
Citation: Cai, R.; Li, X. Path Planning

Method for Manipulators Based on

Improved Twin Delayed Deep

Deterministic Policy Gradient and

RRT*. Appl. Sci. 2024, 14, 2765.

https://doi.org/10.3390/

app14072765

Academic Editor: Marco Troncossi

Received: 10 January 2024

Revised: 19 February 2024

Accepted: 26 February 2024

Published: 26 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Path Planning Method for Manipulators Based on Improved
Twin Delayed Deep Deterministic Policy Gradient and RRT*
Ronggui Cai 1 and Xiao Li 1,2,*

1 School of Electronic Engineering and Automation, Guilin University of Electronic Technology,
Guilin 541004, China; 21082304004@mails.guet.edu.cn

2 Key Laboratory of Intelligence Integrated Automation in Guangxi Universities, Guilin 541004, China
* Correspondence: lixiao@guet.edu.cn

Abstract: This paper proposes a path planning framework that combines the experience replay
mechanism from deep reinforcement learning (DRL) and rapidly exploring random tree star (RRT*),
employing the DRL-RRT* as the path planning method for the manipulator. The iteration of the RRT*
is conducted independently in path planning, resulting in a tortuous path and making it challenging
to find an optimal path. The setting of reward functions in policy learning based on DRL is very
complex and has poor universality, making it difficult to complete the task in complex path planning.
Aiming at the insufficient exploration of the current deterministic policy gradient DRL algorithm
twin delayed deep deterministic policy gradient (TD3), a stochastic policy was combined with TD3,
and the performance was verified on the simulation platform. Furthermore, the improved TD3 was
integrated with RRT* for performance analysis in two-dimensional (2D) and three-dimensional (3D)
path planning environments. Finally, a six-degree-of-freedom manipulator was used to conduct
simulation and experimental research on the manipulator.

Keywords: deep reinforcement learning; twin delayed deep deterministic policy gradient; path
planning; six-degree-of-freedom manipulator

1. Introduction

The utilization of multi-degree-of-freedom manipulators is prevalent across various
industries including aerospace and industrial manufacturing and so on. The study of
path planning problem in complex environments is a crucial aspect in the field of robot
control technology. At present, some path planning methods commonly employed include
the A* algorithm based on graph traversals [1], the probabilistic roadmap method (PRM)
algorithm based on probability sampling [2] and rapidly exploring random tree star (RRT*)
utilizing a random sampling technique [3,4]. Informed RRT* uses a heuristic function
to guide exploration toward the target region by optimizing the sampling process [5].
RRT*-Smart enhances the optimization speed of paths near obstacle turning points by
incorporating path optimization and intelligent sampling techniques within RRT* [6]. The
node generation strategy of the Gaussian mixture model RRT* (GMM-RRT*) algorithm
utilizes a target-biased policy, resulting in shorter path length [7]. The P-RRT*-connect [8]
combines the bidirectional artificial potential field with RRT*, which reduces the time and
decreases the number of iterations. The Real-Time RRT* (RT-RRT*) [9] introduces an online
tree rewiring strategy, it can find paths to new targets more quickly. These methods exhibit
robust environmental exploration abilities, asymptotic optimality and consume fewer
computational resources. However, these methods explore the environment randomly and
hardly use valuable previous iterative experience to guide sampling. This characteristic
may lead to these methods unable to find more optimized solutions.

The introduction of Deep Q-network (DQN) by [10] marked a milestone in the field.
DRL has achieved remarkable advancements in many fields [11–13]. DRL empowers

Appl. Sci. 2024, 14, 2765. https://doi.org/10.3390/app14072765 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14072765
https://doi.org/10.3390/app14072765
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14072765
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14072765?type=check_update&version=1

Appl. Sci. 2024, 14, 2765 2 of 17

agents to conduct autonomous exploration and leverage the experience gained from prior
explorations to inform subsequent behavioral decisions. With the advent of DRL, robots
are now capable of self-directed learning. The Refs. [14,15] proposed a path planning
method of improved learning policy based on different experience depth requirements at
different learning stages. Marcin et al used deep deterministic policy gradient (DDPG) [16]
and hindsight experience replay (HER) to train the manipulator in a simulated environ-
ment [17]. Gu [18] used a policy learning algorithm with deep Q-function to train physical
robots. Lin [19] used recurrent neural network and DDPG to predict the collision-free path.
Yang [20] proposed a new deep Q-learning method, which was applied to the push and
grasp of objects by manipulators. Li [21] proposed a DRL that integrates automatic entropy
adjustment. Kim [22] designed a motion planning algorithm that uses TD3 [23] with HER
to enhance sample efficiency.

Some advanced DRL algorithms possess certain limitations. Pan [24] used the Boltz-
mann Softmax operator to estimate the value function, which increased computational
costs and involved an amount of parameter adjustment. The policy of DRL is driven by
reward during learning, successful learning relies on the design of reward functions and
an action selection policy to ensure exploration and exploitation [25]. The universality of
the reward function is typically low, and its design poses significant challenges. In the
presence of obstacles, employing a general distance-based reward function often leads to
policy learning failures [26]. Li [27] layered the DRL model to avoid the construction of
complex reward functions. The task or policy model is divided into upper and lower layers
to mitigate the coupling between the update formula and the challenging convergence of
the reward function [28].

The challenge of applying DRL to path planning tasks remains significant. The current
trend is to combine DRL with traditional path planning methods. The traditional path
planning methods, such as RRT and PRM, possess robust sampling and search abilities,
enabling them to provide reference paths or intermediate waypoints for DRL. In turn, DRL
accomplishes the point-to-point task between each pair of nodes so that agents can obtain a
smoother path [29]. Sampling path planning methods does not need a reward function in
complex environment and has a higher success rate than does the DRL, it can be used to
provide a successful experience reference for DRL, and DRL can use these experiences to
exert exploration ability and finally complete the learning of the path planning strategy.
Gao [30] combined TD3 with PRM, this can decompose the path into multiple local paths,
improve development efficiency. Li [21] proposed traditional path planners with DRL
to obtain the path in Cartesian space. Florensa [31] decomposed complex problems into
multiple subproblems and explored maze paths using dynamic programming. Chiang
et al. [32] regarded PRM and RRT as global path planning methods, respectively, and
searched for intermediate path points of DRL in indoor navigation. The waypoint selection
of some fusion methods is influenced by traditional path planning. To address the above
issues, the contributions are outlined as follows:

• In order to improve the ability of DRL algorithm to balance exploration and develop-
ment, an improved TD3 algorithm was designed and evaluated.

• Aiming at the problems existing in robot path planning, a path planning method is
proposed that combines the exploration abilities of sampling-based RRT* and the
experience replay mechanism of DRL algorithm.

• The simulation environment of path optimization based on DRL-RRT* is built.

The remaining sections of this paper are organized as follows: Section 2 presents the
implementation principle of the proposed CDTD3 algorithm. Section 3 provides a detailed
description of the DRL-RRT* path planning algorithm. Section 4 reports the path planning
verification in a simulation environment. Section 5 outlines the experimental verification of
the manipulator path planning using CDTD3-RRT*. Section 6 concludes the paper.

Appl. Sci. 2024, 14, 2765 3 of 17

2. Improved TD3 Algorithm
2.1. Reinforcement Learning

Reinforcement learning (RL) are generally described using the Markov decision pro-
cess (MDP) [33], and a tuple M = (S,A, r, p, γ) can be used to describe MDP, where S
and A represent a set of states and actions, p is the probability of transition from the
current state to the next state, r is the reward given by environmental changes for state
transition, and γ ∈ (0, 1) is a discount used to determine reward priority. At time step t,
for a given state s ∈ S, the agent can obtain r by selecting action a ∈ A based on policy µ
and transfer to the next state si+1 ∈ S. The goal of the agent is to maximize the discounted
return Rt = ∑T

i=t γi−tr(si, ai) [23], which can be measured by value function Q shown in
Equation (1).

Qµ(s, a) = Eµ[Rt
∣∣s, a] (1)

2.2. Algorithm Structure

The actor-critic structure DRL algorithm TD3 [23] for continuous control is advanced.
Similar to popular DRL such as soft actor critical (SAC) [34], TD3 uses the double network
structure of actor and critic. Both the current actor network µθ(s) and the current critic net-
work Qωk (s, a) (k = 1, 2) have a corresponding target network, during the implementation,
only µθ(s) and Qωk (s, a) participate in parameter update while the target actor network
µθ′(s) and the target critic network Qω′

k
(si+1, a′) (k = 1, 2) are used to store the parameters

of the corresponding target network at the previous time. µθ′(s) and Qω′
k
(si+1, a′) do not

completely copy the parameters of their corresponding original network when storing
them; instead, a soft update method shown in Equation (2) is adopted.{

θ′ = τθ + (1 − τ)θ′

ω′
k = τωk + (1 − τ)ω′

k
(2)

where τ ∈ (0, 1). θ and θ′ represent the network parameters of µθ(s) and µθ′(s), respectively.
ωk and ω′

k correspond to Qωk (s, a) and Qω′
k
(si+1, a′), respectively.

