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Abstract: An active elastic metasurface has more flexibility than a passively modulated elastic
metasurface, owing to the manipulation of the phase gradient that can be realized without changing
the geometrical configuration. In this study, a negative proportional feedback control system was
employed to provide positive active control stiffness for adaptive unit cells, with the aim of achieving
the active modulation of the phase gradient. The relationship between the control gain and the
phase velocity of the flexural wave was derived, and the transfer coefficients and phase shifts of
the flexural wave through the adaptive unit cells were resolved using the transfer matrix method.
Finite element simulations for wave propagations in the adaptive unit cells were conducted, and
they verified the analytic solutions. Based on this theoretical and numerical work, we designed
active elastic metasurfaces with adaptive unit cells with sub-wavelength thicknesses according to
the generalized Snell’s law. These metasurfaces show flexibility in achieving abnormal functions for
transmitted waves, including negative refraction and wave focusing, and transforming guided waves
at different operating frequencies by manipulating the control gain. Therefore, the proposed active
metasurface has great potential in the fields of the tunable manipulation of elastic waves and the
design of smart devices.

Keywords: active elastic metasurface; flexural wave controlling; feedback control gain; generalized
Snell’s law; piezoelectric effects

1. Introduction

Metasurfaces [1–5] are artificially constructed materials with subwavelength thick-
nesses in the direction of wave propagation, exhibiting an excellent ability to manipulate
wavefronts, as well as having a more compact physical space and simplicity compared to
conventional metamaterials [6–10]. Metasurfaces have been widely used in various fields,
such as medical imaging, holographic imaging, and signal processing, following studies on
their extraordinary beam modulation ability in the fields of electromagnetics [11–13] and
acoustics [14–19]. Recently, the research on metasurfaces has been expanded to the field
of elastic waves [20–28]. However, elastic waves possess more degrees of freedom during
solid propagation [29–31], which leads to a great challenge for researchers. Determining
a method to extract and control the propagation of specific modes of guided waves from
multimodal guided waves in a solid has become a hot research topic.

Researchers have designed elastic wave metasurfaces based on the generalized Snell’s
law (GSL) for wavefront modulation behaviors such as abnormal refraction, wave focusing,
and Bessel waves. Zhu et al. [21] first proposed metasurfaces for the abnormal deflection
of A0 Lamb waves. Lee et al. [26] utilized the relationship between the effective mass
and stiffness to achieve the modulation of transmitted traveling waves. Classical zigzag
topology was used to alter the propagation path of flexural waves, taking advantage of the
different propagation paths of the flexural wave to realize the phase shift of the basic unit
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cell across the full 2π [23]. A series of abnormal modulation behaviors of the flexural wave
was realized by adjusting the phase gradient. A structure for the passive modulation of
multi-mode guided waves was achieved by adding different lengths of cover layers on the
unit element, and the theoretical analysis was verified by finite element simulations and
experiments [25].

The above case can be identified as the passive modulation [32–36] of elastic waves.
Passive modulation requires a change in the phase gradient by changing the geometry after
fixing the phase distribution, which makes metasurfaces much less practical. Therefore,
adaptive elastic metasurfaces have attracted considerable interest. Si-Min Yuan et al. [37]
proposed a nuts-and-screws structure where the tunability of the phase shift is induced by
the screw-in depth based on the dispersion theory of locally resonant phononic crystals.
By adjusting the position of the nut on the screw to achieve the full 2π coverage of the
phase shift of the functional element, the abnormal refraction and wave-focusing functions
of the broadband plate wave were achieved based on the GSL without re-fabricating the
metasurface. There are various ways to use piezoelectric materials for active modulation.
Piezoelectric patches can be stacked together to form a unit cell, which can be adjusted
via negative capacitance circuits connected to achieve a wide frequency range of elastic
longitudinal waves with a variety of modulation functions. It is also possible to attach a
piezoelectric sheet to the substrate material and use electromechanical tuning to modulate
the propagation of asymmetric mode Lamb waves [38]. Shixuan Shao et al. [39] presented
a novel metasurface that is proposed to simultaneously manipulate multi-mode guided
waves in the plate, including shear horizontal waves, symmetric mode, and anti-symmetric
mode Lamb waves. Monolithic in-plane and out-of-plane polarized piezoelectric meta-
surface sheets were staggered on both faces of the substrate, and each piezoelectric patch
was individually connected to a negative capacitance circuit. The metasurface can be
multifunctionally modulated in each mode by adjusting the shunt’s negative capacitance.

