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Abstract: Federated learning has emerged as a promising approach for collaborative model training
across distributed devices. Federated learning faces challenges such as Non-Independent and
Identically Distributed (non-IID) data and communication challenges. This study aims to provide in-
depth knowledge in the federated learning environment by identifying the most used techniques for
overcoming non-IID data challenges and techniques that provide communication-efficient solutions
in federated learning. The study highlights the most used non-IID data types, learning models,
and datasets in federated learning. A systematic mapping study was performed using six digital
libraries, and 193 studies were identified and analyzed after the inclusion and exclusion criteria were
applied. We identified that enhancing the aggregation method and clustering are the most widely
used techniques for non-IID data problems (used in 18% and 16% of the selected studies), and a
quantization technique was the most common technique in studies that provide communication-
efficient solutions in federated learning (used in 27% and 15% of the selected studies). Additionally,
our work shows that label distribution skew is the most used case to simulate a non-IID environment,
specifically, the quantity label imbalance. The supervised learning model CNN model is the most
commonly used learning model, and the image datasets MNIST and Cifar-10 are the most widely
used datasets when evaluating the proposed approaches. Furthermore, we believe the research
community needs to consider the client’s limited resources and the importance of their updates
when addressing non-IID and communication challenges to prevent the loss of valuable and unique
information. The outcome of this systematic study will benefit federated learning users, researchers,
and providers.

Keywords: communication-efficient; federated learning; non-IID data; systematic mapping study

1. Introduction

Technology development in this era leads to a growth in the amount of data produced
by devices. When used as training data, these data can provide intelligence to the end
devices. Traditional machine learning approaches are centralized, requiring all data to
be collected and sent to the central server for processing. The central server will collect
the data to train a machine learning model to enable intelligence at the end devices. This
approach raises concerns due to the amount of data traveling through the Internet and the
possibility of privacy leaks. Federated learning offers a solution to address these concerns
by allowing for the sharing of knowledge through a trained local model instead of sharing
data with a central server [1–4].
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Federated learning (FL) is a distributed collaborative artificial intelligence approach
that trains a local model and shares it with the central server. Instead of sharing data with
the central server, the FL approach shares the locally trained models, which the central
server aggregates to build a global model, as shown in Figure 1 [1].
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FL technology provides many benefits compared to traditional learning approaches.
It makes more efficient use of network bandwidth and preserves data privacy since there
is no need to transfer raw data to the server. Additionally, FL can enhance the quality
of the global model by leveraging computation resources and diverse datasets on clients’
devices [1,5]. With these advantages that FL provides, it can be used in different applications
such as healthcare, the Internet of Things (IoT), transportation, and mobile applications
(for example, next-word prediction) [6,7].

However, FL faces some challenges due to its decentralized approach. The assump-
tion of the Independent and Identically Distributed (IID) data used in machine learning
algorithms is not applicable in FL. Usually, the data in FL are heterogeneous data caused
by Non-Independent and Identically Distributed (non-IID) data. For that reason, FL en-
counters the challenge of data heterogeneity (non-IID data challenge) [5,8,9].

The nature of data in FL differs from the centralized approach since the training data
depend on the device usage and location and can vary between clients. The data in each
device can differ in quantity or class distribution. In some cases, clients may have more
data than other clients, while in other cases, some clients may have data belonging to a
specific class (label). These variations affect the FL process and model performance. In
FL, the central server randomly selects a subset of clients to perform local training and
receives the locally trained models for global aggregation. Clients attempt to minimize
their loss function during the local model training based on their local data. However, if
the selected clients’ local data distribution varies, the obtained local models may differ
significantly, resulting in a divergence of the global model from the optimal one. This
inconsistency between the local and global models occurs because the local models fit the
clients’ data distribution and do not reflect the overall data distribution. Therefore, training
local models using non-IID data affects global model performance and convergence speed.
Figure 2 shows an example that illustrates the impact of non-IID data on the global model
and how the model diverges from the optimal case; while the global model built using
IID data is close to the optimal case, in the non-IID data case, the model will need more
communication rounds to converge and reach the same accuracy as models trained using
IID data. Therefore, the non-IID data problem must be solved to enhance the model’s
performance [5,10,11].
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Another challenge in FL is communication; the communication between clients and
the central server is considered a bottleneck due to the issue of limited bandwidth in the
network and the number of communication rounds as clients in FL train local models and
share them with the central server in repetitive rounds [12,13]. Since communication rounds
between clients and the central server can be costly [13], reducing the number of rounds or
the number of parameters exchanged can lead to efficient communication in FL [14–16].
These challenges are important in the FL environment, and many studies in the literature
have been proposed to address them. There are a few mapping studies on the federated
learning environment; for example, the study in [17] covers the motivation for using FL,
and the study in [18] focuses on applying federated learning on energy-constrained IoT
devices. However, there are no comprehensive studies that aim to provide a systematic
mapping study to cover the techniques utilized to provide communication efficiency and
overcome the non-IID data challenge. Therefore, we present a systematic mapping of the
literature to summarize and analyze the research carried out on these challenges.

Mapping studies are review studies considered an evidence-based technique that
helps to analyze a research topic systematically. This method summarizes the research area
and identifies the amount and kind of research and available results [19]. This work aims
to conduct a systematic mapping study on the challenges mentioned earlier to provide
in-depth knowledge in the FL environment. Specifically, we will examine articles that
address non-IID data problems, improve communication efficiency in FL, or tackle both
challenges simultaneously. This work also aims to identify techniques widely used to
overcome these challenges in the FL environment. The non-IID data skewness utilized in
the studies aims to overcome the non-IID data challenge. Additionally, the work covers
the learning models and datasets most widely used to evaluate the proposed techniques.
Furthermore, the work highlights the publication venues and years of these articles. The
main contributions of this study are as follows:

• Providing in-depth knowledge about the techniques that have been proposed to
overcome the non-IID data challenge in FL.

• Offering a deep understanding of the techniques that have been proposed to provide
efficient communication in federated learning.

• Identifying the widely used learning models and datasets and associating the respec-
tive learning models with the utilized datasets.

• Highlighting promising research directions that can open up new opportunities for
future studies.

The rest of this paper is organized as follows: Section 2 covers the preliminaries and
related work. Section 3 provides the research methodology of this study. In Section 4, the
results of this systematic study and future research directions are discussed. Section 5
provides the conclusion of the work.
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2. Preliminaries and Related Work
2.1. Preliminaries
2.1.1. Federated Learning

In federated learning, the end devices known as clients hold the data and train a local
model. The clients receive the global model from the central server and train their local
model using the received global model and their data. Clients share their local model with
the central server. Once the central server receives the local models from the participating
clients, it aggregates them using an aggregation method to create a new global model [5,20].
The general process of how FL works is shown in the following steps:

1. The central server decides which devices are participating in training the model at
this round.

2. The selected participating devices receive the global model from the central server.
3. The devices train a local model using their dataset and the received global model.
4. Each device uploads the trained local model to the central server for aggregation.
5. The received local models are aggregated to create the new global model.
6. The steps are repeated until the target performance is accomplished (the target can be

specific accuracy) or the deadline is reached.

