
Citation: Barkalov, A.; Titarenko, L.;

Bieganowski, J.; Krzywicki, K. Basic

Approaches for Reducing Power

Consumption in Finite State Machine

Circuits—A Review. Appl. Sci. 2024,

14, 2693. https://doi.org/10.3390/

app14072693

Academic Editors: Chia-Hung Lin,

Neng-Sheng Pai, Chao-Lin Kuo and

Chang-Hua Lien

Received: 26 February 2024

Revised: 15 March 2024

Accepted: 19 March 2024

Published: 22 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Review

Basic Approaches for Reducing Power Consumption in Finite
State Machine Circuits—A Review
Alexander Barkalov 1,* , Larysa Titarenko 1,2 , Jacek Bieganowski 1,* and Kazimierz Krzywicki 3

1 Institute of Metrology, Electronics and Computer Science, University of Zielona Gora, ul. Licealna 9,
65-417 Zielona Gora, Poland; l.titarenko@imei.uz.zgora.pl

2 Department of Infocommunications, Kharkov National University of Radio Electronics,
61000 Kharkov, Ukraine

3 Department of Technology, The Jacob of Paradies University, ul. Teatralna 25,
66-400 Gorzow Wielkopolski, Poland; kkrzywicki@ajp.edu.pl

* Correspondence: a.barkalov@imei.uz.zgora.pl (A.B.); j.bieganowski@imei.uz.zgora.pl (J.B.)

Abstract: Methods for reducing power consumption in circuits of finite state machines (FSMs) are
discussed in this review. The review outlines the main approaches to solving this problem that
have been developed over the last 40 years. The main sources of power dissipation in CMOS
circuits are shown; the static and dynamic components of this phenomenon are analyzed. The
power consumption saving can be achieved by using coarse-grained methods common to all digital
systems. These methods are based on voltage or/and clock frequency scaling. The review shows
the main structural diagrams generated by the use of these methods when optimizing the power
characteristics of FSM circuits. Also, there are various known fine-grained methods taking into
account the specifics of both FSMs and logic elements used. Three groups of the fine-grained methods
targeting FPGA-based FSM circuits are analyzed. These groups include clock gating, state assignment,
and replacing look-up table (LUT) elements by embedded memory blocks (EMBs). The clock gating
involves a separate or joint use of such approaches as the (1) decomposition of FSM inputs and (2)
disabling FSM inputs. The aim of the power-saving state assignment is to reduce the switching
activity of a resulting FSM circuit. The replacement of LUTs by EMBs allows a reduction in the power
consumption due to a decrease in the number of FSM circuit elements and their interconnections. We
hope that the review will help experts to use known methods and develop new ones for reducing
power consumption. We think that a good knowledge and understanding of existing methods of
reducing power consumption is a prerequisite for the development of new, more effective methods to
solve this very important problem. Although the methods considered are mainly aimed at FPGA-
based FSMs, they can be modified, if necessary, and used for the power consumption optimization of
FSM circuits implemented with other logic elements.

Keywords: FPGAs; LUTs; EMBs; clock gating; decomposition; state assignment; coarse-grained
methods; fine-grained methods

1. Introduction

Currently, humanity is literally immersed in a sea of various VLSI-based digital
systems. As can be seen, for example, from the rapid development of the Internet of things,
robotics, and mobile technologies, this sea will deepen and expand. Obviously, the number
of digital systems around us will only increase. On the other hand, the modern world
is characterized by the need for a reasonable use of electrical energy. This characteristic
feature is also evident in the field of information technologies, which has led to the concept
of “green computing” [1].

So modern digital systems should be power-efficient. They should consume as little
power as possible [2]. It means that power consumption has become a primary concern in
the design of integrated circuits [3]. Two main issues are connected with this demand. The

Appl. Sci. 2024, 14, 2693. https://doi.org/10.3390/app14072693 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14072693
https://doi.org/10.3390/app14072693
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4941-3979
https://orcid.org/0000-0001-9558-3322
https://orcid.org/0000-0002-3566-6211
https://orcid.org/0000-0002-1088-5784
https://doi.org/10.3390/app14072693
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14072693?type=check_update&version=1

Appl. Sci. 2024, 14, 2693 2 of 32

first of them can be formulated as follows: the less the power consumption, the longer the
life of various mobile and autonomous devices. The second issue is connected with the
increase in heat dissipation.