Currently, most metasurfaces are actively modulated by negative-capacitance circuits,
but negative-capacitance circuits are difficult to achieve in real-word applications. In order
to satisfy the requirement of modulating wave transmission in real time, the piezoelectric
patches were attached at the upper and lower surfaces of the unit cells, with the upper
surface’s piezoelectric patch acting as a brake, the lower surface piezoelectric patch acting
as a sensor, and the piezoelectric patch externally connected to a negative proportional
feedback control strategy [40]. This strategy was employed to provide positive active
control stiffness to the piezoelectric sensor/actuator patch in the present work. This method
can be utilized to implement anomalous wave manipulations in an active manner [37,41,42]
for the flexural wave. In such systems, the key is to exploit the relationship between flexural
wave phase velocity and stiffness by controlling the equivalent stiffness to determine the
phase velocity. We derived the relationship between the equivalent stiffness and the phase
velocity of the flexural wave and analyzed the transmission coefficients and phase shifts of
each cell using the transfer matrix method. Based on the GSL, the adaptive unit cells were
cleverly arranged to construct appropriate phase gradients, thus enabling the abnormal
refraction [43,44], focusing [45–48], and transforming the guided wave of the metasurface
to be realized at different frequencies.

The paper is organized as follows. Section 2 outlines the theoretical derivation of
the adaptive unit cell and metasurface design. Section 3 demonstrates the abnormal
modulation of flexural waves via metasurfaces through finite element simulations. Section 4
summarizes some conclusions.

2. Mechanisms of Actively Tunable Elastic Metasurface
2.1. Description of Adaptive Unit Cells

We used a negative proportional feedback control strategy to modulate the phase of
the adaptive unit cells, which can control the flexural wave more efficiently and contribute
to the fabrication of the metasurface. The proposed adaptive unit cell is shown in Figure 1,
where Figure 1a shows the three-dimensional geometric model of the adaptive unit cell
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and Figure 1b shows the two-dimensional model. From Figure 1a, it can be seen that
the adaptive unit cell contains two sub-cells. The gray and yellow regions indicate the
base beam (aluminum) and the piezoelectric patch, respectively; the upper part of the
piezoelectric patch is used as the piezoelectric sensor, and the lower part is applied as
the piezoelectric actuator. Moreover, the negative proportional feedback control system is
connected externally to the piezoelectric patch. The ratio of the sensed voltage generated
by the deformation of the sensor to the external voltage applied by the control system is
used to realize the positive active stiffness gain [40]. In the adaptive unit cell of length
L = l1 + l2, the lengths of sub-cell 1 (l1) and sub-cell 2 (l2) are adjustable, and we define l1/L
as p. The thickness of the base beam in sub-cell 1 is hs1 and that in sub-cell 2 is hs2, and the
two substrates are covered with piezoelectric patches with a thickness of hp. The width of
the piezoelectric patch is the same as the width of the base beam. The total thickness of
sub-cell 1 is h1 = hs1 + 2hp and the total thickness of sub-cell 2 is h2 = hs2 + 2hp.
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Figure 1. (a) A 3D model of the adaptive unit cell with a negative proportional feedback control
strategy. (b) A 2D model of the 3D adaptive unit cell in (a).

2.2. Derivations of the Governing Equation

The constitutive equation of piezoelectric materials can be expressed as follows:

Si = sijTj − dinEn
Dm = dmjTj + εmnEn

(i, j = 1, 2, 3, 4, 5, 6; m, n = 1, 2, 3) (1)

where S is mechanical strain, T is mechanical stress, D is electrical displacement, E is the
electric field, sij is the flexibility coefficient under constant electric field conditions, d is
the piezoelectric stress constant, and εmn is the dielectric constant. The correspondence
between the numerical subscripts and the coordinate axes is 1→x, 2→y, 3→z, 4→yz, 5→xz,
6→xy.

In the piezoelectric sheet used in this study, the polarization surface is perpendicular
to the z-axis, and the action of the electric field in the z-axis direction is mainly consid-
ered, ignoring the electric field in the x-axis and y-axis directions, which implies that
E1 = E2 = 0. The piezoelectric sheet is constrained in the x-y plane, with the stress relation
T3 = T4 = T5 = 0. The piezoelectric material is transverse isotropic in the x-y plane, and it
can be shown that s11 = s22.

Consider a piezoelectric material; its constitutive equations can be expressed as [42]

S1 = s11T1 − d31E3
D3 = d31T1 + ε33E3

(2)
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It is worth noting that the potential D3 is constant at the electrode with area As [49,50].
According to the classical laminated beam theory, the equivalent density ρa and the equiva-
lent stiffness Da of the laminated composite beam with the piezoelectric material can be
written as [40]

ρa = ρshs + 2ρphp (3)

Da =
Esh3

s
12(1 − υ2

s )
+ 2c11(As I2

1 +
w1h3

p

12
) (4)

where ρs, Es, and υs are the mass density, Young’s modulus, and Poisson’s ratio of the
substrate material, respectively; ρp is the density of the piezoelectric material; w1 is the
width of the adaptive unit cell; hs is the thickness of the base beam; and I1 = (hp + hs)/2.

Following Euler’s beam theory, the vibration equation of a composite beam with a
piezoelectric actuator and sensors is

Da
∂4w(x, t)

∂x4 + ρah
∂2w(x, t)

∂t2 +
d31 I1

hp

∂2Ya

∂x2 − d31 I1

hp

∂2Ys

∂x2 = 0 (5)

where Ya is the external voltage applied by the control system and Ys is the sensed voltage
generated by the deformation of the sensor.