In 2016, McMahan et al. [21] introduced the concept of federated learning for the
first time and proposed an aggregation algorithm called Federated Average (FedAvg).
FedAvg is a weighted averaging scheme that weights the client’s local model based on their
dataset size.

wt+1 = ∑k∈St

nk
n

wk
t+1 (1)

where wt+1 is the new global model, wk
t+1 is the local model received from client k, nk is

the client k data size, and n is the total data size for all clients participating in this round,
and St is the set of clients participating in the training process at round t.

FL can be classified into three categories based on the data partitions, according to [22].
The three categories are (1) horizontal FL (HFL), (2) vertical FL (VFL), and (3) federated
transfer learning (FTL). In HFL, the clients have local datasets with the same features,
but the data samples differ. HFL is like having a large dataset divided horizontally be-
tween clients. The sample space will overlap in VFL, while the feature space overlap is
minimal. This occurs when two datasets are created using the same samples but differ in
extraction [23]. VFL is often related to an enterprise setting where the number of clients
participating is much smaller than HFL, but privacy matters are paramount [24,25]. In FTL,
devices have different samples, and the extracted features differ. This means the overlap
between the sample and feature spaces between the devices is rare. Transfer learning is
used to enhance the learning process. An initial model is trained using the overlapped
samples and all features. The initial model is used as a baseline with the remaining samples
(non-overlap) and the available features for the sample [22].

Furthermore, FL can be classified into cross-device FL and cross-silo FL based on
the participating clients and training scale. The number of devices participating in the
cross-device setting is more than in the cross-silo setting. In the cross-device setting, devices
are typically small and have limited samples compared to the cross-silo setting, where
clients are usually companies or organizations that hold large datasets [26,27].

2.1.2. Federated Learning Application

Federated learning has emerged as a promising approach for collaborative model
training across distributed devices while preserving data privacy; it can be utilized in
different applications such as healthcare, smart city, smart transport, and finance indus-
try applications.

For example, in the smart healthcare industry, sharing patient records with a central
server or cloud is necessary to develop intelligent approaches, e.g., intelligent imaging for
disease detection. However, patient records are sensitive, and simply removing personal
information is not enough to protect their privacy. This is especially true in complex
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healthcare settings where multiple parties, such as hospitals and insurance companies,
have access to healthcare databases for data analysis and processing. To address this issue,
using FL can provide intelligence and knowledge from different patient records while
protecting patient privacy, to enhance the healthcare system to provide a robust predictive
model for disease diagnosis, healthcare management, etc. [1,28,29].

On the other hand, smart devices deployed in smart cities are assisting city officials
in improving the efficiency of city operations while also enhancing the quality of life for
residents by ensuring the seamless delivery of food, water, and energy to end-users. To
facilitate smart cities, machine learning techniques have been widely adopted to process
real-time big data from sensors, devices, and human activities. However, due to privacy
concerns and the massive traffic generated, a centralized learning approach is not scalable.
Therefore, FL can be leveraged in this field to enable decentralized smart city applications
with high privacy and minimal communication delays. For example, it can be used in a
smart grid system to learn power consumption patterns without revealing individual power
traces; this can help create an interconnected and intelligent energy exchange network in
the city [1,29].

Intelligent transport systems aim to ensure safe and efficient traffic flow by using vari-
ous technologies to monitor and assess their performance. However, traditional intelligent
transportation systems share data in untrusted environments, which may raise privacy
concerns. Therefore, FL can be utilized in transport applications to enable intelligence
without the need to share data; FL can be used in intelligent transport systems to enable
traffic prediction and manage resource strategies for vehicle-to-vehicle networks [1,30].

Collaboration among various financial institutions has become a growing trend in
the financial and insurance industry. Federated learning is a technology that financial
institutions can utilize for risk management, fraud detection, marketing, and other purposes.
The use of FL in this sector facilitates collaboration between different financial institutions
without the need to share their clients’ information, thus helping them to develop various
financial task models, such as risk assessment machine learning models [31,32].

2.1.3. Non-IID Data in Federated Learning

The data used to train the local model on FL could be non-IID data. This is due to the
heterogeneity of datasets among devices, since the local datasets depend on the device’s
performance and usage, resulting in non-IID data [33,34].

Each data sample has features and labels that identify them. Assuming that we can
represent all features as F, containing several features ( f1, f2, f3, . . .), each feature fi has
a domain of different values that identify the sample. The data label can be represented
as L that contains a value from its different values (classes). So, we can say the device (i)
has samples where each sample can be represented as (F, L). The device samples follow a
local distribution Pi(F, L) = Pi(F|L) Pi(L) = Pi(L|F) Pi(F). For that, when we say the data
are non-IID, we mean that P is different from device to device, with the difference being
caused by differences in the features, labels, or both [33,35]. We can classify the types of
non-IID data as shown in Figure 3.
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• Feature skew: Feature skew indicates that the features differ among devices; this can
be described as the Pi(F) being different while Pi(L|F) is the same. The features can
be non-overlapped between devices, partially overlapped, or fully overlapped. In
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non-overlapping feature skew, the different devices have different features; this case
is similar to vertical federated learning; images with different angles are an example.
While in partial overlapping feature skew, some features can be overlapped. Full
overlapping feature skew is a case similar to horizontal federated learning; an example
is the case of having two datasets for the same numbers (digits), one is written in a
bold line while the other is written with a thin line [33–35].

• Label distribution skew: Label distribution skew indicates that the devices have
different labels; this can be described as the Pi(L) being different while Pi(F|L) is
the same. This skew can happen when the device tends to have local data with the
same labels (for example, it can be caused by location variations between devices) or
labels from some classes more than others. Label skew is defined in different ways
in two studies. The study in [21] introduces the quantity label imbalance, and the
study in [36] introduces the distribution label imbalance. Generally, the amount of
data belonging to the same class is not equal and varies between devices.

- Quantity label imbalance: This situation occurs when the devices have a predeter-
mined number of labels they can own. For example, all devices have data from
two class labels only. If we take device (i) and device (j), the labels in device (i) can
be from class (c1, c2), while those in device (j) can be from class (c3, c4). This kind
of distribution was first introduced in Federated Average (FedAvg) experiments.
In this case, the smaller the label quantity, the stronger the label imbalance [21,33].

- Distribution label imbalance: In this skew, each device has a proportion of the
samples from each label class that follows Dirichlet distribution Dir(). The portion
of the data that belongs to a specific class (c) is distributed on device (i) with a
probability pc ∼ Diri(β), where β is the concentration parameter that determines
the imbalance level; a higher value indicates a high imbalance partition [33,35,36].

• Same feature, different labels: The case of the same feature with different labels implies
that the distribution of Pi(L|F) is different but Pi(F) is the same. In this case, the same
features indicate different classes (labels) on different devices; the data label for the
same feature can be c1 on the first device and c2 on the other device. This could
depend on the user preference; for example, in the same weather condition, some
people may refer to a rainy day as good weather, while other people refer to the same
rainy weather as a bad day [33,34].

• Same label, different features: The case of the same label with different features implies
that the distribution of Pi(F|L) is different but Pi(L) is the same. Different features
on different devices could belong to the same class. For example, the first device has
images of a school building on a sunny day, and the second device has images of a
school building on a rainy day; both can belong to the same class (school buildings),
but they have different features [34]. For example, the first device has images of a
residential building, and the second device has images of a factory building; both
belong to the same class (buildings) but have different features.