TD3 select an action based on policy µθ(si) in the si. Due to the deterministic policy
adopted by TD3, a certain proportion of random noise is added in the exploration phase to
improve the exploration ability of the agent. The output of ai is shown in Equation (3).

ai = µθ(si) + δ (3)

where δ ∼ N (0,σ) represents a Gaussian distribution with a mean of 0 and variance σ.
To limit the action, a is cropped as alow < a < ahigh. The concept of off-policy DRL is to
fully utilize previous experience memory, these algorithms usually have a large experience
replay buffer B, which is used to store information such as state, action, reward, and next
state for each step. When updating the actor network and critic network, the required
parameter sequence Γ = (si, ai, ri, si+1) in the update equation will be obtained by sampling
from the B, and the objective function can be calculated using Equations (4) and (5).

yi = ri + γmin
k=1,2

Qω′
k
(si+1, a′) (4)

a′ = µθ′(si+1) + ξ (5)

where ri is the reward, and a′ represents the output of the network µθ′(si+1) with noise
ξ and ξ ∼ N (0,σ̃) denoting a Gaussian distribution, which is clipped to (−c, c) c > 0.
Adding clipped noise to the actions by µθ′(si+1) is a regularization method that can be
used to alleviate overfitting in the output of Qω′

k
(si+1, a′). In Equation (4), the values of

Appl. Sci. 2024, 14, 2765 4 of 17

two target networks Qω′
k
(si+1, a′) is minimized to reduce bias; otherwise, the update of

the current critic network can be performed with Equation (6) to minimize the loss Lω.

Lω =
1
N

N

∑
i=0

[yi − Qωk (si, ai)]

2

(6)

where N is the number of batches sampled from B. In deterministic policy gradient RL [35],
the policy parameters are updated by calculating the sampled policy gradient. Equation (7)
can be used to update the current actor network.

Lθ =
1
N

N

∑
i=0

[∇aQω1(si, a)
∣∣∣a=µθ(si)

∇θµθ(si)] (7)

As shown in Equation (3), although adding a certain proportion of noise in the explo-
ration stage of TD3 can increase a certain exploration ability, the deterministic policy plays
a dominant role in the policy learning exploration, which still limits the early exploration of
the agent. In order to enhance the exploration ability of the agent, ϵ-greedy is a commonly
used policy for balancing exploitation and exploration. The ϵ-greedy policy is shown in
Equation (8), which shows that when the agent makes a decision, there is a small probability
of positive ϵ will randomly selecting an unknown action, and a probability of (1 − ϵ) will
selecting the action with the largest action value among the existing actions.

µθ(si) =

{
ϵ
|A| + 1 − ϵ , i f a = argmaxQ(si, ai)
ϵ
|A| , i f a ̸= argmaxQ(si, ai)

(8)

A standard RL algorithm must include exploration and exploitation. Exploration
helps the agent fully understand state space and select the other unknown action, and
exploitation helps the agent find the optimal action to maximize the expected return at the
present moment. Inspired by these methods, TD3 is combined with ϵ-greedy policy. In
order to enhance the exploration ability of agent in the early stage and make more stable
use of the exploration in the later stage, the decay of ϵ-greedy policy is used and combined
with TD3. The ϵ-greedy policy proposed based on cosine decay as shown in Equation (9).

ϵ = λ(c + cos(
πt
i
)) (9)

where λ ∈ (0, 0.5), c is a constant greater than 1, i is training steps, and t is the current step
value. After combining TD3 with the ϵ-greedy policy of cosine decay, the method of action
selection shown in Equation (3) can be changed to the form shown in Equation (10).

ai =

{
µθ(si) + δ, i f ϵ ≤ X

δ̃, i f ϵ > X
(10)

where X is the uniform distribution on [0,1); and δ̃ ∼ (0, σ′) is a random number conforming
to a Gaussian distribution with a mean of 0 and a standard deviation of σ′; it is common to
set σ′ to a number associated with the maximum action. The flow of the cosine decay TD3
(CDTD3) algorithm is shown in Figure 1.

Appl. Sci. 2024, 14, 2765 5 of 17Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 18

Figure 1. Flowchart of the CDTD3 algorithm.

The performance of CDTD3 was tested in MuJoCo through the OpenAI Gym inter-
face. The original task set was used during testing without modifying the environment
and reward function. Except for the individual characteristics of the algorithms, other set-
tings remained the same. Each algorithm was run 10 times under different random seeds.
The number of training steps in each task was two million steps. The results are shown in
Figure 2, including the results of three different DRL algorithms running on three different
robot tasks in MuJoCo. The dimensions of the robot’s joints in Figure 2a–c from more to
less, and the specified task difficulty ranges from hard to easy. The x-axis is the number
of steps, while the y-axis is the average return of ten evaluations per five thousand steps
for the current task under two million training steps. The shaded area in the Figure 2 rep-
resents the maximum and minimum value intervals with test data smoothed by convolu-
tion, while the solid line represents the average of ten experimental results.

(a) (b) (c)

Figure 2. Simulation results of CDTD3 in MuJoCo: (a) Walker2d-v4, (b) Ant-v4, and (c) Hopper-v4.

In Figure 2c, the robust exploratory ability of CDTD3 does not significantly contrib-
ute to relatively simple tasks. However, in the scenarios illustrated in Figure 2a,b, CDTD3
exhibits a superior ability to explore actions with higher rewards and to rapidly incorpo-
rate them into decision-making process compared to the TD3. CDTD3 has strong explo-
ration ability and adaptability to tasks, which makes policy learning more efficient.

Start

Initialize the actor and critic parameters of the current network and
the target network; and initialize replay buffer

Execute action ai ,get ri,si+1 and store sequence (si ,ai ,ri ,si+1) to

Stop

Y

Y

Update actor and target network ? Update actor network through

Reached iteration number ?

N

N

N

Y
Based on the Policy , output ai with random noise

Sample N batches of sequence from Γ

Update critical network through ω

Soft update target network parameters

θ

()isθμ

Input si and based on cosine decay ϵ- greedy policy, compute ϵ

If ϵ less than X ?

Output ai associated with maximum
action value

N

Figure 1. Flowchart of the CDTD3 algorithm.

The performance of CDTD3 was tested in MuJoCo through the OpenAI Gym interface.
The original task set was used during testing without modifying the environment and
reward function. Except for the individual characteristics of the algorithms, other settings
remained the same. Each algorithm was run 10 times under different random seeds. The
number of training steps in each task was two million steps. The results are shown in
Figure 2, including the results of three different DRL algorithms running on three different
robot tasks in MuJoCo. The dimensions of the robot’s joints in Figure 2a–c from more to less,
and the specified task difficulty ranges from hard to easy. The x-axis is the number of steps,
while the y-axis is the average return of ten evaluations per five thousand steps for the
current task under two million training steps. The shaded area in the Figure 2 represents
the maximum and minimum value intervals with test data smoothed by convolution, while
the solid line represents the average of ten experimental results.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 18

Figure 1. Flowchart of the CDTD3 algorithm.

The performance of CDTD3 was tested in MuJoCo through the OpenAI Gym inter-
face. The original task set was used during testing without modifying the environment
and reward function. Except for the individual characteristics of the algorithms, other set-
tings remained the same. Each algorithm was run 10 times under different random seeds.
The number of training steps in each task was two million steps. The results are shown in
Figure 2, including the results of three different DRL algorithms running on three different
robot tasks in MuJoCo. The dimensions of the robot’s joints in Figure 2a–c from more to
less, and the specified task difficulty ranges from hard to easy. The x-axis is the number
of steps, while the y-axis is the average return of ten evaluations per five thousand steps
for the current task under two million training steps. The shaded area in the Figure 2 rep-
resents the maximum and minimum value intervals with test data smoothed by convolu-
tion, while the solid line represents the average of ten experimental results.

(a) (b) (c)

Figure 2. Simulation results of CDTD3 in MuJoCo: (a) Walker2d-v4, (b) Ant-v4, and (c) Hopper-v4.

In Figure 2c, the robust exploratory ability of CDTD3 does not significantly contrib-
ute to relatively simple tasks. However, in the scenarios illustrated in Figure 2a,b, CDTD3
exhibits a superior ability to explore actions with higher rewards and to rapidly incorpo-
rate them into decision-making process compared to the TD3. CDTD3 has strong explo-
ration ability and adaptability to tasks, which makes policy learning more efficient.

Start

Initialize the actor and critic parameters of the current network and
the target network; and initialize replay buffer

Execute action ai ,get ri,si+1 and store sequence (si ,ai ,ri ,si+1) to

Stop

Y

Y

Update actor and target network ? Update actor network through

Reached iteration number ?

N

N

N

Y
Based on the Policy , output ai with random noise

Sample N batches of sequence from Γ

Update critical network through ω

Soft update target network parameters

θ

()isθμ

Input si and based on cosine decay ϵ- greedy policy, compute ϵ

If ϵ less than X ?

Output ai associated with maximum
action value

N

Figure 2. Simulation results of CDTD3 in MuJoCo: (a) Walker2d-v4, (b) Ant-v4, and (c) Hopper-v4.