The vast majority of digital systems consist of both combinational and sequential
blocks [4,5]. In this paper, we consider the problem of reducing power consumption by
sequential blocks of digital systems. The behavior of a sequential block can be represented
using a finite state machine (FSM) model [6,7]. These models are widely used for rep-
resenting, for example, such sequential blocks as (1) the control units of computers and
microcontrollers [8–13]; (2) the hardware–software interfaces and communication proto-
cols of embedded systems [14,15]; (3) various cryptoprocessors [16]; (4) hypertangent and
exponential functions [17]; (5) various integral stochastic computing blocks [18]; (6) the
activation functions of deep neural networks [19,20]; (7) different stages of cascaded digital
processing systems [21,22].

To optimize the power consumption of FSM circuits, it is necessary to take into account
the main technological specifics and other main features of logic elements implementing
FSM circuits [8,9]. Since the late eighties of the last century, field programmable gate arrays
(FPGAs) [23–25] have been used more and more to implement electrical circuits of various
systems [26,27]. In this survey, we mostly analyze various approaches used for improving
the power consumption of FPGA-based FSM circuits.

Currently, the vast majority of VLSI chips (including FPGAs) are manufactured using
the complementary metal–oxide–semiconductor (CMOS) technology [1,28]. In this regard,
we are considering methods of reducing the energy consumption aimed at this technology.

The main purpose of the article is a non-analytical review of possible solutions to
the problem of reducing power consumption in FSM circuits. The review also shows the
results of studies on the effectiveness of these methods. The review considers methods that
have appeared in the last 40 years. We did not perform a comparative analysis of these
methods and did not conduct additional studies of their efficiency (hence, the review is
non-analytical). All research results are owned by the authors of articles and monographs
listed in the Section “References”.

The rest of the paper is organized as follows: Section 2 briefly shows the theoretical
background of FPGA-based FSM synthesis. Section 3 contains the analysis of power
dissipation sources in CMOS integrated circuits and gives a classification method for
reducing power consumption. Section 4 presents methods for saving power consumption
based on clock gating and a decomposition of the initial FSM. Section 5 includes methods for
saving power consumption based on various outcomes of state assignment. The methods
based on replacing LUTs by EMBs are discussed in Section 6. A brief conclusion ends
the paper.

2. FSMs and FPGAs: Background Information

An FSM can be defined as a six-tuple S = ⟨A, X, Y, δ, λ, a1⟩ [29], where A = {a1, . . . , aM}
is a set of internal states, X = {x1, . . . , xL} is a set of inputs, Y = {y1, . . . , yN} is a set of
outputs, δ is a transition function, λ is a function of the output, and a1 ∈ A is an initial state.
An FSM can be represented using various tools, such as state transition graphs (STGs) [4], state
transition tables (STTs) [29], algorithmic state machines [30], binary decision diagrams [10,31],
and-inverter graphs [32], and graph-schemes of algorithms [29]. In this survey, we used either
STGs or STT for the specification of FSMs.

The FSM states are represented by the nodes of an STG. The arcs connecting the
nodes define the interstate transitions determined by the input signals which are the
conjunctions of inputs xl ∈ X (or their complements). These conjunctions are written
above the arcs together with the outputs generated during the transitions. To design an
FSM circuit, an STG should be transformed into the corresponding STT. An STT includes
the following columns [29]: am is a current state; aS is a state of transition; Xh is an input
signal determining a transition from am to as; Yh is a subset of the set Y generated during

Appl. Sci. 2024, 14, 2693 3 of 32

the particular transition. We name this subset a collection of outputs. The numbers of
transitions (h ∈ {1, . . . , H}) are shown in the last column of the STT.

There are two main types of FSM, namely, Mealy [33] and Moore FSMs [34]. The first
of them was proposed in 1955 by G. Mealy; the second was proposed in 1956 by E. Moore.
In both cases, the function δ determines the states of transition as functions depending on
the current states and inputs. Thus, it is the following function:

δ(A, X) = A. (1)

For Mealy FSMs, the function λ determines the outputs as functions depending on the
current states and inputs. It gives the following function:

λ(A, X) = Y. (2)

For Moore FSMs, the function λ determines the outputs with the following function:

λ(A) = Y. (3)

In this article, we mostly analyze the reduced power consumption (RPC) methods for
Mealy FSMs. Our choice is explained by the fact that these methods are widely represented
in the open scientific and technical literature.

In 1965, Viktor Glushkov proved a theorem on the structural completeness of FSMs [35].
According to this theorem, an FSM circuit is represented as a composition of the combi-
national part and the memory. The memory is necessary to keep the history of the FSM
operation. The history is represented by FSM internal states. This fundamental approach is
still widely used for the synthesis of FSM circuits.