• Quantity skew: The amount of local data varies between devices. For example, the
number of training data for the first device equals 1000, while the number of training
data for the second device equals 30. This skew can happen with any of the previously
described categories [33–35].

2.2. Related Work

Several surveys have been conducted in the literature illustrating the federated learn-
ing concept and its challenges. For instance, the article in [1] provides a comprehensive
survey of federated learning for the IoT. The authors cover state-of-the-art federated
learning, the federated learning role for IoT services and applications, and federated learn-
ing challenges.

In [37], Lim et al. provide a comprehensive survey of the use of federated learning
in mobile edge networks. Their work covers the concept and background of federated
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learning, federated learning challenges, security, privacy issues, and federated learning
applications in mobile edge networks.

Similarly, in [38], Li et al. explained the FL concept and system components, providing
a taxonomy for different federated learning aspects. In [22], the work covers federated
learning concepts and applications. Some works cover challenges along with the concept of
federated learning and its applications [32,39]. In [33], Zhu et al. provided a survey focused
on the non-IID data problem challenge in FL. The authors in [40] provide a review article
on federated learning in smart cities; they illustrate the advantages and disadvantages of
implementing federated learning in smart cities. The article focuses on privacy and security
issues of federated learning in smart cities. The articles in [41–43] focus on reviewing
blockchain in federated learning, while the article in [44] focuses on FL-enabled 6G tech-
nology, specifying its requirements, applications, and current challenges. In [45], Liu et al.
focus on the concept of vertical federated learning and its challenges. The study in [17]
provides a systematic mapping study highlighting why federated learning has been used
and different machine learning pipelines used for federated learning, while a systematic
mapping study focused on energy-constrained IoT devices [18].

To the best of our knowledge, our article is the first article that provides a systematic
mapping study for federated learning challenges. This work aims to identify the most used
techniques to overcome the non-IID data challenge in FL and the most used techniques
to provide communication efficiency in federated learning. Furthermore, we studied the
works that solve both problems in their work. Also, we provide information about the
widely used local models and datasets as these are essential in any federated learning
approach. Furthermore, the study also highlights the publication venues, types, and years
of these articles.

3. Research Methodology

A systematic mapping study needs to follow a formal guideline when conducted;
for that, we follow the guideline provided by Kitchenham and Charters [46] as it is a
well-known guideline. All authors contributed during all phases of this study. The authors
carefully discussed the paper selection to reduce personal bias; we used an Microsoft Excel
365 to carry out the process and examine the work.

3.1. Research Questions

To accomplish the objective of this research, we addressed the following research
questions:

RQ1: Which non-IID type has been mainly addressed when overcoming the non-IID data
challenge in federated learning?
RQ2: What are the techniques that are utilized to overcome the non-IID data challenge that
federated learning faces?
RQ3: What are the techniques that are utilized to provide communication efficiency (to
reduce the communication overhead) in federated learning?
RQ4: What are the learning models utilized in these studies to perform the learning process?
RQ5: What are the datasets utilized in these studies to evaluate the proposed work?

3.2. Search Strategy

The search strategy we followed in this work was as follows:

1. Search terms: We first started our work by identifying the search term and constructing
the search string; our search scope was in the federated learning area; we focused on
solutions for overcoming the non-IID data problem and on solutions for providing
communication efficiency in federated learning. For that, we used the terms shown in
Table 1.

2. Search string: The search string used in the search process within the digital library
was created by identifying keywords from populations, interventions, and outcomes.
The search terms were as follows: “Federated Learning” AND ((“non-IID data” OR
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“non IID data” OR “non-I.I.D data” OR “not independent and identically distributed
data”) OR (“Communication-efficiency” OR “Communication-efficient” OR “Com-
munication efficiency” OR “Communication efficient”)).

3. Database: In this work, we used six popular digital databases to perform our search;
the databases used are shown in Table 2. The search string was customized to suit
each digital library search mechanism.

Table 1. Search terminology.

Term Alternative Synonyms

Federated learning ---

non-IID data non IID data, non-I.I.D data, not independent
and identically distributed data

Communication-efficiency Communication-efficient, Communication
efficiency, Communication efficient

Table 2. Digital libraries used in our study.

Database Link

ACM Digital library https://dl.acm.org/, accessed on 29 February 2024
IEEE Xplore https://ieeexplore.ieee.org, accessed on 29 February 2024

Science Direct https://www.sciencedirect.com/, accessed on 29 February 2024
Springer Link https://link.springer.com/, accessed on 29 February 2024

John Wiley Online Library https://onlinelibrary.wiley.com/, accessed on 29 February 2024

Web of Science https://www.webofscience.com/wos/woscc/basic-search,
accessed on 29 February 2024

3.3. Study Inclusion Criteria

The search results obtained from the search string were filtered using the following
initial selection criteria:

1. Conference and journal publications.
2. Publication published from 2016 until the end of 2022.
3. Publications that include the search string in their title or abstract.
4. Publication written in English language.

The search was initiated from 2016 since federated learning was introduced in that
year [17]. Thus, we covered the studies that had been proposed after introduction of the FL
concept. After the above-mentioned criteria were applied, 1078 publications were extracted
from the selected digital libraries. The details for the number of publications extracted from
each digital library are shown in Table 3.

Table 3. Primary results from each digital library.

Library Number of Publications

ACM Digital library 124
IEEE Explore 355
Science Direct 34
Springer Link 165

John Wiley Online Library 3
Web of Science 397

We started filtering the obtained results by removing the duplicated versions of
the publications. After that, we started scanning the article titles and abstracts to select
relevant articles; when reviewing the articles, we excluded the publications that provided
review studies and publications that did not provide any related solutions to our research
questions. Furthermore, VFL and FTL were excluded since the federated learning process

https://dl.acm.org/
https://ieeexplore.ieee.org
https://www.sciencedirect.com/
https://link.springer.com/
https://onlinelibrary.wiley.com/
https://www.webofscience.com/wos/woscc/basic-search
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differs from the HFL we focused on in this search. We included publications that followed
the centralized approach with a central server responsible for aggregating the global model.
Publications that aimed to solve the cross-silo architecture were excluded since the devices
in this architecture are limited and have more data than the cross-device architecture.
Publications that introduced a security solution were also excluded since the security
solution may introduce overhead for communication and since we aimed for articles that
proposed a solution using vanilla federated learning.

After scanning the title and abstract of the papers using the inclusion and exclusion
criteria, we ended up with 362 papers and started the full scan of these papers. In the full
paper scan, we excluded the inaccessible papers, i.e., those for which we could not access
their entire content, so we ended up with 262 papers that we thoroughly reviewed, result-
ing in 193 papers passing this stage using the inclusion and exclusion criteria mentioned
earlier and classified based on their category. Figure 4 summarizes the detailed numbers
for each phase of the filtration process. The studies were then examined to extract useful
information for conducting this work, and the studies were classified into three categories.
The first category comprises 93 studies that aim to solve the non-IID data challenge. The
second category includes 74 studies that aim to provide efficient communication in fed-
erated learning. The last category focuses on addressing both challenges and involves
26 studies. The references [47–139] are the non-IID studies, the studies [140–213] are the
communication-efficient studies, and the remaining studies [214–239] are the studies that
aimed to provide a solution for both categories.
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4. Results and Discussion

This section illustrates the outcomes of the systematic mapping study we conducted.
We divide the outcomes of our work into four subsections: the first subsection shows the
publication years, source type, and publication venues of the selected study. The second
subsection presents the results of studies related to solving the non-IID data problem, stud-
ies related to communication efficiency are shown in the third subsection, and the fourth
subsection contains the results of studies related to solving both challenges. Furthermore,
this section discusses the results and threats to validity.