In Figure 2c, the robust exploratory ability of CDTD3 does not significantly contribute
to relatively simple tasks. However, in the scenarios illustrated in Figure 2a,b, CDTD3
exhibits a superior ability to explore actions with higher rewards and to rapidly incorporate
them into decision-making process compared to the TD3. CDTD3 has strong exploration
ability and adaptability to tasks, which makes policy learning more efficient.

Appl. Sci. 2024, 14, 2765 6 of 17

3. The Improved Path Planning Method

RRT* has the characteristics of continuous iteration and path replanning in the en-
vironment. However, due to its random nature, each exploration or iteration of RRT* is
independent of each other, so the new node positions generated by each iteration may
be different, leading to a tortuous and suboptimal path. The reward function in DRL
plays a pivotal role in shaping the learning effectiveness of the agent. It is imperative to
define an appropriate reward function for each task to guide the agent toward success-
ful task completion. The variation of the task can also easily lead to the failure of the
reward function.

Currently, there are many improved variations of RRT*, such as informed RRT* [5],
RRT*-Smart [6], and real-time RRT* [9], which have advantages in specific scenarios. How-
ever, they still face the problem of independent exploration and iteration. Additionally,
introducing target biasing methods in RRT* can yield favorable results, and this approach
is relatively easier to implement and debug compared to algorithms such as informed RRT*.
Based on these issues, a path planning framework that combines the strengths of DRL and
RRT* have been proposed, and is built on the basis of RRT* with target bias.

Performing a path search between two adjacent waypoints is called a dynamic point-
to-point (D-P2P) task. The agent defines a spherical range centered at the intermediate
waypoint as an explorable region and performs a D-P2P task between the preceding and
following waypoint. The initial base path R0 =

{
r1

0, r2
0, . . . , rN

0} is obtained by RRT*, N
is the total number of waypoints. The length of the original path can be characterized as
l1
0 = ∑N−1

n=1

∣∣r1
nr1

n+1

∣∣, where
∣∣r1

nr1
n+1

∣∣ represents the Euclidean distance between waypoints
r1

n and r1
n+1.The steps of the DRL-RRT* algorithm is described as follows.

Step 1: Initialization. The number of iterations for RRT* is m, DRL path search task is K
times. D-P2P task for each iteration is J = N − 2 groups. Using RRT* for planning iteration.

Step 2: Using DRL for path search tasks. When the agent first enters the jth (1 ≤ j ≤ J)
explorable region in a certain steps, the position ck

j is retained as the end position of this
D-P2P task, and the waypoint replacement task in Step 3 is performed. If the explorable
region is not accessed in the specified number of steps, go to Step 4.

Step 3: The procedure of waypoint replacement. The first waypoint replacement is
considered, resulting in point c1

2 being obtained after completion of the D-P2P task; then,
the impacts of r1

2 and c1
2 on the original path are computed individually. If c1

2 makes the

path shorter, c1
2 replaces r1

2, and the length becomes l1
0 =

∣∣∣r1
1c1

2

∣∣∣+∣∣∣c1
2r1

3

∣∣∣+∑N−1
n=3

∣∣r1
nr1

n+1

∣∣ . The

waypoints of the path become R1 =
{

r1
1, c1

2, . . . , r1
N
}

; at the same time, c1
2 also serves as the

starting position for the next D-P2P task; otherwise, the original path is unchanged.
Step 4: Termination condition check for a round of DRL search task. If D-P2P task

iteration is larger than the iterative number J, break to Step 2.
Step 5: Get the new path Rk+1. Assuming that only c1

2 can shorten the path during
the first iteration (k = 1), the path for the second iteration is R2 =

{
r2

1, r2
2, . . . , r2

N
}

={
r1

1, c1
2, . . . , r1

N
}

.
Step 6: Terminating condition check. If the iteration is larger than K, the path explored

is retained as P = RK, and the algorithm stops. Otherwise, restart from Step 2.
RRT* with DRL is utilized by Kontoudis [29]; however, the waypoints were unchanged

during the process. Reference [30] employed TD3 and PRM as a path planning method, in
such cases, the final path is highly influenced by the original path, limiting the effectiveness
of the DRL in path planning. In contrast, in the proposed DRL-RRT*, DRL optimizes
the underlying path planned by RRT* by automatically adjusting the intermediate nodes
of the path. Consequently, potential optimizations can be explored, allowing for direct
modification of the underlying path. Reference [21] combined improved DRL with RRT*,
and optimized the path by adjusting the intermediate waypoints. In contrast, the proposed
method calculates the path replacement as soon as the intermediate waypoints are explored,
and the path replacement method is simpler. Base on the planning results of RRT*, the

Appl. Sci. 2024, 14, 2765 7 of 17

policy learning and experience replay mechanism of DRL are combined to obtain a better
path. Figure 3 illustrates the flow of the proposed DRL-RRT* path optimization algorithm.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 18

the proposed method calculates the path replacement as soon as the intermediate way-
points are explored, and the path replacement method is simpler. Base on the planning
results of RRT*, the policy learning and experience replay mechanism of DRL are com-
bined to obtain a better path. Figure 3 illustrates the flow of the proposed DRL-RRT* path
optimization algorithm.

Figure 3. Flowchart of the DRL-RRT* path planning algorithm.

In each iteration of length optimization, the agent using DRL performs a D-P2P path
search task. In each task, the reward function is designed as follows:

ρ

α
−

=
 0，

,

d other

r e
if collsion

 (11)

where d is the distance between the agent and the goal. To ensure an appropriate reward
value in D-P2P tasks, constants α and ρ are introduced to limit its magnitude. It is cru-
cial to keep 0 1ρ< < to avoid potential issues such as vanishing or exploding gradients.

4. Simulation Analysis
When the DRL-RRT* is used for path optimization simulation in 2D and 3D obstacle

environments, the success rate of each path iteration optimization is expressed as follows:

1 1

1 1= 100%η ζ
= =

×
JK

k
j

k jK J
 (12)

where K represents the number of path search tasks performed by DRL, J represents the
number of groups for D-P2P tasks, and {0,1}ζ ∈k

j . If the agent can reach the endpoint of
the current task in the maximum step size of the j D-P2P tasks in k times iteration, then

1ζ =k
j ; otherwise, 0ζ =k

j .

4.1. Analysis of the 2D Simulation Environment

Start

Initialize parameters m, K, J, and use RRT* for
planning iteration.

Update the current input path Rk

Performing D-P2P path search tasks with DRL

The maximum number of
D-P2P task iteration?

Get a new path Rk+1

The maximum number
of iteration steps ?

Stop

Y

Y

N

N

Calculate the impact of Cnk on the
path length lnk of the current path Rk

Shorten the path lnk ?

Collision with obstacles ?

The sequence of waypoints Rk

becomes Rk={r1k，cnk,...,rNk}

Y

N

N

Y

Enter the explorable region?

Path node replacement calculation

The sequence of waypoints Rk is
unchanged, Rk={r1k，rnk,...,rNk}

Output the final path P=RK

N

Y

Figure 3. Flowchart of the DRL-RRT* path planning algorithm.

In each iteration of length optimization, the agent using DRL performs a D-P2P path
search task. In each task, the reward function is designed as follows:

r =
{ α

e−ρd , other
0, i f collsion

(11)

where d is the distance between the agent and the goal. To ensure an appropriate reward
value in D-P2P tasks, constants α and ρ are introduced to limit its magnitude. It is crucial
to keep 0 < ρ < 1 to avoid potential issues such as vanishing or exploding gradients.

4. Simulation Analysis

When the DRL-RRT* is used for path optimization simulation in 2D and 3D obstacle
environments, the success rate of each path iteration optimization is expressed as follows:

η =
1
K

1
J

K

∑
k=1

J

∑
j=1

ζk
j × 100% (12)

where K represents the number of path search tasks performed by DRL, J represents the
number of groups for D-P2P tasks, and ζk

j ∈ {0, 1}. If the agent can reach the endpoint of
the current task in the maximum step size of the j D-P2P tasks in k times iteration, then
ζk

j = 1; otherwise, ζk
j = 0.

4.1. Analysis of the 2D Simulation Environment

The size of the 2D complex obstacle environment was 100 (cm2), and the simulation
environment was configured with obstacles of diverse shapes is depicted in Figure 4, the
lines represent the paths and the gray geometric objects represent obstacles. The starting
position was (10, 90), and the target position was (98, 8). In order to fully utilize the
exploration ability of RRT*, a target bias strategy is introduced in RRT*, which makes the

Appl. Sci. 2024, 14, 2765 8 of 17

sampling point equal to the target point with a certain probability p and randomly samples
with a probability of (1 − p).

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 18

The size of the 2D complex obstacle environment was 100 (cm2), and the simulation
environment was configured with obstacles of diverse shapes is depicted in Figure 4, the
lines represent the paths and the gray geometric objects represent obstacles. The starting
position was (10, 90), and the target position was (98, 8). In order to fully utilize the explo-
ration ability of RRT*, a target bias strategy is introduced in RRT*, which makes the sam-
pling point equal to the target point with a certain probability p and randomly samples
with a probability of −(1)p .

(a) The result of CDTD3 (b) The result of TD3 (c) The result of DDPG

Figure 4. Simulation environment for a complex obstacle space.