The sensed voltage of the piezoelectric sensor Ys produced by the deformation of the
composite base beam can be given by [50]

Ys = − d31 I1

ε33w1

∂2w
∂x2 (6)

where ε33 is the dielectric constant of the piezoelectric material and d31 is the piezoelectric
stress constant of the piezoelectric material. The metasurface adaptive unit cells were
designed using a negative proportional feedback control strategy. The sensing voltage
Ys caused by the deformation of the piezoelectric sensor is measured and fed back to the
piezoelectric actuator as an external control voltage. Therefore, the relationship between
the external control voltage Ya and the sensing voltage Ys can be expressed as

Ya = −gYs = g
d31 I1

ε33w1

∂2w
∂x2 (7)

where g is the proportional feedback control gain of the piezoelectric actuator. The active
stiffness can be generated by an external control voltage applied to the piezoelectric actuator,
which can manipulate the flexural wave propagation characteristics of the adaptive unit
cell. The variation in g is also limited to 0~100 in order to maintain the stability of the
constant voltage electric field.

Substituting Equations (6) and (7) into Equation (5), the coupled equation can be
obtained as

Da1
∂4w(x, t)

∂x4 + ρah
∂2w(x, t)

∂t2 = 0 (8)

where Da1 is the equivalent stiffness of the beam with the piezoelectric actuator and sensor
acting together and can be written as

Da1 = Da + (1 + g)
d2

31 I2
1

ε33w1hp
(9)

The separable solution to Equation (8) can be written as w(x,t) = w(x)eiωt, where ω is
2πf. Substituting this solution and Equation (9) into Equation (8), the control equation for
the flexural wave can be obtained as

∂4w(x)
∂x4 − k4 ∂2w(x)

∂t2 = 0 (10)
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where k is the wavenumber and k4 is expressed as

k4 =
ρahω2

Da1
(11)

The phase velocity c for the flexural wave is

c =
(

Da1ω2

ρah

)
(12)

Equation (12) indicates that flexural waves are dispersive, and their phase velocity
depends on the flexural stiffness. In designing the metasurface, we can vary the magnitude
of the gain using a negative proportional feedback control system to obtain the desired
phase velocity.

2.3. Generalized Snell’s Law

According to the generalized Snell’s law, the relationship between the incident and
transmitted angles of a flexural wave passing through the metasurface is as follows

sin(θt)

λt
− sin(θi)

λi
=

1
2π

dφy

dy
(13)

where λi = c/f, θi and θt are the incident and transmitted angles, respectively; λi and λt are
the wavelength of the incident and transmitted flexural waves, respectively; and dφy/dy is
the phase gradient along the y-axis.

The wavelengths of the incident and transmitted regions are the same when the same
material is applied, and hence λi = λt. Equation (13) can be organized as

sin(θt)− sin(θi)

λi
=

1
2π

dφy

dy
(14)

In particular, if the wave is incident vertically, the magnitude of the angle of refraction
is calculated according to the following formula:

θt = arcsin
(

λt

2π
×

dφy

dy

)
(15)

2.4. Focusing Principle

For a certain focal position (x0, y0), the phase distribution along the metasurface is

φy = ki(

√
(y − y0)

2 + x02 − x0) + φy0
(16)

where y0 is the transverse coordinate of the focal point O, x0 is the distance from the focal
point O, φy is the phase, and ki is the wavenumber in the incident region plate. When
designing the focal point y0 = 0, the focusing equation can be simplified as

φy = ki(
√

y2 + x02 − x0) (17)

2.5. Theoretical Formulations of the Transmission Matrix Method

In this subsection, we will use the transmission matrix method (TMM) to resolve
the transmission coefficients and phase shifts of the unit cell. It has been shown that the
transmission coefficient and phase shift of a three-dimensional model is equivalent to those
of a two-dimensional model [44]. Therefore, the wave propagation can be considered as a
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plane strain problem in the xz plane, which is independent of the y-axis direction, as shown
by the basic unit in Figure 2. The general solution to Equation (10) is

w(x) = a+e−ikx + a−eikx + b+e−kx + b−ekx (18)

where a+e−ikx and b+e−kx are positive propagating and attenuating waves, respectively, and
a_eikx and b_ekx are negative propagating and attenuating waves, respectively. a+, a_, b+, and
b_ represent the complex coefficients. The displacement w(x), slope θ(x), bending moment
M(x), and shear force V(x) compose the state vector V = {w, θ, M, V}T.
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The basic unit in Figure 2 can be divided into four regions, where region I is the
incident region; regions II and III are sub-cell 1 and sub-cell 2, respectively; and region IV is
the transmission region. Each region shares the same central axis. The materials of region I
and IV are the same as the base beam material with thickness h0 = h1. As shown in Figure 2,
the state vectors on the left and right sides of the connection between the regions working
together can be defined as VR1, VL2, VR2, VL3, and VR3 and VL4. The connectivity at the
boundaries can be determined from the fact that VR1 = VL2, VR2 = VL3 and VR3 = VL4.