4.1. Publication Years and Source Types

According to our results in Figure 4, we obtained 193 studies after applying the
inclusion and exclusion criteria, indicating that FL gained more interest after its introduction
in 2016. Numerous publications have been dedicated to addressing issues related to FL.
Figure 5 shows the distribution of the studies over the years. As shown in the figure, the
selected studies that offer solutions to the non-IID data problem or provide communication
efficiency started in 2019 and increased over the years. The studies aim to solve both
challenges that started in 2020 and increased in recent years.
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Another research aspect of this work focuses on the selected studies’ source types and
publication venues. The selected studies have been published in four sources: conferences,
journals, workshops, and symposiums, as shown in Figure 6. Most of the studies that
addressed the non-IID data challenge were published at conferences (55% of the 93 selected
studies). The studies that aim to provide efficient communication in federated learning
and the studies that address both challenges were mainly published in journals (49% of the
74 selected studies and 54% of the 26 selected studies, respectively).
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Table 4 shows the most common publication venues that published more than one
work of the selected studies that aimed to overcome the non-IID data problem. The table
includes the types of publications, the number of studies, and the ratio of published studies
to the total number of selected studies. In general, the selected studies were published in
77 publication venues. The leading conference is CVPR while the leading journal is IEEE
Transactions on Parallel and Distributed Systems.

Table 5 shows the most common publication venues that published more than one
work of the selected studies that aimed to provide communication efficiency in FL. The table
includes the types of publications, the number of studies, and the ratio of published studies
to the total number of selected studies. In general, the selected studies were published in
60 publication venues. The leading journal is IEEE Internet of Things Journal, with seven
publications. We omitted the table for the publication venues for the studies that address
both challenges since all venues had only one study published, except for one journal
(Journal of Systems Architecture) that published two works.
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Table 4. Publication venues with more than one selected study on solving the non-IID data problem.

Publication Venue Type No. %

2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Conference 3 3.23%
IEEE Transactions on Parallel and Distributed Systems Journal 3 3.23%
2022 IEEE International Conference on Big Data (Big Data) Conference 2 2.15%
2022 IEEE International Conference on Data Mining (ICDM) Conference 2 2.15%
ICC 2020—2020 IEEE International Conference on Communications (ICC) Conference 2 2.15%
2021 International Joint Conference on Neural Networks (IJCNN) Conference 2 2.15%
2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th
Int Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on
Dependability in Sensor, Cloud & Big Data Systems & Application
(HPCC/DSS/SmartCity/DependSys)

Conference 2 2.15%

KDD ’21: proceedings of the 27th ACM SIGKDD conference on knowledge
discovery & data mining Conference 2 2.15%

Machine learning and knowledge discovery in databases Conference 2 2.15%
Computer Vision—ECCV 2022 Conference 2 2.15%
IEEE Transactions on Wireless Communications Journal 2 2.15%
IEEE Transactions on Network Science and Engineering Journal 2 2.15%
Future generation computer systems-the international journal of eScience Journal 2 2.15%

Table 5. Publication venues with more than one selected study on providing communication efficiency
in federated learning.

Publication Venue Type No. %

IEEE Internet of Things Journal Journal 7 9.46%
IEEE Transactions on Wireless Communications Journal 3 4.05%
2021 17th International Conference on Mobility, Sensing and Networking (MSN) Conference 2 2.70%
2021 IEEE 41st International Conference on Distributed Computing
Systems (ICDCS) Conference 2 2.70%

2021 IEEE International Conference on Communications Workshops
(ICC Workshops) Conference 2 2.70%

2022 IEEE Globecom Workshops (GC Wkshps) Workshop 2 2.70%
GLOBECOM 2022—2022 IEEE Global Communications Conference Conference 2 2.70%
IEEE Transactions on Network Science and Engineering Journal 2 2.70%

4.2. Results for Non-IID Data Studies

This subsection illustrates the systematic mapping results of works that have pro-
posed techniques for solving the non-IID data problem. A total of 93 papers passed the
selection criteria. Figure 7 shows the non-IID types that have been simulated in the non-IID
studies; as shown in the figure, label distribution skews such as quantity label imbalance
and distribution label imbalance were widely addressed. The citation of these studies is
presented in Appendix A Table A1.

Figure 8 shows the top ten techniques most utilized in these studies, representing
the central focus of this study in guiding FL users, researchers, and providers when
implementing an FL approach. The figure indicates that enhancing the aggregation method
and clustering are the most widely used techniques to overcome the non-IID data problem,
appearing in 18% (17 studies), and 16% (15 studies) of the selected works. Personalized
federated learning was used in 13% (12 studies) of the works to design a personalized
model incorporating client data. An adaptive approach was utilized in 11% (10 studies) of
the works. Client selection and data sharing were used in 9% (eight studies) of the works.
Regularization was used in 5% (five studies), while knowledge distillation was used in 4%
(four studies) of the works. Hierarchical and hierarchical clustering techniques were used
in 3% (three studies) of the works to overcome the non-IID data problem. The citation of
these studies is presented in Appendix A Table A2.
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Figure 8. Percentage of the top ten techniques commonly used to solve the non-IID data problem.

In FL, clients train their local model by applying one of the learning techniques. The
selected studies used different learning models to examine their proposed approach, with
some studies using more than one learning model. Figure 9 shows the selected studies’ top
ten most used learning models. The results indicate that the convolutional neural network
(CNN) is the most widely used model. However, the different studies utilize different
numbers of layers when constructing the network; other studies utilize deeper networks
such as ResNet and VGG when evaluating their work. Studies focusing on supervised
learning methods such as FL often employ this approach.

The selected studies used different datasets to examine their proposed approach, with
some studies utilizing more than one dataset. Figure 10 shows the percentage of the top
ten most commonly used datasets in the 93 selected studies. The figure indicates that the
Cifar-10 dataset is the most widely used; also, we can see that most of the studies utilize an
image dataset.

In Appendix A Table A3, we map the topmost commonly used learning models with
the respective datasets utilized when employing these models. We demonstrate only the
datasets that are used in more than one study. As we can see, Cifar-10 is widely used
among the different local models, as Cifar-10 was proven to be the most used dataset in
non-IID studies, as shown in Figures 10 and 11. In Figure 11, the greener color indicates
that more studies utilized the dataset with their respective learning models, while the red
indicates that the dataset was not utilized with their respective learning models.
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4.3. Results for Communication-Efficient Studies

This subsection illustrates the systematic mapping results of works that present tech-
niques for enhancing communication in FL. We focused on papers that provide efficient
communication by reducing the number of updates or the number of bits shared. Out of
the papers that we screened, a total of 74 met our selection criteria.