An FSM logic circuit is represented by some systems of Boolean functions (SBFs) [29].
To find these SBFs for Mealy FSMs, it is necessary to [29]: (1) encode states am ∈ A by
binary codes K(am); (2) construct sets of state variables T = {T1, . . . , TR} and input memory
functions (IMFs) D = {D1, . . . , DR}; and (3) transform an initial STT into a direct structure
table (DST). States am ∈ A are encoded during the step of state assignment [4].

The minimum possible number of state variables RS is determined by

RS = ⌈log2M⌉. (4)

The approach based on (4) defines so-called maximum binary codes [4]. This method
is used, for example, in the well-known academic system SIS [36]. But the number of state
variables can be different from (4). For example, the one-hot state codes with R = M are
used in the academic system ABC [32,37] of Berkeley. The maximum binary codes and
one-hot codes define extreme points of the encoding space. There are other approaches for
state assignment where the following relation holds: ⌈log2M⌉ ≤ R ≤ M.

A state register (RG) keeps the state codes. The register includes R memory elements
(flip-flops) having shared inputs of synchronization (Clock) and reset (Start). Very often,
master–slave D flip-flops are used to organize state registers [38,39]. The pulse Clock allows
the functions Dr ∈ D to change the RG content.

After the execution of the state assignment, we should create a direct structure table. A
DST includes all columns of an STT and three additional columns. These columns include
the current state codes K(am) and the codes K(as) of the states of transitions. At last, a
column Φh includes the symbols Dr ∈ Φ corresponding to ones in the code K(as) from the
row h of a DST (h ∈ {1, . . . , H}). A DST is a base to construct the following SBFs:

Φ = Φ(T, X); (5)

Y = Y(T, X). (6)

SBF (5) corresponds to function (1), SBF (6) to function (2). Systems (5)–(6) determine
a structural diagram of a so-called P Mealy FSM (Figure 1) [39].

Appl. Sci. 2024, 14, 2693 4 of 32

Combinational
part

RG
Start

Clock

X

Y

Figure 1. Structural diagram of a P Mealy FSM [39].

The combinational part consists of two blocks. The block of input memory functions
generates functions (5). The block of outputs generates system (6). The pulse Start writes
the code of the initial state to RG. The pulse of the synchronization Clock allows information
to be written to the register.

In this survey, we mostly discuss the RPC methods for FPGA-based Mealy FSMs. Let
us shortly describe the peculiarities of FPGAs.

As a rule, modern FPGAs have an “island-style” architecture [40]. They include
different configurable logic blocks (CLBs) and a matrix of programmable interconnec-
tions [23–25]. To implement an FSM circuit, we can use either CLBs consisting of look-up
table (LUT) elements or embedded memory blocks (EMBs). The output of a LUT can be
connected with a flip-flop through a dedicated multiplexor. The flip-flops are necessary for
implementing register circuits of sequential blocks [6]. This register is distributed among
the LUTs implementing IMFs. The EMBs are synchronous blocks; thus, there is no need for
an additional register to keep FSM state codes.

A LUT consists of SRAM cells and can keep a truth table of an arbitrary Boolean
function having up to SL arguments [40,41]. The main feature of a LUT is an extremely
small number of inputs, SL. In modern FPGAs, the number of LUT inputs does not
exceed six [23–25]. If some Boolean function depends on more than SL arguments, it
should be transformed using some methods of functional decomposition [41]. It results in
multi-level FSM circuits with irregular systems of interconnections. Such circuits resemble
programs based on an intensive use of “go-to” operators [42]. Using terminology from
programming, we can say that the functional decomposition produces LUT-based circuits
with “spaghetti-type” interconnections.

A chip area occupied by a LUT-based FSM circuit is determined mostly by the number
of LUTs and the system of their interconnections. Obviously, to reduce the occupied
area, it is necessary to reduce the number of LUTs in a circuit. The number of LUTs
also influences the power consumption. As noted in [43], “process technology has scaled
considerably. . . with current design activity at 14 and 7 nm”. Hence, interconnection delay
now dominates logic delay [43]. Also, it is known that interconnections are responsible
for consuming up to 70% of the energy [40,44]. Thus, to reduce the consumed energy, it
is necessary to reduce the number of interconnections. This improves both the operating
frequency and power consumption.

Modern FPGAs include a lot of configurable embedded memory blocks [25]. The EMBs
allow the implementation of systems of regular functions [45]. The replacement of LUTs by
EMBs allows one to significantly improve the characteristics of resulting FSM circuits [46].
Because of it, there are a lot of design methods targeting EMB-based FSMs [22,46–56]. The
survey of different methods of EMB-based design can be found in [45]. Unfortunately,
these methods can be used only if there are “free” EMBs, which are not used to implement
other parts of a digital system.