In this way, VL2 can be expressed as

VL2 =


1 1 1 1

−ik2 ik2 −ik2 k2
−D2k2

2 −D2k2
2 D2k2

2 D2k2
2

D2k3
2 −iD2k3

2 −D2k3
2 D2k3

2




a+2
a−2
b+2
b−2

 (19)

where k2 is the wavenumber in region II and D2 is the flexural rigidity of region II. According
to the above equation, VL2 can be expressed as VL2 = N2A, which can be obtained as
A = N−1

2 VL2.
Similarly, VR2 can be written as

VR2 =


e−ik2l1 eik2l1 e−k2l1 ek2l1

−ik2e−ik2l1 ik2eik2l1 −k2e−k2l1 k2ek2l1

−D2k2
2e−ik2l1 −D2k2

2eik2l1 D2k2
2e−k2l1 D2k2

2ek2l1

iD2k3
2e−ik2l1 −iD2k3

2eik2l1 −D2k3
2e−k2l1 D2k3

2ek2l1




a+2
a−2
b+2
b−2

 (20)

For brevity, VR2 can be expressed as VR2 = M2A. Combining Equations (19) and (20)
leads to VR2 = M2 N−1

2 VL2 = U2 VL2.
With respect to VR3, there is the following mathematical relationship.

VL3 =


e−ik3l1 eik3l1 e−k3l1 ek3l1

−ik3e−ik3l1 ik3eik3l1 −k3e−k3l1 k3ek3l1

−D3k2
3e−ik3l1 −D3k2

3eik3l1 D3k2
3e−k3l1 D3k2

3ek3l1

iD3k3
3e−ik3l1 −iD3k3

3eik3l1 −D3k3
3e−k3l1 D3k3

3ek3l1




a+3
a−3
b+3
b−3

 (21)

where k3 is the wavenumber in region III and D3 is the flexural rigidity of region III.
According to the above equation, VL3 can be expressed as VL2 = N3A, which can be
obtained as A = N−1

3 VL3.
The state vector VR3 can be expressed by the following equation:
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VR3 =


e−ik3(l1+l2) eik3(l1+l2) e−k3(l1+l2) ek3(l1+l2)

−ik3e−ik3(l1+l2) ik3eik3(l1+l2) −k3e−k3(l1+l2) k3ek3(l1+l2)

−D3k2
3e−ik3(l1+l2) −D3k2

3eik3(l1+l2) D3k2
3e−k3(l1+l2) D3k2

3ek3(l1+l2)

iD3k3
3e−ik3(l1+l2) −iD3k3

3eik3(l1+l2) −D3k3
3e−k3(l1+l2) D3k3

3ek3(l1+l2)




a+3
a−3
b+3
b−3

 (22)

According to the above equation, VR3 can be expressed as VR3 = M3A, and from
Equations (21) and (22), it can be expressed as VR3 = M3 N−1

3 VL2= U3 VL2.
The above equation gives the following relationship

VL4 = VR4 = U3VL3 = U3VR2 = U3U2VL2 = U3U2VR1 (23)

It is possible to solve for the transmission coefficients and phase shifts of the flexural
waves from Equation (23). For this purpose, the wavefields in regions I, II, III and IV are
prepared as follows:

w1(x) = e−ik1x + reik1x + r∗eik1x

w2(x) = a+2e−ik2x + a−2eik2x + b+2e−k2x + b−2ek2x

w3(x) = a+3e−ik3x + a−3eik3x + b+3e−k3x + b−3ek3x

w4(x) = te−ik4x + t∗e−k4x

(24)

where r, r*, t, and t* are the amplitude ratios of the reflected propagating wave, the reflected
attenuating wave, the transmitted propagating wave, and the transmitted attenuating
wave to the incident wave, respectively. k4 is the wavenumber in region IV, and k1 is the
wavenumber in region I.

The equation of the VR1 relationship is as follows:

VR1 =


1 1

ik1 k1
−D1k2

1 D1k2
1

−iD1k3
1 D1k3

1

[ r
r∗

]
+


1

−ik1
−D1k2

1
iD1k3

1

 (25)

where D1 is the flexural rigidity of region I. According to the above equation, the mathe-
matical relationship of VR1 can be written as VR1 = U1r + H1.

VL4 can be expressed as

VL4 =


e−ik4(l1+l2) e−k4(l1+l2)

−ik4e−ik4(l1+l2) −k4e−k4(l1+l2)

−D4k2
4e−ik4(l1+l2) D4k2

4e−k4(l1+l2)

iD4k3
4e−ik4(l1+l2) −D4k3

4e−k4(l1+l2)


[

t
t∗

]
(26)

where D4 is the flexural rigidity of region IV. According to the above equation, VL4 can be
expressed as VL4 = U4t.

Combining Equations (23) and (25) leads to

U3U2U1r + U3U2H1 = U4t (27)

According to the above equation, the following relationship can be obtained:

[U4 − U3U2U1]

[
t
r

]
= U3U2H1 (28)

Based on this equation, the solutions for r, r*, t, and t* can be solved computationally.
Since the same bending stiffness is present in regions I and IV, |t|2 is taken to calculate the
transmission coefficient. The phase can be calculated with the following equation [8].