Figure 12 illustrates the top ten techniques most commonly used in the selected
studies, representing a central focus of this study in guiding FL users, researchers, and
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providers when implementing an FL approach. The results demonstrate that compression
techniques such as quantization and sparsification are the most widely used techniques,
used in 27% (20 studies) and 15% (11 studies) of the studies, respectively. Furthermore,
other techniques are used, like the client selection technique where the server selects the
participating clients, used in 9% (seven studies) of the studies. An asynchronous scheme
was used in 7% (five studies) of the studies, and two-level aggregation where there is a
middle node that aggregates the local models received from some clients before uploading
them to the central server is used in 7% (five studies) of the studies. Select model updates
where the irrelevant updates will not be uploaded are used in 7% (five studies) of the
studies, and over-the-air computation is used in 5% (four studies). Cluster, periodic model
averaging, and knowledge distillation are used in 4% (three studies) of the studies. All
these techniques can enhance communication in federated learning. The citation of these
studies is presented in Appendix A Table A4.
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Figure 12. Percentage of the top ten techniques commonly used to provide communication efficiency
in FL.

Figure 13 shows the selected studies’ top ten most used learning models. The results
indicate that even in the studies that aim to provide communication efficiency in federated
learning, the most widely used learning model is the supervised learning model CNN.
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efficient studies.
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The selected studies also utilized different datasets when examining their approach.
Figure 14 shows the percentage of the datasets used in more than one study of the 74 selected
studies. The figure indicates that the MNIST and Cifar-10 datasets are the most widely used.
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Table A5 in Appendix A presents a mapping between the most used learning models
and the respective datasets utilized when employing these models. We highlight only the
datasets that are used in more than one study. As illustrated in Figure 15, MNIST and
Cifar-10 are widely used among the different local models in the selected studies.
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4.4. Results for Studies Providing Solutions for Both Challenges

This subsection illustrates the systematic mapping results of works that focus on
addressing both problems. Out of all the papers that were reviewed, only 26 met our
selection criteria.

Figure 16 illustrates the top ten techniques most used in the selected studies. Most
of the works use a technique for each challenge; however, some techniques are used to
solve both challenges, such as clustering, two-level aggregation, and client selections. The
figure shows that knowledge distillation is the most widely used technique. Knowledge
distillation can be used to solve both problems using the teacher–student approach to reduce
communication overhead and overcome non-IID data problems by distilling knowledge.
However, the selected studies used this technique along with another technique to solve
the challenges. Knowledge distillation and personalized approach are used in 15% (four
studies) of the studies, clustering is used in 12% (three studies) of the studies, and 8%
(two studies) of the studies used one of the following techniques: adaptive approach,
asynchronous method, client selection, lottery ticket, pruning method, quantization, or
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two-level aggregation. The selected studies used these techniques to solve one or both
challenges. The citation of these studies is presented in Appendix A Table A6.
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Figure 16. Percentage of the top ten techniques commonly used in the selected studies that provide
solutions to both challenges.

In Figure 17, we show the most used learning models. The figure illustrates the
percentage of learning models used in more than one study. The results indicate that CNN
is the most widely used model, while in Figure 18, we show the percentage of the datasets
used in more than one study. The figure indicates that the Cifar-10 and MNIST datasets are
the most widely used.
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Figure 17. Percentage of the top commonly used learning models in the studies that provide solutions
to both challenges.

Table A7 in Appendix A shows a mapping between the topmost commonly used
learning models and the respective datasets utilized when employing these models. We
show only three models, as the remaining model does not utilize a common dataset. They
all use different datasets for each study, so we did not highlight them. As we can see,
Cifar-10 is widely used between the different local models, as Cifar-10 was proven to be
the most used dataset in these studies, as shown in Figure 19.
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both challenges.
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4.5. Discussion

This work aims to identify the techniques used to overcome the non-IID data problem
and techniques that provide communication efficiency in an FL environment.

To address RQ1, we examined the selected studies that aim to overcome the non-IID
data challenge in their work. When evaluating their work, these studies need to select a
suitable distribution to introduce the non-IID data distribution between the clients. As
shown in Figure 7, most of the studies introduce the label distribution skew, specifically
quantity label imbalance, by dividing the datasets between the clients according to their
class, such that the clients can access only a limited number of classes.

Also, the distribution label imbalance was widely addressed, where the clients had
variations in their class distribution. To address the feature skew, the studies utilized the
FEMNIST (Federated Extended MNIST) dataset that divides the datasets based on the
writer, and in the selected studies, the writers were represented as the clients. However, we
can see that most of the studies did not focus on the remaining skew types, and the label
distribution skew was the widely addressed skew.

To address RQ2, we thoroughly examined the retrieved studies and analyzed the
techniques utilized. Figure 8 shows the most widely used techniques to overcome the non-
IID data challenge in FL. Based on the selected studies and findings outlined in this work,
several critical research hotspots have emerged in FL. One of the prominent areas of interest
is the development of novel aggregation schemes to address the non-IID data challenge
used in 18% (17 studies) of the selected studies. These schemes aim to improve model
accuracy and convergence by effectively aggregating local updates from heterogeneous
client devices. Additionally, there is growing attention towards exploring clustering in FL,
which is used in 16% (15 studies) of the studies. Clustering is a technique used to group
clients into clusters to overcome the non-IID data challenge, using different clustering
criteria such as model similarity and the client’s dataset size.
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Aggregation in FL: As the first study that proposed FL also highlighted the importance
of the non-IID data problem and suggested an aggregation method that is a weighted
averaging scheme (FedAvg) based on clients’ dataset size to overcome this challenge, many
studies were inspired by this work and tried to enhance it. For instance, the work in [50]
delayed the aggregation process by sending the model back to some clients for further
training to enhance the model, while the study in [105] enhanced the calculation of the
weights to be based on indices of statistical heterogeneity instead of just the client dataset
size. While the study in [131] adds to the FedAvg a regularization to lower the excess
risk, the study in [133] also uses regularization in its aggregation scheme to penalize the
diverging model.

Clustering in FL: Clustering is also used to overcome the non-IID data challenge, where
the server clusters clients based on certain criteria. In [54,88], the clients are clustered based
on the similarity of their models, whereas in [97], the central server clusters clients based on
their dataset size. The work in [100] mandates every client to report specific statistics about
their local dataset in order to perform clustering. Aggregation and clustering are the two
widely used techniques that aim to overcome non-IID data on the server side by utilizing
information extracted from the local model. However, these techniques raise security
concerns as they involve analyzing the obtained local model and sharing information.
Hence, it is necessary to develop a secure environment in FL where the clients can trust that
their privacy will not be compromised in an analysis of their local model and the server
will ensure the integrity of the received local model.

The techniques used to overcome the non-IID data challenge can be classified into
server-side and client-side, according to where the non-IID data challenge is addressed.
Aggregation, clustering, and client selection can be considered server-side techniques,
where the server will be responsible for overcoming the non-IID data challenge. The work
in [47,86] selects the clients that will participate in the next round based on the received
local model in the current round. In contrast, in [53,84], the server selects the clients’ models
that will contribute to the new global model based on their model divergence; the models
of the unselected clients will be abandoned.

