performs well in text localization, with an average
precision of 99.76%. This indicated accurate localization of almost all manhole cover texts.
At the same time, the network’s recall rate reached 96.31%, indicating that most of the
manhole cover texts were successfully localized. From Figure 16, it could be seen that
the YOLOv8 network could accurately locate the text in the incomplete manhole covers
a and f, and it could also be well positioned for the manhole covers covered by stains. In
addition, for the square manhole covers a and b, YOLOv8 could also be well positioned.
The manhole covers d and c under different weather and light conditions could also be
accurately positioned by the network. Therefore, text positioning through the YOLOv8
network can accurately obtain the position of the text.
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4.3. Super-Resolution Reconstruction of Morehole Cover Text

The processed dataset was fed into the SRGAN network for training iterations of 300
epochs to obtain the results of the super-resolution reconstruction network for manhole
covers. The specific training parameters are listed in Table 4.

Table 4. SRGAN reconstruction effect evaluation index table.

Evaluating Indicator SRGAN

PSNR 29.54
SSIM 0.83

From Table 4, it was known that SRGAN achieved higher PSNR values in the super-
resolution reconstruction of the manhole cover training. It showed that the reconstructed
image had less visual error with the original high-resolution image. It could also be seen
from the Figure 17 that the reconstructed image could well reconstruct the low resolution
image to a clear high resolution image. SRGAN also obtained a high SSIM value, which
reflected that the reconstructed image preserves the details of the original image well. The
images had a high similarity in terms of texture, structure, and brightness. In general,
manhole cover reconstruction using SRGAN network is an effective method.

4.4. Analysis of Manhole Cover Classification Results

In this paper, Mobilenetv1, Swin_transformer_tiny and VGG16_BN networks were
trained, and the results were shown in Table 5. Comparing the three networks, VGG16_BN
had the best effect in the classification of manhole covers, the recognition accuracy of
manhole covers was 97.62%, and the comprehensive score was the highest in the three
networks, so VGG16_BN was selected as the classification network of manhole covers in
this paper.
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Table 5. Comparative evaluation metrics for well-cover categorization networks.

Evaluating Indicator Mobilenetv1 Swin_transformer_tiny VGG16_BN

Precision 92.73% 90.0% 97.62%
Recall 92.73% 94.32% 98.86%
mAP 93.75% 92.19% 98.44%

F1_Score 92.73% 92.11% 98.24%

After determining the image classification network, the VGG16_BN network under-
goes K-value cross-validation to verify the consistency and reliability of the classification
results. The verification results were presented in Table 6. It could be observed from
the table that following five-fold cross-validation, the network demonstrated consistent
performance, with an accuracy rate hovering at approximately 93.92%. Based on the K-fold
calculation results, it could be concluded that at a 95% confidence level, the confidence
interval of the classification accuracy was [0.93, 0.95] with a confidence coefficient of 1.96.
This indicated the reliability of the results obtained from the VGG16_BN network.

After determining the classification network, the hyperparameters need to be deter-
mined. In order to evaluate the influence of different learning rates on the model, this
experiment used 1 × 10−2, 1 × 10−3, and 2 × 10−5 to train the model for 150 epochs, and
collected the loss function during the training process. Through Figure 18, it could be seen
that the learning rate of 1 × 10−2 is the fastest model convergence, and the model tends to
be stable at 75 epochs. Therefore, the learning rate is set to 1 × 10−2. The training batch is
100 epochs.
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Table 6. K-fold cross-validation results.

Evaluating Indicator Precision Recall mAP F1_Score

K1 94.96% 94.42% 95.18% 94.69%
K2 94.35% 94.54% 93.97% 94.44%
K3 92.02% 92.02% 92.26% 92.02%
K4 93.15% 93.22% 92.52% 93.18%
K5 95.12% 93.71% 95.48% 94.41%

Mean Value 93.92% 94.06% 94.21% 94.49%
Mean Square Deviation 0.012 0.014 0.018 0.010
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After determining the parameters, the classification performance of the reconstructed
manhole cover text images was validated. Under the condition of keeping other parameters
consistent, the unreconstructed manhole cover text images and the reconstructed manhole
cover text images were separately inputted into the network for training. By comparing
the precision, recall, and top-1 accuracy metrics after training, the effectiveness of super-
resolution reconstruction was evaluated. The final training evaluation metrics are presented
in Table 7.

Table 7. Indicators for evaluating manhole cover categorization networks.

Method Precision Recall Top-1 Accuracy F1_score

Original images 84.92% 77.95% 82.81% 81.29%
Super-resolution reconstruction 97.62% 98.86% 98.44% 98.24%

It could be seen from Table 7 that all aspects of the VGG16_BN network trained with
the super-resolution reconstructed manhole cover had been greatly improved. Among
them, the recall rate of the image without super-resolution reconstruction was only 77.95%.
After training with the super-resolution reconstruction data set, the recall rate had in-
creased by 20%. At the same time, it could be seen from Figure 19 that even if it was
tested on the original image, the network trained by super-resolution had also achieved
a significant accuracy improvement. It could be concluded that the network trained by
super-resolution reconstruction has a significant improvement in the accuracy of manhole
cover classification.
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In addition, the robustness of the VGG16_BN network was verified by testing under
different weather and different light conditions. The results were shown in Figure 20. It
could be seen from the diagram that the VGG16_BN network could accurately identify
the type of manhole cover, whether it was cloudy or sunny. At the same time, for the
manhole cover text c and d under different light intensity, the network could also accurately
identify the category of the manhole cover. It could be seen that the VGG16_BN network
could accurately identify the category of the manhole cover under different weather and
light intensity.
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5. Conclusions

To address the issue of missing information in old urban manhole covers, this pa-
per proposed a manhole cover classification and text recognition method based on an
image super-resolution reconstruction network. The method possessed the following
functionalities:

1. The experimental results showed that it was an effective method to locate the manhole
cover and text before text recognition.

2. The experiment proved that the accuracy of manhole cover classification could be
improved by using the method of image super-resolution reconstruction to clarify
the cap text and reconstruct the aerial image with missing text details due to the long
aerial distance.

3. The method of using VGG16_BN to classify manhole covers is an effective method. It
can accurately identify the type of manhole cover, and the recognition accuracy is as
high as 97.62%.

Experimental results had demonstrated the feasibility of the algorithm proposed in
this study for addressing the issue of missing information in manhole covers in old urban
areas. The results indicated that the proposed method can effectively perform manhole
cover localization and classification. This method holds significant importance for collect-
ing information on the underground pipe network in urban infrastructure management. By
accurately obtaining the category information of manhole covers, city network administra-
tors can better maintain underground facilities. However, this method also has limitations,
as manhole covers that were obstructed during aerial imaging or lack textual category
information cannot have their category determined. Further research is needed to address
and overcome this limitation.
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