RRT* was first used for 10,000 iterations in the 2D simulation scenario. Then, CDTD3,
TD3, and DDPG are used for 100 iterations of path optimization experiments on the DRL-
RRT* algorithm, respectively. Iteration steps K in each experiment was 200, and the steps
in each D-P2P task was 200. Among the 100 times experiments of each algorithm in each
environment, different experiments were configured with different random seeds. The re-
sulting path is shown in Figure 4, and the path optimized using the CDTD3 demonstrated
improvements in terms of both path length and smoothness, closely resembling a straight
line throughout most of the obstacle-free sections.

As DDPG and TD3 use a deterministic policy, they are prone to premature conver-
gence to local optima with fixed actions during the continuous exploration and optimiza-
tion process, making it difficult to explore better policy. They performed worse than did
CDTD3 in terms of path length and success rate. The addition of a random exploration
mechanism in CDTD3 enhances the exploration ability of the deterministic policy DRL
and prevents premature convergence to local optima which includes fixed action selec-
tion. This feature can help the agent to be more inclined to explore the environment in the
early stage of the task so as to explore a better policy. In certain obstacle-free spaces,
CDTD3 explored and identified more optimal waypoints. By replacing intermediate way-
points through point substitution, the originally curved paths become straighter and the
length of the path is shortened.

The results shown in Figure 5a represent the probability density. The x-axis repre-
sents the path length, while the y-axis represents the percentage of distribution. The curve
represents the distribution of the path lengths from multiple experiments. From the prob-
ability density curve, it can be observed that, under the influence of CDTD3, the majority
of results were concentrated in the region of the smaller path lengths. The distribution
was relatively dense, and the final results exhibited less fluctuation, indicating a higher
level of stability. The results of TD3 and DDPG were more dispersed and distributed in
the region of larger path lengths. The relationship between the changes in path length
obtained by the three algorithms is illustrated in Figure 5b. As the number of iteration
steps increases, the path length undergoes continuous optimization and reduction.,
CDTD3 demonstrates superior ability to explore a more optimal path compared to TD3
and DDPG in most experimental cases, resulting in shorter path lengths and greater con-
sistency with each optimization.

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

Figure 4. Simulation environment for a complex obstacle space.

RRT* was first used for 10,000 iterations in the 2D simulation scenario. Then, CDTD3,
TD3, and DDPG are used for 100 iterations of path optimization experiments on the DRL-
RRT* algorithm, respectively. Iteration steps K in each experiment was 200, and the steps
in each D-P2P task was 200. Among the 100 times experiments of each algorithm in each
environment, different experiments were configured with different random seeds. The
resulting path is shown in Figure 4, and the path optimized using the CDTD3 demonstrated
improvements in terms of both path length and smoothness, closely resembling a straight
line throughout most of the obstacle-free sections.

As DDPG and TD3 use a deterministic policy, they are prone to premature convergence
to local optima with fixed actions during the continuous exploration and optimization
process, making it difficult to explore better policy. They performed worse than did CDTD3
in terms of path length and success rate. The addition of a random exploration mechanism
in CDTD3 enhances the exploration ability of the deterministic policy DRL and prevents
premature convergence to local optima which includes fixed action selection. This feature
can help the agent to be more inclined to explore the environment in the early stage of
the task so as to explore a better policy. In certain obstacle-free spaces, CDTD3 explored
and identified more optimal waypoints. By replacing intermediate waypoints through
point substitution, the originally curved paths become straighter and the length of the path
is shortened.

The results shown in Figure 5a represent the probability density. The x-axis represents
the path length, while the y-axis represents the percentage of distribution. The curve
represents the distribution of the path lengths from multiple experiments. From the
probability density curve, it can be observed that, under the influence of CDTD3, the
majority of results were concentrated in the region of the smaller path lengths. The
distribution was relatively dense, and the final results exhibited less fluctuation, indicating a
higher level of stability. The results of TD3 and DDPG were more dispersed and distributed
in the region of larger path lengths. The relationship between the changes in path length
obtained by the three algorithms is illustrated in Figure 5b. As the number of iteration
steps increases, the path length undergoes continuous optimization and reduction., CDTD3
demonstrates superior ability to explore a more optimal path compared to TD3 and DDPG
in most experimental cases, resulting in shorter path lengths and greater consistency with
each optimization.

Appl. Sci. 2024, 14, 2765 9 of 17
Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 18

(a) (b)

Figure 5. Simulation results of the 2D complex obstacle space. (a) The probability density of path
length. (b) Diagram of the length variation during the path optimization process.

The simulations for the maze space and the narrow space environment as shown in
Figures 6 and 7 is designed, the lines represent the paths and the purple geometric objects
represent obstacles. The starting point and obstacles were set differently. In the narrow
space environment depicted in Figure 7, the distance between the two obstacles vertically
was less than 10 cm. The obstacle avoidance path connecting the starting point and the
target point needed to pass through all the narrow channels. The path explored by RRT*
tended to be more winding; however, by using CDTD3 to optimize the path, continuously
adjusting the intermediate waypoints, even in the case of a narrow space with a relatively
singular path, the optimized path by CDTD3 still demonstrated advantages. It appeared
more straight and shorter in the overall path. The probability density statistics of the path
length in maze space and narrow space are illustrated in Figure 8, while Figure 9 depicts
the changes in the path. Aligning with the outcomes observed in the complex obstacle
space, CDTD3 outperformed in these two cases.

(a) The result of CDTD3 (b) The result of TD3 (c) The result of DDPG

Figure 6. Simulation environment for the maze space.

(a) The result of CDTD3 (b) The result of TD3 (c) The result of DDPG

Figure 7. Simulation environment for the narrow space.

130 140 150 160
Path Length (cm)

0

0.05

0.1

0.15

0.2

0.25 CDTD3
TD3
DDPG

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

Figure 5. Simulation results of the 2D complex obstacle space. (a) The probability density of path
length. (b) Diagram of the length variation during the path optimization process.

The simulations for the maze space and the narrow space environment as shown in
Figures 6 and 7 is designed, the lines represent the paths and the purple geometric objects
represent obstacles. The starting point and obstacles were set differently. In the narrow
space environment depicted in Figure 7, the distance between the two obstacles vertically
was less than 10 cm. The obstacle avoidance path connecting the starting point and the
target point needed to pass through all the narrow channels. The path explored by RRT*
tended to be more winding; however, by using CDTD3 to optimize the path, continuously
adjusting the intermediate waypoints, even in the case of a narrow space with a relatively
singular path, the optimized path by CDTD3 still demonstrated advantages. It appeared
more straight and shorter in the overall path. The probability density statistics of the path
length in maze space and narrow space are illustrated in Figure 8, while Figure 9 depicts
the changes in the path. Aligning with the outcomes observed in the complex obstacle
space, CDTD3 outperformed in these two cases.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 18

(a) (b)

Figure 5. Simulation results of the 2D complex obstacle space. (a) The probability density of path
length. (b) Diagram of the length variation during the path optimization process.

The simulations for the maze space and the narrow space environment as shown in
Figures 6 and 7 is designed, the lines represent the paths and the purple geometric objects
represent obstacles. The starting point and obstacles were set differently. In the narrow
space environment depicted in Figure 7, the distance between the two obstacles vertically
was less than 10 cm. The obstacle avoidance path connecting the starting point and the
target point needed to pass through all the narrow channels. The path explored by RRT*
tended to be more winding; however, by using CDTD3 to optimize the path, continuously
adjusting the intermediate waypoints, even in the case of a narrow space with a relatively
singular path, the optimized path by CDTD3 still demonstrated advantages. It appeared
more straight and shorter in the overall path. The probability density statistics of the path
length in maze space and narrow space are illustrated in Figure 8, while Figure 9 depicts
the changes in the path. Aligning with the outcomes observed in the complex obstacle
space, CDTD3 outperformed in these two cases.

(a) The result of CDTD3 (b) The result of TD3 (c) The result of DDPG

Figure 6. Simulation environment for the maze space.

(a) The result of CDTD3 (b) The result of TD3 (c) The result of DDPG

Figure 7. Simulation environment for the narrow space.

130 140 150 160
Path Length (cm)

0

0.05

0.1

0.15

0.2

0.25 CDTD3
TD3
DDPG

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

Figure 6. Simulation environment for the maze space.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 18

(a) (b)

Figure 5. Simulation results of the 2D complex obstacle space. (a) The probability density of path
length. (b) Diagram of the length variation during the path optimization process.

The simulations for the maze space and the narrow space environment as shown in
Figures 6 and 7 is designed, the lines represent the paths and the purple geometric objects
represent obstacles. The starting point and obstacles were set differently. In the narrow
space environment depicted in Figure 7, the distance between the two obstacles vertically
was less than 10 cm. The obstacle avoidance path connecting the starting point and the
target point needed to pass through all the narrow channels. The path explored by RRT*
tended to be more winding; however, by using CDTD3 to optimize the path, continuously
adjusting the intermediate waypoints, even in the case of a narrow space with a relatively
singular path, the optimized path by CDTD3 still demonstrated advantages. It appeared
more straight and shorter in the overall path. The probability density statistics of the path
length in maze space and narrow space are illustrated in Figure 8, while Figure 9 depicts
the changes in the path. Aligning with the outcomes observed in the complex obstacle
space, CDTD3 outperformed in these two cases.