Some techniques can be implemented either at the client side or the server side, like a
personalized approach that, for instance, can be implemented at the server side by keeping
a record for each client to provide a personalized model [83] or at the client side where each
client can have their personalized trained model locally and share a general model [87]. An
adaptive approach also can be performed on the server side, where the work in [48] proves
that using a fixed batch size can degrade the model performance since the data distribution
and size differ between clients, so it proposes a batch adaption technique to determine
the suitable batch size for each client; [99] proposes an adaptive local epoch technique to
avoid overfitting the model, by decreasing the local epoch value after a certain iteration
based on the global model performance. The adaptive approach can be implemented on
the client side, where in [49,95], the clients adapt their learning rate based on the global
model received. The study [49] considers the deviations between the local model and global
model and introduces a penalty term to force the local model to be inclined to learn the
global model. In [81], the clients adapt their local model by having some local parameters
used for local adaption. Knowledge distillation using a teacher–student model is also a
technique that can be applied on the server side [71,124] or the client side [111,134]. The
regularization technique is a technique used on the client side in [55,126,138] that can keep
the local model closer to the global model by adding a regularization term to help the local
model approach the global model. Each technique has its own benefits and limitations,
as the server-side technique generally does not introduce extra computation at the client
devices, but it may analyze the obtained local model, raising some privacy concerns. While
client-side techniques preserve the client’s privacy, extra computation steps are required to
overcome the non-IID data challenge.

Collaboration between clients and servers is sometimes necessary for certain tech-
niques, particularly when it comes to data sharing. Data sharing can be seen as a joint
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effort between clients and the central server, where clients share some of their data with the
server, and the server either uses the collected data to train a model at the server [79] or
shares the collected data with clients [89]. Other techniques can change the architecture by
introducing a middle layer between the client and server using a hierarchical architecture
and hierarchical clustering architecture. Figure 20 shows a representation of the most
widely used techniques that aim to overcome the non-IID data challenge based on their
side. As we can see, most of the techniques are server-side, as the server has a more global
look compared to the clients that can communicate only with the central server. However,
there are techniques that can be implemented at the client-side that can help overcome
the non-IID data challenge using the received global model or information obtained from
the global server. Furthermore, introducing a middle layer between the client and server
can help overcome the non-IID data challenge without extra computation at the client or
the server.
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To answer RQ3, the most widely used techniques to provide communication efficiency
in FL are shown in Figure 12. Based on the selected studies and findings outlined in
this work, compression techniques are a research hotspot in FL for providing efficient
communication; compression techniques of particular importance are quantization and
sparsification, which are used in 27% (20 studies) and 15% (11 studies) of the studies,
respectively. These techniques reduce the number of bits transmitted by compressing
the model.

Quantization in FL: Quantization is used to reduce the number of bits that represent a
value; it is essential to set the quantization level carefully to avoid damaging the model and
prevent the loss of useful information. For instance, the studies conducted in [143,145] used
an adaptive level of quantization to minimize the error bound. In contrast, Refs. [152,156]
used a 1-bit quantization scheme to quantize the local model to 1-bit data, while the work
in [184] used ternary quantization that quantizes the value into one of three values (−1,0,1).

Sparsification in FL: Sparsification schemes are used to reduce the number of bits trans-
mitted. Different studies used different methods to select these bits; for example, the work
in [141] sets the non-important weight update elements to zero, while the works in [153,165]
use a top-k selection-based gradient compression scheme. In addition, Ref. [155] uses block
sparsification by dividing the local gradient vector into sub-vectors and then dropping
some gradient entries with small magnitudes at each sub-vector. These compression tech-
niques require clients to compress the model without losing any vital information and share
the compressed model with the server, as losing the vital information may affect the global
model performance and convergence speed. However, most of these techniques are applied
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on the client side, which means that clients need to be capable of training the model and
applying a compression technique, and this can be challenging due to the limited resources
of clients.

We can classify the top techniques into techniques that aim to reduce the number of
bits transmitted (reducing the model size) and techniques that aim to reduce the number of
updates, as shown in Figure 21. Quantization, sparsification, and knowledge distillation
techniques focus on reducing the number of bits shared to provide efficient communication.
The client selection, select model updates, over-the-air computation, clustering, periodic
model averaging, asynchronous, and two-level aggregation techniques aim to reduce the
number of updates between the server and the clients.
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The client selection scheme is used to select the clients that can contribute more to enhance
the global model, which results in a reduction in the communication rounds [147,185,191].
Using asynchronous communication can enhance the global model performance by al-
lowing the aggregation of the received model without waiting for all clients [146,171,211].
Select model update is a technique that uploads the trained model that can help model
coverage and ignore irrelevant updates [157,189]. Over-the-air computation [179,197] is a
technique used by exploiting the waveform superposition property, which directly obtains
the aggregated model. This technique can provide faster and more communication-efficient
training in federated learning. Clustering is where similar clients are clustered together
and a representative is selected to share the updated model [172,177,185]. Periodic model
averaging [198,209] is where the local model is uploaded periodically to reduce the num-
ber of updates. Two-level aggregation [164,175] is where a middle layer near the clients
aggregates the model to reduce the communication rounds with the central server.

Even though most of the techniques are based on reducing the number of updates,
most of the selected studies employ techniques to reduce the communication bits such as
quantization and sparsification, while a few studies aimed to reduce the number of bits
and the number of rounds in their approaches be employing different techniques such
as quantization with client selection [191] and with periodic model averaging [198]; as
shown in Figure 22, 61% of the selected studies apply a technique that aims to reduce the
communication bits.

Figure 16 shows the top techniques that are commonly used in studies that address
both challenges (non-IID data challenge and providing efficient communication). Most
studies used a technique for each challenge, while some studies used one technique to over-
come both challenges. These techniques are clustering, two-level aggregation, and client
selection. Clustering is the most widely used technique for overcoming both challenges,
appearing in 16% of non-IID data studies, 4% of communication-efficient studies, and 11%
of studies that provided solutions to both challenges. In the cluster technique, the central
server mostly clusters the clients into different groups based on different criteria such that
similar clients are grouped to enhance the learning process and reduce the communication
rounds. Two-level aggregation also can help reduce the communication rounds between
the central server and the clients by introducing a partial aggregation near the clients that
can reduce the number of models transmitted and enhance the model training. Client
selection is an essential step in the federated learning performed by the server; selecting
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the clients based on their model or resources enhances the training process and reduces the
communication rounds.
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To answer RQ4, we extracted the most commonly used learning models in the selected
studies, as shown in Figures 9, 13 and 17. The figures demonstrate that most of the studies
utilized CNN as their learning model; it was used in 56% of non-IID data studies, 42%
of communication-efficient studies, and 65% of studies that provided solutions to both
challenges. Different learning models such as ResNet and VGG were also widely utilized
in these studies. These learning models are supervised learning models and are often
employed in FL.