Appl. Sci. 2024, 14, 2717 8 of 18

φ =

 arctan( Im(t)
Re(t) ) +

π
2

arctan( Im(t)
Re(t) ) +

3π
2 Re(t) < 0

(29)

where “Im” and “Re” are the functions to extract the imaginary and real parts, respectively.

3. Numerical Results and Discussion
3.1. The Validation of Transmittance and Phase Shift

The effects of control gain (g) and p-values on the phase shift and transmission co-
efficient were investigated separately for an operating frequency of 6 kHz. The two-
dimensional basic cell shown in Figure 2 was constructed in COMSOL (plane strain mod-
ule) to calculate the transmission coefficient and phase shift of the adaptive unit cell, and
the structural parameters are shown in Table 1. The substrate of the adaptive unit cell is
made of aluminum materials whose surfaces are covered with piezoelectric materials. The
density, elastic modulus, and Poisson’s ratio of aluminum materials are ρs = 2700 kg/m3,
Ep = 70 GPa, and υ = 0.33. A piezoelectric material with mass density ρp = 7700 kg/m3,
elasticity constant c11 = 70.6 Gpa, piezoelectric constant d31 = −12.6374 C/m2, and dielectric
constant ε33 = 1.59 × 10−8 F/m was adopted in the present work [50]. A unit stress is
applied in the −z direction to the leftmost interface of region I. The grid size is one 140th of
the wavelength. The choice of meshing size has been validated.

Table 1. Geometry of the adaptive unit cell.

h0 h1 h2 hs1 hs2 hp L w1

3 mm 3 mm 1 mm 2.6 mm 0.6 mm 0.2 mm 64 mm 5 mm

The effects of g on the wave velocity of sub-cell 1 and sub-cell 2 were investigated
according to Equation (12) and are shown in Figure 3a. It can be observed from Figure 3a
that the velocity of flexural waves rises as g increases. Therefore, the value of g was chosen
to be 100 for sub-cell 1 and 0 for sub-cell 2, respectively. The phase shift and transmittance
of adaptive unit cells when p varied from 0 to 1 were also examined with this prerequisite.
The results obtained by the TMM were verified by comparison with those derived from the
finite element method (FEM). To perform the FEM calculations, a location was selected for
the phase and transmittance coefficient calculation in region IV, which was 240 mm away
from the line connecting regions III and IV. It is worth noting that the absolute value of
the phase can be altered if another point at a different location in the transmittance region
is selected. However, the difference between the phase shift for the adaptive unit cell is
always the same.

Figure 3b shows the transmission coefficient and phase shift versus the value of g
when p = 0.5, and Figure 3c shows the phase shift and transmittance with respect to varying
p as g was chosen as 100 for sub-cell 1 and 0 for sub-cell 2. In Figure 3b,c, the red solid
line indicates the transmission coefficient resolved by the TMM, and the cyan dashed line
indicates the numerical solution to the FEM. The black solid line and the dark yellow dashed
line indicate the phase shifts obtained from the TMM and FEM calculations, respectively.
As can be seen in Figure 3b, there is a very small error in the transmission coefficients
calculated using the TMM and FEM; in fact, the maximum difference in values is within
0.05, while the phase gradient variation is achieved by adjusting the phase. We think that
this produces a small effect on the tectonic metasurface. As can be seen in Figure 3b,c, the
adaptive unit cell fails to cover a phase shift ranging from 0 to 2π when changing the control
gain, but it can achieve this range with the change in p. According to the GSL, we used the
adaptive unit cells to compose the column elastic metasurface by varying the parameters
of the adaptive cells in order to effectively change the phase of each adaptive unit cell.
We exploited this feature to construct a passive modulation metasurface by varying the
adaptive unit cells of p and further varying g for active modulation based on it.
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3.2. Results of Abnormal Transmittance

Based on the generalized Snell’s law, different abnormal refraction strategies can be
conducted by adjusting the adaptive unit cells of the metasurface. Additionally, it can be
seen from Section 3.1 that the control gain (g) and p-values have an effect on the propagation
of the flexural wave. Finite element simulation of flexural wave propagation was conducted
using COMSOL Multiphysics software 6.0. Three-dimensional elements are adopted to
discretize the incident field, the metasurface, and the transmitted field, whose size accounts
for one 180th of the wavelength. The choice of meshing size has been validated. In order
to achieve the abnormal refraction of flexural waves, 40 adaptive unit cells were utilized
to form the metasurface, with a slit width w2 of 1.98 mm between adaptive unit cells.
Perfectly matched layers (PMLs) were arranged around the boundaries of the whole plate
to eliminate the influence of reflected waves from boundaries (PML acts as a near-ideal
wave absorber). A z-direction displacement −1 × exp(−((y − 0)/cos0)2/602) (mm) was
applied at the boundary between the left PML and the incident plate to excite the flexural-
wave Gaussian beam, and the wave in the plane surrounded by the black dashed line on
the left side in Figure 4 represents the Gaussian beam. The wavelengths of flexural waves
corresponding to f = 6 kHz and f = 7 kHz are 69.94 mm and 64.75 mm, respectively, within
the 3 mm thick aluminum plate, satisfying the sub-wavelength requirement.
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Firstly, the abnormal transmission of passively modulated metasurfaces was realized
by changing p. Two different abnormal refraction angles, θt =30◦ and 38.7◦, with operating
frequency f = 6 kHz were designed as the targets. The g values for sub-cells 1 and 2 were
assumed as 100 and 0, respectively, and the designed values of p were set to match the
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requirement of phase shift ranging from 0 to 2π. The p-values of the Rith adaptive cell units
(Ri = 1 – 40) for different refraction angles in the case of f = 6 kHz are listed in Table A1
(θt = 30◦, 38.7◦). Full-wave simulations were performed, as shown in Figure 4a,b, from
which it can be seen that the vertically incident Gaussian beam can be deflected on demand
via the metasurface, realizing the abnormal transmission of the flexural waves. Obviously,
the propagation of the transmitted wave matches very well with the theoretical design route.