(a) The result of CDTD3 (b) The result of TD3 (c) The result of DDPG

Figure 6. Simulation environment for the maze space.

(a) The result of CDTD3 (b) The result of TD3 (c) The result of DDPG

Figure 7. Simulation environment for the narrow space.

130 140 150 160
Path Length (cm)

0

0.05

0.1

0.15

0.2

0.25 CDTD3
TD3
DDPG

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

Figure 7. Simulation environment for the narrow space.

Appl. Sci. 2024, 14, 2765 10 of 17
Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 18

(a) (b)

Figure 8. Probability density results of path length. (a) The results of the maze space. (b) The results
of the narrow space.

(a) (b)

Figure 9. Diagram of the relationship between path length change and the algorithm. (a) The results
of the maze space. (b) The results of the narrow space.

The simulation results in the three environments were analyzed. The mean and var-
iance in Table 1 correspond to the outcomes of 100 experiments. The original path lengths
were 154.1 cm, 284.7 cm, and 222.1 cm, respectively, while the path lengths optimized by
CDTD3 were 136.6 cm, 244.4 cm, and 179.55 cm, respectively. The success rate of path
iteration and the results of path reduction rate are presented in Table 2, where the reduc-
tion rate represents the percentage reduction to the RRT* path length. The success rates of
CDTD3 performing point-to-point tasks in the three environments were 91.3%, 87.3%, and
95.6%, respectively, which were better than those of TD3 and DDPG, owing to the random
exploration mechanism of CDTD3 algorithm.

Table 1. Mean and variance statistics of path length in the 2D simulation environment.

Algorithm Index Complex Obstacle Maze Space Narrow Space

CDTD3 Mean (cm) 136.60 244.32 179.55
Variance 2.59 20.51 12.39

TD3 Mean (cm) 142.81 252.56 191.88
Variance 23.79 127.29 75.65

DDPG
Mean (cm) 145.62 258.12 201.08
Variance 38.44 278.97 260.86

220 240 260 280 300
Path Length (cm)

0

0.02

0.04

0.06

0.08

0.1 CDTD3
TD3
DDPG

150 200 250
Path Length (cm)

0

0.02

0.04

0.06

0.08

0.1

0.12
CDTD3
TD3
DDPG

Figure 8. Probability density results of path length. (a) The results of the maze space. (b) The results
of the narrow space.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 18

(a) (b)

Figure 8. Probability density results of path length. (a) The results of the maze space. (b) The results
of the narrow space.

(a) (b)

Figure 9. Diagram of the relationship between path length change and the algorithm. (a) The results
of the maze space. (b) The results of the narrow space.

The simulation results in the three environments were analyzed. The mean and var-
iance in Table 1 correspond to the outcomes of 100 experiments. The original path lengths
were 154.1 cm, 284.7 cm, and 222.1 cm, respectively, while the path lengths optimized by
CDTD3 were 136.6 cm, 244.4 cm, and 179.55 cm, respectively. The success rate of path
iteration and the results of path reduction rate are presented in Table 2, where the reduc-
tion rate represents the percentage reduction to the RRT* path length. The success rates of
CDTD3 performing point-to-point tasks in the three environments were 91.3%, 87.3%, and
95.6%, respectively, which were better than those of TD3 and DDPG, owing to the random
exploration mechanism of CDTD3 algorithm.

Table 1. Mean and variance statistics of path length in the 2D simulation environment.

Algorithm Index Complex Obstacle Maze Space Narrow Space

CDTD3 Mean (cm) 136.60 244.32 179.55
Variance 2.59 20.51 12.39

TD3 Mean (cm) 142.81 252.56 191.88
Variance 23.79 127.29 75.65

DDPG
Mean (cm) 145.62 258.12 201.08
Variance 38.44 278.97 260.86

220 240 260 280 300
Path Length (cm)

0

0.02

0.04

0.06

0.08

0.1 CDTD3
TD3
DDPG

150 200 250
Path Length (cm)

0

0.02

0.04

0.06

0.08

0.1

0.12
CDTD3
TD3
DDPG

Figure 9. Diagram of the relationship between path length change and the algorithm. (a) The results
of the maze space. (b) The results of the narrow space.

The simulation results in the three environments were analyzed. The mean and
variance in Table 1 correspond to the outcomes of 100 experiments. The original path lengths
were 154.1 cm, 284.7 cm, and 222.1 cm, respectively, while the path lengths optimized by
CDTD3 were 136.6 cm, 244.4 cm, and 179.55 cm, respectively. The success rate of path
iteration and the results of path reduction rate are presented in Table 2, where the reduction
rate represents the percentage reduction to the RRT* path length. The success rates of
CDTD3 performing point-to-point tasks in the three environments were 91.3%, 87.3%, and
95.6%, respectively, which were better than those of TD3 and DDPG, owing to the random
exploration mechanism of CDTD3 algorithm.

Table 1. Mean and variance statistics of path length in the 2D simulation environment.

Algorithm Index Complex Obstacle Maze Space Narrow Space

CDTD3
Mean (cm) 136.60 244.32 179.55
Variance 2.59 20.51 12.39

TD3
Mean (cm) 142.81 252.56 191.88
Variance 23.79 127.29 75.65

DDPG
Mean (cm) 145.62 258.12 201.08
Variance 38.44 278.97 260.86

Appl. Sci. 2024, 14, 2765 11 of 17

Table 2. Optimization success rate and path reduction rate of the 2D simulation environment.

Algorithm Index Complex Obstacle Maze Space Narrow Space

CDTD3
Success rate 91.3% 87.3% 95.6%

Reduction rate 11.4% 14.2% 19.14%

TD3
Success rate 88.2% 85.5% 98.7%

Reduction rate 7.4% 10.2% 13.59%

DDPG
Success rate 76.2% 79.5% 86.8%

Reduction rate 5.5% 73.2% 9.44%

CDTD3 is combined with RRT* and RRT, respectively; and conducted 100 simulations
in complex obstacle and maze environments. The settings of RRT remained consistent with
those of RRT*, except for the inherent characteristics of their respective. The simulation
results are shown in Table 3. Using CDTD3-RRT* could achieve a superior path due to
the advantageous features offered by RRT*. This characteristic led to an improved initial
path, resulting in a shorter final path. In the maze environment, the reduction rate of
CDTD3-RRT was better than that of CDTD3-RRT*, but the final path length was not as
good as that of CDTD3-RRT* since the path of the original RRT was longer than that of
RRT*. Nevertheless, favorable outcomes can still be achieved using the proposed method.

Table 3. Results of CDTD3-RRT* and CDTD3-RRT in the 2D simulation environment.

Algorithm Index Complex Obstacle Maze Space

CDTD3-RRT*
Mean (cm) 136.6 244.32
Variance 2.59 20.51

Reduction rate 11.4% 14.2%

CDTD3-RRT
Mean (cm) 154.9 258.92
Variance 8.49 51.56

Reduction rate 10.8% 19.3%

In the complex obstacle space and maze space, CDTD3-RRT* was compared with
two more advanced path planning methods, including the artificial potential field with
informed RRT* (APF-IRRT*) [36], the adjustable probability and sampling area RRT algo-
rithm (APS-RRT) [37]. Table 4 presents the performance comparison of CDTD3-RRT* under
100 experiments. It can be seen that CDTD3-RRT* has significant advantages under the
path length. Owing to the powerful sampling and search ability of RRT* and the optimiza-
tion ability of CDTD3, APS-RRT and APF-IRRT* use limited exploration range operations
in the two complex environments, which is not conducive to obtaining better paths.

Table 4. Comparison of the path planning in the 2D simulation environment.

Algorithm Index Complex Obstacle Maze Space

CDTD3-RRT*
Mean (cm) 136.6 244.32
Variance 2.59 20.51

APF-IRRT*
Mean (cm) 171.13 312.15
Variance 200.33 316.21

APS-RRT
Mean (cm) 167.32 315.18
Variance 191.35 322.69

4.2. Analysis of the 3D Simulation Environment

In order to verify the performance of the CDTD3-RRT* path planning method in 3D
complex obstacle environments, a 3D space simulation environment was designed, with
size of 100 (cm3). The environment is shown in Figure 10a, Figure 10b is locally enlarged,
and multiple obstacles of different sizes and shapes were set up in the environment.

Appl. Sci. 2024, 14, 2765 12 of 17

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 18

(a) (b)

Figure 10. 3D complex obstacle environment: (a) complete 3D environment and (b) locally enlarged
view of the 3D environment.

RRT* was first used for 5000 iterations with the starting position at (6, 6, 6) and the
target position at (98, 96, 95). DRL were used to carry out 50 simulation experiments on
the DRL-RRT*, each experiment was conducted under different random seeds, and each
experiment had 400 iterations. The length of each point-to-point task was 400 steps.

The simulation results are shown in Table 5. The average path lengths for 50 repeated
experiments were 186.61 cm, 191.23 cm, and 197.29 cm, respectively. Figure 11 shows the
relationship between path length and algorithms. The random policy was added to the
CDTD3 to further optimize the performance of the algorithm. In the 3D environment,
CDTD3 consistently discovered shorter paths across multiple experiments, leading to re-
duced path length and higher success rates for D-P2P tasks.