To address RQ5, we examined the selected studies and retrieved the most commonly
used datasets, as shown in Figures 10, 14 and 18. The figures demonstrate that most studies
use image datasets; in particular, they utilize Cifar-10 and MNIST datasets to evaluate their
work. The Cifar-10 dataset was used in 60% of non-IID data studies, 54% of communication-
efficient studies, and 62% of studies that provided solutions to both challenges, while the
MNIST dataset was used in 49% of non-IID data studies, 55% of communication-efficient
studies, and 54% of studies that provided solutions to both challenges. These datasets are
used as benchmarks in FL to simulate IID and non-IID data distribution. Many studies
simulate this skew using MNIST and Cifar-10 datasets, as they can be easily understood
and evaluated by others. Besides, FL is a relatively new approach, researchers focus on
addressing the challenges in clear-cut scenarios, especially the non-IID data challenge, as
the studies need to simulate a non-IID data distribution that can be easily understood and
evaluated by others. Researchers can use commonly used datasets such as MNIST and
Cifar-10 to gain valuable insights into the effectiveness of proposed methodologies and
compare them with existing approaches. Furthermore, the first study that proposed FL
utilized these datasets and the Shakespeare dataset in their work. However, many studies
utilize the FEMNIST dataset, which is a federated version of the EMNIST dataset built by
partitioning the data between the clients based on their handwriting; the FEMNIST dataset
was utilized in 14% of non-IID data studies, 9% of communication-efficient studies, and
12% of studies that provided solutions to both challenges. Other than image datasets, text
datasets such as the Shakespeare dataset were utilized in 9% of the non-IID data studies;
Sentiment140 and Wikitext-2 are also text datasets used in 3% of communication-efficient
studies. The MNIST and Cifar-10 datasets are widely used with the CNN model, as shown
in Figures 11, 15 and 19. The deeper neural networks ResNet and VGG are commonly used
with the colored image datasets Cifar-10 and Cifar-100 as they have more features than
the greyscale MNIST dataset. Based on the datasets utilized, we can conclude that image
classification tasks are the most used tasks in the selected studies.
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4.6. Threats to Validity

The obtained results are affected by the choice of the database; to reduce this effect, we
use different databases that we believe contain the most relevant studies published in the
federated learning domain. Furthermore, the choice of the search terms affects the obtained
results and can be considered a threat; we used different alternative synonyms to reduce
the effect of this threat.

Another potential limitation is that this work focuses on studies that provide com-
munication efficiency by decreasing the number of rounds or bits transmitted, while there
might be other studies that offer communication efficiency from other aspects.

4.7. Future Research Directions

Non-IID data challenge: Many studies have tried to overcome the non-IID data
challenge on the server side, often resulting in the abandonment of a trained model or a
decrease in its effectiveness. This can result in losing crucial information, mainly if the
model contains infrequent but essential data. To improve the training process, addressing
the non-IID data challenge on the client end or using a hierarchical architecture could
be more beneficial since the trained model will not be wasted, for instance, using edge
computing or fog computing to help the IoT devices to overcome the skewness of the client
data. Furthermore, resolving the non-IID data challenge before the training process could
streamline training and reduce its duration.

Privacy concern in non-IID data: FL was proposed to preserve the privacy of the client
data. However, some techniques require analyzing the received client model to extract
information to overcome the non-IID data challenge. This analysis may unintentionally
lead to the exposure of sensitive information. Therefore, it is crucial to incorporate security
measures, such as anonymous sharing of models, when using these techniques to prevent
privacy leakage.

Security in FL: FL training is a collaborative process between different parties that ex-
poses it to various security threats, especially when clients have non-IID data; the existence
of these data can facilitate backdoor attacks by malicious clients who may mislabel the sam-
ples to compromise the global model’s performance and convergence speed. Additionally, a
malicious server can analyze the obtained local models to expose clients’ privacy. Therefore,
when developing a scheme to overcome the non-IID data challenges, it is necessary to
consider these attacks as some approaches can mitigate the impact of backdoor attacks
and the Byzantine problems inherently, such as a personalized approach and aggregation.
However, it is important to design them carefully so as not to introduce vulnerabilities
that adversaries could exploit to compromise the security of the federated learning; hence,
developing trusted federated learning is essential for ensuring a safe FL environment.

Encryption in FL: FL is a distributed approach that exchanges the model through a
network. However, this approach exposes the model to various security threats, such as
snooping and modification by attackers. If the attacker modifies the captured model, it can
compromise the training process and increase the communication rounds. Attackers can
also capture and analyze local models to expose clients’ private information. Moreover,
some techniques that overcome the non-IID data challenge, such as clustering and data
sharing, can facilitate the attacks. For instance, clustering methods may group clients with
similar data distributions, making them more vulnerable to targeted attacks. Data-sharing
techniques may also expose sensitive data points across clients, creating opportunities for
attackers to exploit. Therefore, an encryption scheme in federated learning can mitigate
these attacks and enhance the overall training process; however, the limited resources of
clients and networks need to be considered.

Generalizing of the global model: FL was proposed to facilitate the sharing of knowl-
edge among different devices and learning from various environments. However, some
techniques propose a personalized approach or cluster clients based on the similarity of
their data. These approaches enable the central server to provide clients with a model that
fits their own data. Although this approach can be beneficial in some specific scenarios
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(such as next-word prediction), some other applications require more global knowledge
to achieve accurate results with unseen data. Therefore, a generalized approach to FL is
required to facilitate the sharing of knowledge among different clients while still providing
accurate and personalized results.

Communication-efficiency challenge: It is crucial to take into account the storage and
capability limitations of the clients’ devices when developing an approach for efficient
communication. Some techniques overlook these constraints and only focus on the network
communication cost. However, some of these techniques can result in the loss of critical
information that affects the model convergence. For that, to ensure the effectiveness of
FL, it is necessary to adopt an approach that facilitates efficient communication without
placing an extra burden on the clients.

Local model challenge: Researchers face the choice of selecting the appropriate learn-
ing model when evaluating their proposed work, which may impact the model’s perfor-
mance. It is worth noting that training the model in the FL environment takes place on
client devices and necessitates sharing the trained model with a central server over multi-
ple rounds, which can be challenging given the limited communication and computation
resources of the client’s devices. It would be beneficial to investigate the effects of various
learning models on FL performance, particularly those that can be applied to the same
tasks and have different model sizes, such as CNN, ResNet, and VGG.

Real-world deployment and evaluation: It is important to evaluate the FL approach in
real-world scenarios with actual datasets. Many studies focus on proposing solutions to
overcome challenges in FL, but they do not always consider the limitations of real-world
scenarios. For example, using a deep learning neural network to evaluate FL performance
could improve the model’s performance, but it may not be feasible due to limited resources
on client devices and networks. Therefore, there is a need to carry out research studies and
evaluate the performance of FL using a real-world deployment which will help guide this
field in the future.

5. Conclusions

This work presents a systematic mapping study to identify the most commonly used
techniques for overcoming non-IID data problems and communication challenges in FL.
A total of 193 articles that met our inclusion and exclusion criteria were selected using
a systematic mapping study. We categorized these articles into three groups based on
the problem they aimed to solve: articles that addressed the non-IID data problem, ar-
ticles that aimed to provide communication-efficient solutions in FL, and articles that
provided solutions to both challenges. To answer RQ1, we analyzed the selected articles
that aimed to overcome the non-IID data challenge; we concluded that label distribution
skew, specifically the quantity label imbalance, where clients had some missing labels, was
most commonly used.