Then, regarding the active modulation of flexural waves, the geometrical parameters
of the unit cells were fixed, and abnormal transmission was achieved by varying the g from
the negative proportional feedback control strategy applied in the sub-cells. The target
angles for transmitted waves are assumed to be 20◦ and 38.7◦ when the incident frequency
is 6 kHz, and at 7 kHz, these angles are assumed to be 20◦, 30◦, and 38.7◦, respectively.
Additionally, the used values of g for the active modulation are provided in Table A2, and
the active tunability performance is shown in Figure 5. The simulated angles and target
angles basically coincide with each other, which proves the effectiveness and reliability
of the active metasurface based on the piezoelectrical effects and negative proportional
feedback control technique. Meanwhile, the angles we designed are coincident at different
operating frequencies, which suggests the reproducibility of the study. Moreover, it can
be observed in Figures 4 and 5 that the main energy of the beam is concentrated in the
designed deflection route, but there is still a small amount of energy appearing outside the
designed angle, which belongs to the higher-order diffraction [51].
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3.3. Realization of Focus Functionality

In this subsection, the focusing functionality of flexural waves via the passively modu-
lated and actively modulated metasurface is detailed separately. For a positively incident
flexural wave, the phase distribution along the x-axis is calculated using Equation (17)
within different operating frequencies and focusing point locations. The phase distribution
is symmetrically distributed about the y-axis, and thus only 20 adaptive unit cells at one
side of the y-axis need to be calculated.

In the FEM simulation, a unit displacement along the -z direction is applied to the
left side of the metasurface for the excitation of the flexural wave. We designed passively
modulated metasurfaces, which are expected to realize two focal points, (100 mm, 0) and
(120 mm, 0), with different focal lengths at a functional frequency of 6 kHz by varying the p



Appl. Sci. 2024, 14, 2717 11 of 18

and their design values, as shown in Table A1. Figure 6a,b show the numerically calculated
out-of-plane displacement plots (z-direction) with the designed focal points (100 mm, 0)
and (120 mm, 0) marked with black dashed crosses. It can be clearly seen that the flexural
wave is incident vertically on the left side, and the transmitted wave on the right side
produces a focusing phenomenon, with a clear focusing phenomenon at the position of
the design focal point. To further demonstrate the flexural wave focusing effect obtained
with our designed metasurface, the normalized displacement amplitude on the straight
line x = x0 where the focal point is located was calculated. Figure 7a,b show the normalized
displacement amplitude on the line of x = x0 where the design focus is located, in which
the blue solid line is the displacement amplitude at x = x0 and the horizontal blue dashed
line denotes the displacement amplitude of the incident wave. From Figure 7, it can be
seen that the vibration amplitude at the focal point of the design target is several times
larger than the displacement amplitude of the incident wave, and the highest point of the
amplitude is at y = 0 mm.
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Apart from passive adjustment, an actively metasurface was also designed to achieve
the focusing of flexural waves. In this case, different focuses at different operating fre-
quencies were required without changing the geometry of the metasurface. Table A3
presents the design values of g used in the sub-cells for achieving active wave focusing.
From Figure 8a,b, it can be seen that the displacements of transmitted wave fields are
concentrated in the positions (80 mm, 0) and (120 mm, 0), which is in accordance with the
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design focal points at 6 kHz. Similarly, at another frequency of 7 kHz, three sets of focal
points, (80 mm, 0), (100 mm, 0), and (120 mm, 0), were selected, and the verified perfor-
mance is shown in Figure 8c–e. Figure 9a–e correspond sequentially to the normalized
displacement amplitude on the line x = x0, where the focus is located in Figure 8a–e. As
shown in Figure 9, the displacement amplitude at the focusing point far exceeds that of the
surrounding region.
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3.4. Transforming Guided Wave

In addition to the functions described above, the metasurface can also transform
circular waves into plane waves. The transformation of the guided wave was investigated
using a focused metasurface model (80 mm, 0) with a displacement in the -z direction
applied at coordinates (x,y) = (−80 mm, 0) to excite the circular wave. Figure 10 shows the
out-of-plane amplitude plot (z-direction) of a circular wave converted to a plane wave at
operating frequencies of (a) f = 6 kHz and (b) 7 kHz. From Figure 10, it can be seen that the
circular wave formed by the point source excitation as the incident applied on the left side
can be successfully transformed into a plane wave when propagating through the trans-
mitted field, completing the waveform transformation as designed. Numerical simulation
results demonstrate that the metasurface not only achieves flexural wave focusing but also
transforms circular waves into plane waves.
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Figure 10. The out-of-plane displacement diagrams of the transforming guided wave at (a) f = 6 kHz
and (b) 7 kHz.