Table 5. Results of the 3D complex obstacle space simulation.

Algorithm Mean(cm) Variance Success Rate Reduction Rate
CDTD3 186.61 20.09 94.35% 10.6%

TD3 191.23 20.21 91.78% 8.2%
DDPG 197.29 79.93 62.43% 4.4%

Figure 11. Probability density of the 3D complex obstacle space simulation.

5. Simulation and Experiment of Manipulator Path Planning
5.1. Evaluation Index of Path Planning

The accuracy and stability of path planning algorithms require certain indicators for
evaluation. Typically, the root mean square error (RMSE) analysis method is employed to

160 180 200 220
Path Length (cm)

0

0.02

0.04

0.06

0.08

0.1 CDTD3
TD3
DDPG

Figure 10. 3D complex obstacle environment: (a) complete 3D environment and (b) locally enlarged
view of the 3D environment.

RRT* was first used for 5000 iterations with the starting position at (6, 6, 6) and the
target position at (98, 96, 95). DRL were used to carry out 50 simulation experiments on
the DRL-RRT*, each experiment was conducted under different random seeds, and each
experiment had 400 iterations. The length of each point-to-point task was 400 steps.

The simulation results are shown in Table 5. The average path lengths for 50 repeated
experiments were 186.61 cm, 191.23 cm, and 197.29 cm, respectively. Figure 11 shows the
relationship between path length and algorithms. The random policy was added to the
CDTD3 to further optimize the performance of the algorithm. In the 3D environment,
CDTD3 consistently discovered shorter paths across multiple experiments, leading to
reduced path length and higher success rates for D-P2P tasks.

Table 5. Results of the 3D complex obstacle space simulation.

Algorithm Mean(cm) Variance Success Rate Reduction Rate

CDTD3 186.61 20.09 94.35% 10.6%
TD3 191.23 20.21 91.78% 8.2%

DDPG 197.29 79.93 62.43% 4.4%

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 18

(a) (b)

Figure 10. 3D complex obstacle environment: (a) complete 3D environment and (b) locally enlarged
view of the 3D environment.

RRT* was first used for 5000 iterations with the starting position at (6, 6, 6) and the
target position at (98, 96, 95). DRL were used to carry out 50 simulation experiments on
the DRL-RRT*, each experiment was conducted under different random seeds, and each
experiment had 400 iterations. The length of each point-to-point task was 400 steps.

The simulation results are shown in Table 5. The average path lengths for 50 repeated
experiments were 186.61 cm, 191.23 cm, and 197.29 cm, respectively. Figure 11 shows the
relationship between path length and algorithms. The random policy was added to the
CDTD3 to further optimize the performance of the algorithm. In the 3D environment,
CDTD3 consistently discovered shorter paths across multiple experiments, leading to re-
duced path length and higher success rates for D-P2P tasks.

Table 5. Results of the 3D complex obstacle space simulation.

Algorithm Mean(cm) Variance Success Rate Reduction Rate
CDTD3 186.61 20.09 94.35% 10.6%

TD3 191.23 20.21 91.78% 8.2%
DDPG 197.29 79.93 62.43% 4.4%

Figure 11. Probability density of the 3D complex obstacle space simulation.

5. Simulation and Experiment of Manipulator Path Planning
5.1. Evaluation Index of Path Planning

The accuracy and stability of path planning algorithms require certain indicators for
evaluation. Typically, the root mean square error (RMSE) analysis method is employed to

160 180 200 220
Path Length (cm)

0

0.02

0.04

0.06

0.08

0.1 CDTD3
TD3
DDPG

Figure 11. Probability density of the 3D complex obstacle space simulation.

5. Simulation and Experiment of Manipulator Path Planning
5.1. Evaluation Index of Path Planning

The accuracy and stability of path planning algorithms require certain indicators for
evaluation. Typically, the root mean square error (RMSE) analysis method is employed to

Appl. Sci. 2024, 14, 2765 13 of 17

quantify the deviation between the desired value xi and actual value yi of the manipulator
trajectories. The RMSE is expressed as follows:

RMSE =

√
1
n

n

∑
i=1

(xi − yi)
2 (13)

The success rate of position deviation is used to measure the discrepancy between the
actual target position and the set target position. The distance di between the actual target
(xi, yi, zi) and the set target (x, y, z) is calculated as follows:

di =

√
(xi − x)2 + (yi − y)2 + (zi − z)2 (14)

The success rate of the position deviation in the experiment can be expressed by:

G =
1
N

n

∑
i=1

gi (15)

where N is the number of experiments; gi ∈ {0, 1}; if di < φ, then gi = 1, otherwise gi = 0.
φ is a threshold that can be used to measure the relationship between di and G.

5.2. Experiment and Simulation Research on the Application of Manipulator Path Planning

A manipulator experimental platform was established as shown in Figure 12 to verify
the feasibility of the proposed method in the practical manipulator. The hardware of
the experimental platform included the 6-DOF manipulator Han’s Robot Elfin E05, the
supporting tools and the computer were equipped with the Ubuntu20 operating system.
ROS Noetic MoveIt 1 is an open-source robotic motion planning framework for robot
motion planning and control. It provides collision checking and control functionalities,
integrating collision detection libraries such as the Flexible Collision Library (FCL), which
is used to detect collisions between the robot and the environment or other objects.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 18

quantify the deviation between the desired value ix and actual value iy of the manipu-
lator trajectories. The RMSE is expressed as follows:

2

1

1 ()
=

= −
n

i i
i

RMSE x y
n

 (13)

The success rate of position deviation is used to measure the discrepancy between
the actual target position and the set target position. The distance id between the actual

target (, ,)i i ix y z and the set target (, ,)x y z is calculated as follows:

2 2 2() () ()= − + − + −i i i id x x y y z z (14)

The success rate of the position deviation in the experiment can be expressed by:

1

1
=

=
n

i
i

G g
N

 (15)

where N is the number of experiments; {0,1}∈ig ; if ϕ<id , then 1=ig , otherwise

0=ig . ϕ is a threshold that can be used to measure the relationship between id and G
.

5.2. Experiment and Simulation Research on the Application of Manipulator Path Planning
A manipulator experimental platform was established as shown in Figure 12 to verify

the feasibility of the proposed method in the practical manipulator. The hardware of the
experimental platform included the 6-DOF manipulator Han‘s Robot Elfin E05, the sup-
porting tools and the computer were equipped with the Ubuntu20 operating system. ROS
Noetic MoveIt 1 is an open-source robotic motion planning framework for robot motion
planning and control. It provides collision checking and control functionalities, integrat-
ing collision detection libraries such as the Flexible Collision Library (FCL), which is used
to detect collisions between the robot and the environment or other objects.

Figure 12. The experimental platform for the manipulator.

Manipulator simulations were conducted to test the path planning. The use of the
simulation environment allowed us to perform multiple experiments under different sce-
narios, conditions, and parameter settings to ensure the rationality and feasibility of the
planned paths, reducing the wear and tear on the manipulator in real-world experiments.

Figure 12. The experimental platform for the manipulator.

Manipulator simulations were conducted to test the path planning. The use of the
simulation environment allowed us to perform multiple experiments under different
scenarios, conditions, and parameter settings to ensure the rationality and feasibility of the
planned paths, reducing the wear and tear on the manipulator in real-world experiments.

Appl. Sci. 2024, 14, 2765 14 of 17

The simulation environment shown in Figure 12 was established for the obstacle avoidance
path planning task of the manipulator using Rviz and MoveIt1. The simulation environment
consisted of four different obstacle environments and various starting positions and target
positions, all of which closely resembled real-world scenarios.

In the CDTD3 algorithm, λ= 0.1, c= 1, and i= 100. A total of 100 simulation exper-
iments were conducted on the manipulator. The average length of the executed path in
the joint space and the success rate of planning execution results are presented in Table 6,
the threshold φ in the experiment was 5 (cm). According to the results in Table 6, the
paths generated by CDTD3-RRT* had a good performance on different tasks, with shorter
paths after planning and execution. In Scenario 3, where the task was relatively simple,
the results of CDTD3 and TD3 were similar. Moreover, under four different tasks, three
algorithms had a higher success rate in path planning. In the four scenarios, the paths
obtained through the CDTD3-RRT* had a better length compared to those obtained through
RRT*. The path reduction rates were 11.1%, 31%, 9.0%, and 20.4%, respectively.

Table 6. The results of manipulator simulation.