To answer RQ2, we analyzed the selected articles and identified the most commonly
used techniques for overcoming non-IID data problems; we found that enhancing the
aggregation method and clustering are the two most commonly used techniques. For
RQ3, we analyzed the selected articles and identified the most commonly used techniques
for providing communication-efficient solutions in FL; we found that quantization and
sparsification are the two most commonly used techniques. Some techniques can be used
to provide solutions to both challenges, such as clustering, two-level aggregation, and
client selection.

For RQ4, we extracted the most commonly used learning models in the selected
articles and found that the supervised learning model CNN is the most used. For RQ5,
we extracted the most commonly used dataset in the selected articles, and we found that
the image datasets Cifar-10 and MNIST datasets are the most commonly used datasets to
evaluate the proposed work in the selected studies.
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Appendix A. Additional Tables

Table A1. The citation of the non-IID data types used in the studies aiming to solve non-IID
data problems.

Non-IID Data Type Studies Referenced

Quantity label imbalance
[48,50,51,54,55,57–60,65–67,70–

72,75,77,78,81,82,84,87–94,98–100,104–
115,117,119,121–126,128–131,134,138]

Quantity label imbalance [214,217,218,221–228,230–233,235,237,238]

Distribution label imbalance
[48,49,54,62,71,72,74–

76,78,80,86,87,92,94,96,97,99,100,102,103,112,
115,116,118,122,136,137,215,224,234,236]

Feature skew [50,56,67,74,76,77,88,93,99,109,111,113–
115,135,237,238]

Quantity skew [61,68,91,109,116,119,214,218,232]

Same features, different labels [50,67,76,99,111,113–115,125,237]

Same labels, different features [52,103]

Table A2. The citation of the top ten techniques commonly used to solve non-IID data problems.

Techniques Studies Referenced

Aggregation [50,61,68,74–
76,91,99,102,105,107,110,114,118,130,131,133]

Cluster [54,56,77,82,97,100,103,108,109,116,122,125,127,
135,138]

Personalized [52,65,83,87,88,96,111,113,120,125,129,139]

Adaptive Approach [48,49,59,81,95,97,99,112,115,116]

Client Selection [47,50,53,56,63,84,86,128]

Data Sharing [57,58,68,78,79,89,90,121]

Regularization [55,126,131,133,138]

Knowledge Distillation [71,111,124,134]

Hierarchical [56,85,117]

Hierarchical Clustering [67,88,119]
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Table A3. The non-IID data challenge studies for the top most commonly used learning models with
the respective datasets utilized when employing these models.

Model Dataset Studies Referenced

CNN

Cifar-10 [48,53–55,60–62,66,70,73,76,79,84,86,97–
103,105,108,111,115,119,122,128]

MNIST [48,54,59–61,66,67,70,72,75,82,84,86,93,97,98,
100,104,105,108,114,119,122,128]

FMNIST [48,51,53,59–61,73,77,79,81,86,89,97,99,100,
105,117,122,126]

FEMNIST [56,76,77,99,109,113–115]

EMNIST [72,93,95,104]

Other [50,62,73,80,81,88,90,93,98,102,112,114,134]

ResNet

Cifar-10 [71,74,78,91,107,118]

Cifar-100 [52,69,71,76,83,136]

Tiny ImageNet [55,62]

Other [52,55,69,71,74,101,118]

VGG

Cifar-10 [69,72,74,75,106,113,114,117,124,130]

Cifar-100 [72,106,113,114]

SVHN [69,74,124]

Other [69,124,136]

LSTM
Shakespeare [50,76,99,111,114,115,125]

Other [51,95,111,123]

MLP

MNIST [57,69,77,98,102,108]

FEMNIST [69,77,109]

FMNIST [77,129]

Other [77,108,123,129]

LeNet

MNIST [68,101,107,117]

Cifar-10 [52,92,93,96]

FMNIST [107,117,130]

Other [92,96]

MLR

Synthetic [77,84,125]

MNIST [59,77,84]

FEMNIST [77,111]

FMNIST [59]

MobileNet

Cifar-10 [106,107]

Cifar-100 [106,136]

Tiny ImageNet [136]

SVM
MNIST [68,129]

Other [123]

FCN
MNIST [50,62,131]

Other [131]
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Table A4. The citation of the top ten techniques commonly used to provide communication efficiency
in FL.

Techniques Studies Referenced

Quantization [142–145,148,152,156,158,168,169,174,176,183,184,188,191–
193,198,199]

Sparsification [140,141,151,153,155,165,174,186,200,202,204]

Client Selection [147,166,172,185,191,198,207]

Asynchronous [146,171,190,203,211]

Two-Level Aggregation [164,175,180,182,185]

Select Model Updates [149,157,170,189,206]

Over-The-Air Computation [162,178,179,197]

Cluster [172,177,185]

Periodic Model Averaging [198,207,209]

Knowledge Distillation [171,205,210]

Table A5. The communication-efficient studies for the top most commonly used learning models
with the respective datasets utilized when employing these models.

Model Dataset Studies Referenced

CNN

MNIST [146,149,152,154,165,169–
171,180,182,185,189,192,202,203,208–210,212]

Cifar-10 [140,146,167,171,176,184,188–191,204,210]

FMNIST [143,152,167–169,190,203,212]

FEMNIST [140,142,167,185]

EMNIST [150,169,203,210]

Cifar-100 [190]

ResNet

Cifar-10 [143,144,148,159,161,168,174,179,180,182,184–
186,193,200,201,208,212,213]

Cifar-100 [144,161,199,213]

Other [141,160,166,200–202,206,208,213]

Logistic Regression

MNIST [157,176,180,190,198]

Cifar-10 [173,180,192]

FMNIST [178,207]

Other [147,157,162,167,178,193]

LeNet

MNIST [148,174,181,183,195,211]

Cifar-10 [151,159]

FMNIST [158]

LSTM Other [142,149,159,165,167,195]

VGG
Cifar-10 [141,144,148,158,161,195]

Other [141]

Neural Network
MNIST [155,157]

Other [198,209]
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Table A5. Cont.

Model Dataset Studies Referenced

MLP
MNIST [146,156,161,184]

Cifar-10 [146]

Linear Regression Other [157,163,173,190]

AlexNet Cifar-10 [148,180,192]

Table A6. The citation of the top ten techniques commonly used in the selected studies that provide
solutions to both challenges.

Techniques Studies Referenced

Knowledge Distillation [215,233,236,239]

Personalized [228,234,237,238]

Cluster [222,227,232]

Adaptive Approach [217,236]

Asynchronous [218,229]

Client Selection [216,223]

Lottery Ticket [224,234]

Pruning Method [237,238]

Quantization [219,233]

Two-Level Aggregation [226,230]

Table A7. The top most commonly used learning models with the respective datasets utilized when
employing these models in the studies that provide solutions for both challenges.

Model Dataset Studies Referenced

CNN

MNIST [217,221,223,224,226,227,229,
231–233,239]

Cifar-10 [217,218,224,229,232–234]

FMNIST [215,218,231,232,239]

FEMNIST [232,235]

Cifar-100 [233,235]

EMNIST [224,233]

Other [225,229,230,232,234]

ResNet

Cifar-10 [221,231,233,234]

Cifar-100 [218,233]

Other [234,235]

VGG

Cifar-10 [215,221,223,225,228,237,238]

Cifar-100 [221,228]

EMNIST [237,238]
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