4. Conclusions

In the present study, a tunable metasurface consisting of adaptive unit cells attached
with piezoelectrical actuators and sensors was achieved by applying the negative pro-
portional feedback control strategy. The flexural motion of the metasurface was derived
based on the equivalent parameters of the adaptive unit cells. Employing the TMM, the
analytical model was established to predict the transmittance and the phase shift of flexural
waves propagating through the metasurface, and the validity was verified by comparing
the results to those from FEM simulations. Based on the generalized Snell’s law, a meta-
surface with 40 adaptive unit cells was designed. The passively modulated metasurface
was constructed by changing the proportion of the adaptive unit cell occupied by sub-cells,
and abnormal modulation flexural waves were achieved at 6 kHz. With the fixed geomet-
rical parameters of the passively modulated metasurface, different phase gradients were
generated by adjusting the negative proportional feedback system control gain. Full-wave
simulations were performed in finite elements, and the metasurface achieved functions
such as the abnormal transmission of multiple angles and the planar lensing of multiple
positions at different operating frequencies. A comparison of the theoretical design and
finite element simulations shows that this study is reproducible and reliable, which proves
the feasibility of the design structure and method. The introduction of a negative propor-
tional positive feedback control strategy provides an active method for adjusting the phase
gradient to modulate flexural waves.
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Appendix A

The following three tables show the p and g with values for the adaptive unit cells at
different frequencies. Among them, Table A1 reflects the passively modulated metasurfaces
to regulate the flexural wave by changing the geometrical structure, and Tables A2 and A3
reflect the use of control gain to regulate the flexural wave with fixed metasurface geomet-
rical structure.

Table A1. The p of the Rith adaptive unit cell for abnormal refraction and focusing in passive
modulation.

Ri

The p of the Adaptive Unit Cell at 6 kHz

Abnormal Transmittance Focusing

θt = 30◦ θt = 38.7◦ x0 = 100 mm x0 = 120 mm

1 0.047 0.047 0.047 0.047
2 0.122 0.153 0.055 0.055
3 0.213 0.233 0.069 0.064
4 0.247 0.265 0.102 0.091
5 0.27 0.292 0.169 0.141
6 0.292 0.33 0.216 0.197
7 0.32 0.423 0.242 0.234
8 0.375 0.503 0.263 0.25
9 0.467 0.536 0.285 0.27

10 0.511 0.559 0.313 0.291
11 0.536 0.588 0.366 0.319
12 0.555 0.638 0.473 0.375
13 0.575 0.759 0.522 0.477
14 0.602 0.816 0.55 0.52
15 0.658 0.861 0.578 0.548
16 0.759 0.956 0.627 0.573
17 0.806 0.994 0.764 0.613
18 0.841 0.994 0.828 0.736
19 0.883 0.994 0.895 0.813
20 0.975 0.994 0.992 0.866
21 0.047 0.047
22 0.122 0.047
23 0.213 0.047
24 0.247 0.047
25 0.27 0.153
26 0.292 0.233
27 0.32 0.265
28 0.375 0.292
29 0.467 0.33
30 0.511 0.423
31 0.536 0.503
32 0.555 0.536
33 0.575 0.559
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Table A1. Cont.

Ri

The p of the Adaptive Unit Cell at 6 kHz

Abnormal Transmittance Focusing

θt = 30◦ θt = 38.7◦ x0 = 100 mm x0 = 120 mm
34 0.602 0.588
35 0.658 0.638
36 0.759 0.759
37 0.806 0.816
38 0.841 0.861
39 0.883 0.956
40 0.975 0.994

Table A2. The g of the Rith adaptive unit cell with abnormal refraction during active modulation.