Algorithm Index Scenario 1 Scenario 2 Scenario 3 Scenario 4

CDTD3-RRT*
Mean (cm) 146.3 56.1 108.7 90.7

Success rate 98% 86% 92% 100%

TD3-RRT*
Mean (cm) 149.7 58.8 108.5 94.1

Success rate 99% 85% 92% 100%

DDPG-RRT*
Mean (cm) 151.0 58.9 109.4 91.1

Success rate 98% 87% 93% 100%

The manipulator experimental platform is shown in Figure 12. The process of obtaining
the executable path of the manipulator is shown in Figure 13. When conducting path
planning experiments on manipulator, given the starting pose, target pose and obstacle
information. CDTD3-RRT* is first used to compute a collision-free path based on the
environment. Then, the inverse kinematics solution and obstacle avoidance detection
were performed using the motion planning method computed cartesian path in MoveIt1,
which integrates IKFast and FCL plugin. Thus, the executable path of the joint space
was calculated, and information such as joint variables required for the operation of the
manipulator was output. After obtaining the executable path information, it was sent to
Elfin E05 for execution. CDTD3-RRT* was tested multiple times to verify the performance
in different targets. During the operation of the manipulator, a ROS node was utilized to
collect real-time joint parameters, which were recorded in the file for further analysis.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 18

The simulation environment shown in Figure 12 was established for the obstacle avoid-
ance path planning task of the manipulator using Rviz and MoveIt1. The simulation en-
vironment consisted of four different obstacle environments and various starting posi-
tions and target positions, all of which closely resembled real-world scenarios.

In the CDTD3 algorithm, =0.1λ , =1c , and =100i . A total of 100 simulation experi-
ments were conducted on the manipulator. The average length of the executed path in the
joint space and the success rate of planning execution results are presented in Table 6, the
threshold ϕ in the experiment was 5 (cm). According to the results in Table 6, the paths
generated by CDTD3-RRT* had a good performance on different tasks, with shorter paths
after planning and execution. In Scenario 3, where the task was relatively simple, the re-
sults of CDTD3 and TD3 were similar. Moreover, under four different tasks, three algo-
rithms had a higher success rate in path planning. In the four scenarios, the paths obtained
through the CDTD3-RRT* had a better length compared to those obtained through RRT*.
The path reduction rates were 11.1%, 31%, 9.0%, and 20.4%, respectively.

Table 6. The results of manipulator simulation.

Algorithm Index Scenario 1 Scenario 2 Scenario 3 Scenario 4

CDTD3-RRT*
Mean (cm) 146.3 56.1 108.7 90.7

Success rate 98% 86% 92% 100%

TD3-RRT*
Mean (cm) 149.7 58.8 108.5 94.1

Success rate 99% 85% 92% 100%

DDPG-RRT*
Mean (cm) 151.0 58.9 109.4 91.1

Success rate 98% 87% 93% 100%

The manipulator experimental platform is shown in Figure 12. The process of obtain-
ing the executable path of the manipulator is shown in Figure 13. When conducting path
planning experiments on manipulator, given the starting pose, target pose and obstacle
information. CDTD3-RRT* is first used to compute a collision-free path based on the en-
vironment. Then, the inverse kinematics solution and obstacle avoidance detection were
performed using the motion planning method computed cartesian path in MoveIt1, which
integrates IKFast and FCL plugin. Thus, the executable path of the joint space was calcu-
lated, and information such as joint variables required for the operation of the manipula-
tor was output. After obtaining the executable path information, it was sent to Elfin E05
for execution. CDTD3-RRT* was tested multiple times to verify the performance in differ-
ent targets. During the operation of the manipulator, a ROS node was utilized to collect
real-time joint parameters, which were recorded in the file for further analysis.

Figure 13. The process of generating the executable path information.

The comparison between the manipulator’s end path and the planned trajectory is
illustrated in Figure 14. To accurately analyze the error, the trajectory was decomposed
into three axes: the x-axis, y-axis, and z-axis. Although there were errors in each axis di-
rection of the manipulator’s end path, the error was in a small range, which was consistent
with the deviation between the actual experiment and the planned path.

According to Equation (13), the RMSE between the end effector trajectories of the
four targets and the planned trajectory is calculated, including the results in three axes

Figure 13. The process of generating the executable path information.

The comparison between the manipulator’s end path and the planned trajectory is
illustrated in Figure 14. To accurately analyze the error, the trajectory was decomposed into
three axes: the x-axis, y-axis, and z-axis. Although there were errors in each axis direction
of the manipulator’s end path, the error was in a small range, which was consistent with
the deviation between the actual experiment and the planned path.

Appl. Sci. 2024, 14, 2765 15 of 17

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 18

directions. The results shown in Table 7 are the average of 20 planning experiments. The
results show that the proposed algorithm can complete the experimental task of manipu-
lator path planning with high accuracy, and the error between the actual trajectory and
the planned trajectory is acceptable. The actual trajectory of the manipulator during oper-
ation may have deviations from the planned results due to the inherent instability of the
manipulator and the influence of prior information such as environment modeling and
motion models in path planning. However, the small magnitude of the errors demon-
strates that the algorithm is capable of effectively solving the path planning problem for
the manipulator and achieves good effects in various tasks under different scenarios.

Table 7. The RMSE for each direction at the manipulator’s end position.

RMSE Scenario 1 Scenario 2 Scenario 3 Scenario 4
x-axis (cm) 2.1 3.2 2.6 1.4
y-axis (cm) 1.8 2.7 2.8 1.7
z-axis (cm) 3.1 1.3 1.7 3.1

(a) scenario 1 (b) scenario 2

(c) scenario 3 (d) scenario 4

Figure 14. The end trajectory of the manipulator.

6. Conclusions

Figure 14. The end trajectory of the manipulator.

According to Equation (13), the RMSE between the end effector trajectories of the four
targets and the planned trajectory is calculated, including the results in three axes directions.
The results shown in Table 7 are the average of 20 planning experiments. The results show
that the proposed algorithm can complete the experimental task of manipulator path
planning with high accuracy, and the error between the actual trajectory and the planned
trajectory is acceptable. The actual trajectory of the manipulator during operation may
have deviations from the planned results due to the inherent instability of the manipulator
and the influence of prior information such as environment modeling and motion models
in path planning. However, the small magnitude of the errors demonstrates that the
algorithm is capable of effectively solving the path planning problem for the manipulator
and achieves good effects in various tasks under different scenarios.

Table 7. The RMSE for each direction at the manipulator’s end position.

RMSE Scenario 1 Scenario 2 Scenario 3 Scenario 4

x-axis (cm) 2.1 3.2 2.6 1.4
y-axis (cm) 1.8 2.7 2.8 1.7
z-axis (cm) 3.1 1.3 1.7 3.1

6. Conclusions

Based on the RRT*, this paper introduces the DRL to carry out path planning for the
manipulator and seek an optimal path. To enhance the exploration ability of the TD3, an

Appl. Sci. 2024, 14, 2765 16 of 17

improved method called CDTD3 is proposed. Through simulation verification, this method
can effectively improve the insufficient exploration in the early stage of the TD3. Moreover,
a path planning method DRL-RRT* was designed that combines the random sampling
mechanism of the RRT* and the experience replay mechanism of DRL.

Path planning simulations were designed to validate the optimization ability of the
proposed CDTD3-RRT* on the original path. The simulation results demonstrated that in
three 2D environments, the original RRT* path achieved a reduction rate of 11.4%, 14.2%,
and 19.14%, respectively. The reduction rate in the 3D complex obstacle environment was
10.6%. In addition, the CDTD3 demonstrated a significant improvement in the success rate
of iterative optimization and reduction rate compared with the TD3 and DDPG. Finally,
an experimental platform for manipulator was established, and the application of path
planning methods in obstacle avoidance path planning tasks was analyzed. The results
demonstrate that the path length of CDTD3-RRT* was better than that of TD3-RRT*, and
DDPG-RRT* in multiple experiments. In the four experimental scenarios, the paths obtained
through the CDTD3-RRT* path planning method were more optimal in terms of length
compared to the paths obtained through RRT*. The reduction rates of the paths in the four
scenarios were 11.1%, 31%, 9.0%, and 20.4%, respectively, and the end path error of the
manipulator conformed to the results of planning and actual execution.

Author Contributions: Conceptualization, X.L. and R.C.; methodology, R.C.; software, R.C.; vali-
dation R.C.; formal analysis, X.L. and R.C.; investigation, R.C.; resources, X.L.; data curation, R.C.;
writing—original draft preparation, R.C.; writing—review and editing, R.C. and X.L.; supervision,
X.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by Innovation Project of Guilin University of Electronic Technology
(GUET) Graduate Education (Grant No. 2022YCXS152); Key Laboratory of Automatic Testing
Technology and Instruments Foundation of Guangxi (Grant No. YQ19107).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The study data supporting findings are available within this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Lao, C.; Li, P.; Feng, Y. Path Planning of Greenhouse Robot Based on Fusion of Improved A* Algorithm and Dynamic Window

Approach. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2021, 52, 14–22.
2. Kavraki, L.E.; Svestka, P.; Latombe, J.C.; Overmars, M.H. Probabilistic roadmaps for path planning in high-dimensional

configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [CrossRef]
3. Qi, J.; Yang, H.; Sun, H. MOD-RRT*: A Sampling-Based Algorithm for Robot Path Planning in Dynamic Environment. IEEE Trans.

Ind. Electron. 2021, 68, 7244–7251. [CrossRef]
4. Viseras, A.; Shutin, D.; Merino, L. Online information gathering using sampling-based planners and GPs: An information

theoretic approach. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vancouver, BC, Canada, 24–28 September 2017; pp. 123–130.

5. Gammell, J.D.; Srinivasa, S.S.; Barfoot, T.D. Informed RRT*: Optimal Sampling-based Path Planning Focused via Direct Sampling
of an Admissible Ellipsoidal Heuristic. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Chicago, IL, USA, 14–18 September 2014; pp. 2997–3004.

6. Islam, F.; Nasir, J.; Malik, U.; Ayaz, Y.; Hasan, O. RRT*-Smart: Rapid convergence implementation of RRT* towards optimal
solution. In Proceedings of the 2012 IEEE International Conference on Mechatronics and Automation (ICMA), Chengdu, China,
5–8 August 2012; pp. 1651–1656.

7. Lv, H.; Zeng, D.; Li, X. Based on GMM-RRT* Algorithm for Path Planning Picking Kiwifruit Manipulator. In Proceedings of the
2023 42nd Chinese Control Conference (CCC), Tianjin, China, 24–26 July 2023; pp. 4255–4260.

8. Xinyu, W.; Xiaojuan, L.; Yong, G.; Jiadong, S.; Rui, W. Bidirectional Potential Guided RRT* for Motion Planning. IEEE Access 2019,
7, 95046–95057. [CrossRef]

9. Naderi, K.; Rajamäki, J.; Hämäläinen, P. RT-RRT*: A real-time path planning algorithm based on RRT*. In Proceedings of the
Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games, New York, NY, USA, 16 November 2015; pp. 113–118.

10. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

https://doi.org/10.1109/70.508439
https://doi.org/10.1109/TIE.2020.2998740
https://doi.org/10.1109/ACCESS.2019.2928846
https://doi.org/10.1038/nature14236
https://www.ncbi.nlm.nih.gov/pubmed/25719670

Appl. Sci. 2024, 14, 2765 17 of 17

11. Dabbaghjamanesh, M.; Moeini, A.; Kavousi-Fard, A. Reinforcement Learning-Based Load Forecasting of Electric Vehicle Charging
Station Using Q-Learning Technique. IEEE Trans. Ind. Inform. 2021, 17, 4229–4237. [CrossRef]

12. Hao, Y.; Chen, M.; Gharavi, H.; Zhang, Y.; Hwang, K. Deep Reinforcement Learning for Edge Service Placement in Softwarized
Industrial Cyber-Physical System. IEEE Trans. Ind. Inform. 2021, 17, 5552–5561. [CrossRef] [PubMed]

13. Shi, H.; Shi, L.; Xu, M.; Hwang, K.S. End-to-End Navigation Strategy with Deep Reinforcement Learning for Mobile Robots. IEEE
Trans. Ind. Inform. 2020, 16, 2393–2402. [CrossRef]

14. Bae, H.; Kim, G.; Kim, J.; Qian, D.; Lee, S. Multi-Robot Path Planning Method Using Reinforcement Learning. Appl. Sci. 2019, 9,
3057. [CrossRef]

15. Lv, L.; Zhang, S.; Ding, D.; Wang, Y. Path Planning via an Improved DQN-Based Learning Policy. IEEE Access 2019, 7, 67319–67330.
[CrossRef]

16. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2015, arXiv:1509.02971.

17. Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong, R.; Welinder, P.; McGrew, B.; Tobin, J.; Abbeel, P.; Zaremba, W.
Hindsight Experience Replay. arXiv 2017, arXiv:1707.01495.

18. Gu, S.; Holly, E.; Lillicrap, T.; Levine, S. Deep reinforcement learning for robotic manipulation with asynchronous off-policy
updates. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3
June 2017; pp. 3389–3396.

19. Lin, G.; Zhu, L.; Li, J.; Zou, X.; Tang, Y. Collision-free path planning for a guava-harvesting robot based on recurrent deep
reinforcement learning. Comput. Electron. Agric. 2021, 188, 106350. [CrossRef]

20. Yang, Y.; Ni, Z.; Gao, M.; Zhang, J.; Tao, D. Collaborative Pushing and Grasping of Tightly Stacked Objects via Deep Reinforcement
Learning. IEEE/CAA J. Autom. Sin. 2022, 9, 135–145. [CrossRef]

21. Li, X.; Liu, H.; Dong, M. A General Framework of Motion Planning for Redundant Robot Manipulator Based on Deep Reinforce-
ment Learning. IEEE Trans. Ind. Inform. 2022, 18, 5253–5263. [CrossRef]

22. Kim, M.; Han, D.-K.; Park, J.-H.; Kim, J.-S. Motion Planning of Robot Manipulators for a Smoother Path Using a Twin Delayed
Deep Deterministic Policy Gradient with Hindsight Experience Replay. Appl. Sci. 2020, 10, 575. [CrossRef]

23. Fujimoto, S.; van Hoof, H.; Meger, D. Addressing Function Approximation Error in Actor-Critic Methods. arXiv 2018,
arXiv:1802.09477.

24. Pan, L.; Cai, Q.; Huang, L. Softmax Deep Double Deterministic Policy Gradients. arXiv 2020, arXiv:2010.09177.
25. Maoudj, A.; Hentout, A. Optimal path planning approach based on Q-learning algorithm for mobile robots. Appl. Soft Comput.

2020, 97, 106796. [CrossRef]
26. Chiang, H.T.L.; Faust, A.; Fiser, M.; Francis, A. Learning Navigation Behaviors End-to-End with AutoRL. IEEE Robot. Autom. Lett.

2019, 4, 2007–2014. [CrossRef]
27. Li, H.; Zhang, Q.; Zhao, D. Deep Reinforcement Learning-Based Automatic Exploration for Navigation in Unknown Environment.

IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 2064–2076. [CrossRef]
28. Francis, A.; Faust, A.; Chiang, H.T.L.; Hsu, J.; Kew, J.C.; Fiser, M.; Lee, T.W.E. Long-Range Indoor Navigation with PRM-RL. IEEE

Trans. Robot. 2020, 36, 1115–1134. [CrossRef]
29. Kontoudis, G.P.; Vamvoudakis, K.G. Kinodynamic Motion Planning with Continuous-Time Q-Learning: An Online, Model-Free,

and Safe Navigation Framework. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3803–3817. [CrossRef]
30. Gao, J.; Ye, W.; Guo, J.; Li, Z. Deep Reinforcement Learning for Indoor Mobile Robot Path Planning. Sensors 2020, 20, 5493.

[CrossRef]
31. Florensa, C.; Held, D.; Wulfmeier, M.; Zhang, M.; Abbeel, P. Reverse Curriculum Generation for Reinforcement Learning. arXiv

2017, arXiv:1707.05300.
32. Chiang, H.T.L.; Hsu, J.; Fiser, M.; Tapia, L.; Faust, A. RL-RRT: Kinodynamic Motion Planning via Learning Reachability Estimators

from RL Policies. IEEE Robot. Autom. Lett. 2019, 4, 4298–4305. [CrossRef]
33. Uther, W. Markov Decision Processes. In Encyclopedia of Machine Learning and Data Mining; Sammut, C., Webb, G.I., Eds.; Springer:

Boston, MA, USA, 2017; pp. 793–798.
34. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with

a Stochastic Actor. arXiv 2018, arXiv:1801.01290.
35. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic Policy Gradient Algorithms. In Proceedings

of the 31st International Conference on Machine Learning (ICML), Beijing, China, 21–26 June 2014; pp. 387–395.
36. Wu, D.; Wei, L.; Wang, G.; Tian, L.; Dai, G. APF-IRRT*: An Improved Informed Rapidly-Exploring Random Trees-Star Algorithm

by Introducing Artificial Potential Field Method for Mobile Robot Path Planning. Appl. Sci. 2022, 12, 10905. [CrossRef]
37. Li, X.; Tong, Y. Path Planning of a Mobile Robot Based on the Improved RRT Algorithm. Appl. Sci. 2024, 14, 25. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TII.2020.2990397
https://doi.org/10.1109/TII.2020.3041713
https://www.ncbi.nlm.nih.gov/pubmed/36726799
https://doi.org/10.1109/TII.2019.2936167
https://doi.org/10.3390/app9153057
https://doi.org/10.1109/ACCESS.2019.2918703
https://doi.org/10.1016/j.compag.2021.106350
https://doi.org/10.1109/JAS.2021.1004255
https://doi.org/10.1109/TII.2021.3125447
https://doi.org/10.3390/app10020575
https://doi.org/10.1016/j.asoc.2020.106796
https://doi.org/10.1109/LRA.2019.2899918
https://doi.org/10.1109/TNNLS.2019.2927869
https://doi.org/10.1109/TRO.2020.2975428
https://doi.org/10.1109/TNNLS.2019.2899311
https://doi.org/10.3390/s20195493
https://doi.org/10.1109/LRA.2019.2931199
https://doi.org/10.3390/app122110905
https://doi.org/10.3390/app14010025

	Introduction
	Improved TD3 Algorithm
	Reinforcement Learning
	Algorithm Structure

	The Improved Path Planning Method
	Simulation Analysis
	Analysis of the 2D Simulation Environment
	Analysis of the 3D Simulation Environment

	Simulation and Experiment of Manipulator Path Planning
	Evaluation Index of Path Planning
	Experiment and Simulation Research on the Application of Manipulator Path Planning

	Conclusions
	References