Ri

The g of the Adaptive Unit Cell

6 kHz 7 kHz
θt = 20◦ θt = 38.7◦ θt = 20◦ θt = 30◦ θt = 38.7◦

Sub-Cell1 Sub-Cell2 Sub-Cell1 Sub-Cell2 Sub-Cell1 Sub-Cell2 Sub-Cell1 Sub-Cell2 Sub-Cell1 Sub-Cell2

1 100 16.805 0 2.999 100 7.749 100 8.731 100 9.572
2 100 14.507 0 5.8 100 5.342 100 3.81 100 8.58
3 100 10.645 0 2.069 100 1.786 100 13.6 100 6.251
4 100 11.585 0 0.705 100 1.867 100 4.515 100 8.263
5 100 13.758 0 2.363 100 2.75 100 6.301 0.6 0
6 100 16.46 0 4.478 100 3.865 100 8.533 16.84 0
7 100 18.877 0 6.772 100 4.602 100 10.546 53.001 0
8 100 18.225 0 7.986 100 3.091 100 10.038 54.47 0
9 100 12.318 0 6.826 0 9.636 100 5.223 22.518 0

10 100 12.594 0 9.37 0 10.811 100 5.484 32.928 0
11 100 16.023 0 14.891 0 14.472 100 8.344 60.358 0
12 100 21.612 0 23.931 0 20.047 100 13.037 100 0.456
13 100 28.629 100 8.643 0 27.227 100 19.006 100 4.62
14 100 36.432 100 13.586 0 36.009 100 25.756 100 1.162
15 100 37.548 100 15.148 0 42.483 100 26.901 100 10.512
16 100 21.838 9.43 100 0 40.168 100 13.775 100 1.579
17 100 23.974 27.056 100 0 59.865 100 15.926 100 3.479
18 100 36.205 51.797 100 1.533 100 100 27.188 100 12.509
19 100 55.872 82.227 100 8.473 100 100 46.716 100 30.409
20 100 0 0 0 12.369 100 100 0 100 0
21 100 16.805 0 0 100 7.749 100 8.731 100 4.123
22 100 14.507 0 0.884 100 5.342 100 3.81 100 2.966
23 100 10.645 0 0.035 100 1.786 100 13.6 100 0.695
24 100 11.585 0 1.857 100 1.867 100 4.515 100 1.945
25 100 13.758 0 4.743 100 2.75 100 6.301 100 4.264
26 100 16.46 0 8.502 100 3.865 100 8.533 100 7.227
27 100 18.877 0 12.894 100 4.602 100 10.546 100 10.274
28 100 18.225 0 16.395 100 3.091 100 10.038 100 11.102
29 100 12.318 0 17.327 0 9.636 100 5.223 100 7.587
30 100 12.594 0 24.902 0 10.811 100 5.484 100 9.73
31 100 16.023 0 39.7 0 14.472 100 8.344 100 15.647
32 100 21.612 0 65.535 0 20.047 100 13.037 100 25.399
33 100 28.629 100 27.918 0 27.227 100 19.006 100 39.729
34 100 36.432 100 44.143 0 36.009 100 25.756 100 60.514
35 100 37.548 100 60.131 0 42.483 100 26.901 100 82.342
36 100 21.838 100 64.353 0 40.168 100 13.775 21.271 100
37 100 23.974 63.58 0 0 59.865 100 15.926 100 59.331
38 100 36.205 4.688 0 1.533 100 100 27.188 100 35.139
39 100 55.872 24.714 0 8.473 100 100 46.716 100 8.848
40 100 0 1.95 0 12.369 100 100 0 80.731 0
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Table A3. The g of the Rith adaptive unit cell with focusing during active modulation.

Ri

The g of the Rith Adaptive Unit Cell

6 kHz 7 kHz
x0 = 80 mm x0 = 120 mm x0 = 80 mm x0 = 100 mm x0 = 120 mm

Sub-Cell1 Sub-Cell2 Sub-Cell1 Sub-Cell2 Sub-Cell1 Sub-Cell2 Sub-Cell1 Sub-Cell2 Sub-Cell1 Sub-Cell2

1 0 1.435 0 3.533 0 1.73 0 1.93 0 3.534
2 0 1.497 0 3.527 0 1.816 0 1.958 0 3.529
3 0 1.674 0 3.508 0 1.962 0 2.077 0 3.509
4 0 1.485 0 2.984 0 1.746 0 1.736 0 2.985
5 0 0.192 0 1.254 0 0.525 0 0.167 0 1.25
6 0 0.06 0 0.559 0 0.311 0 0.065 0 0.56
7 0 1.038 0 0.97 0 1.127 0 0.662 0 0.971
8 0 2.752 0 3.002 0 5.623 0 2.328 0 1.946
9 0 1.599 0 3.283 0 4.663 0 4.612 0 3.285

10 0 4.53 0 4.819 0 3.176 0 7.419 0 4.82
11 0 6.835 0 5.322 0 4.997 0 9.412 0 5.324
12 0 5.714 0 3.5 0 3.515 0 7.637 0 2.414
13 0 10.698 2.94 0 0 7.347 0 12.01 2.947 0
14 0 21.957 18.275 0 0 16.2 0 22.068 18.285 0
15 0 42.822 39.794 0 0 32.079 0 39.881 39.808 0
16 0 83.017 51.791 0 0 60.175 0 71.127 51.808 0
17 10.033 100 16.464 0 1.457 100 83.942 0 16.474 0
18 34.214 100 19.949 0 21.692 100 89.628 0 19.959 0
19 66.646 100 22.789 0 48.817 100 93.326 0 22.8 0
20 98.763 100 17.278 0 76.565 100 74.579 0 17.288 0
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