An EMB can be characterized by a pair ⟨SA, tF⟩, where SA is a number of address
inputs, and tF is a number of memory cell outputs. A single EMB can keep a truth table
of an SBF including up to tF Boolean functions depended on up to SA arguments [57]. A
pair ⟨SA, tF⟩ defines a configuration of an EMB with a constant total number of bits (size
of EMB):

V0 = 2SA × tF. (7)

Appl. Sci. 2024, 14, 2693 5 of 32

The parameters SA and tF could be defined by a designer [58]. It means that EMBs are
configurable memory blocks [59]. The following configurations exist for modern EMBs [25]:
⟨15, 1⟩, ⟨14, 2⟩, . . . , ⟨9, 64⟩. Therefore, modern EMBs are very flexible and can be tuned to
meet the characteristics of a particular FSM. Because of it, there are a lot of design methods
for EMB-based FSMs [22,46–56].

If the condition
2R+L(R + N) ≤ V0 (8)

holds, then an FSM circuit is implemented as a single EMB [45]. If (8) is violated, then an
FSM circuit could be implemented as (1) a network of EMBs or (2) a network of LUTs and
EMBs [46,55].

3. Methods of Reducing Power Consumption in CMOS Integrated Circuits

The CMOS technology uses metal–oxide–semiconductor (MOS) field-effect transistors
to create gates, flip-plops, and memory blocks such as RAM and ROM, and so on [60].
Each gate uses complementary and symmetrical pairs of p-type and n-type transistors. For
example, it requires two MOS transistors to implement the circuit of a NOT gate (Figure 2a).

Vdd

TB

Vout

GND

Vin

GND

Vdd

Vout=Vdd

(a) (b)

GND

Vdd

Vout=0

(c)

TA

RB=∞

RA=0 RA=∞

RB=0

Figure 2. CMOS-based NOT gate (a) and its stable states (b,c).

The NOT gate operates in the following manner. If the voltage Vin = “0”, then the
equivalent electrical circuit is shown in Figure 2b. The transistor TA is open; its resistance
RA = 0. At the same time, the transistor TB is closed, and its resistance RB is close to
infinity. It means that the following relation takes place: Vout = Vdd = “1”. If Vin = “1”,
then TA is closed (its resistance is close to infinity) and TB is open (its resistance is close to
zero). It gives Vout = GND = 0 (Figure 2c). This situation is common: if one of transistors
is open, then the second transistor of the pair is closed.

Of course, there is an ideal mode of operation shown in Figure 2. In this ideal case,
there is no current between Vdd and GND. Thus, the so-called leakage current Ileak is absent.
But in reality, the resistance of a closed transistor is far from infinity, and the resistance of an
open transistor is greater than zero. This means that a small leakage current still exists. This
current is responsible for the static power consumption of a CMOS gate in its stable state.

There is parasitic load capacitance between the wires Vout and GND. It is responsible
for a dynamic power consumption of a gate. Obviously, it takes some time to charge (from
“0” to “1”) or discharge (from “1” to “0”) the parasitic capacitor Cpar. Until the final stable
voltage (either “0” or “1”) is established at the gate output, some power is consumed.

When a gate is switched, there is a very small instant of time when both transistors are
open. It means that during that time, there is a short circuit current Isc between the voltage
source Vdd and the ground, GND.

Therefore, there are two categories of power consumption in CMOS gates: static and
dynamic. The static power Pst is connected with the existence of the leakage current Ileak.
The static power is determined as follows [61,62]:

Pst = IleakVdd. (9)

Appl. Sci. 2024, 14, 2693 6 of 32

The dynamic power Pdyn is connected mostly with the charging and discharging of
the capacitor Cpar. It is determined by the following expression [63]:

Pdyn = αCparV2
dd fop. (10)

In (10), the symbol α stands for a switching activity, fop is an operating frequency.
Up to this point, we have analyzed 64 articles and monographs. Summarizing the

analysis of these sources, we can list some reasons showing the importance of reducing
power consumption. They are the following:

1. A lot of devices are mobile and/or autonomous. They receive energy from batteries.
To prolong the lifetime of these devices, it is necessary to consume as little energy
as possible. If we diminish the power consumption, then we reduce the degree of
heating of a chip. In turn, we are able to use smaller power supplies and reduce
heat-dissipation overhead. Most importantly, it reduces the cost, weight, and size of
devices. This is especially important when implementing embedded systems [64].

2. The lower the operating temperature, the higher the reliability and the longer the
lifetime of the device. As shown in [1], the device failure rates are increased by up
to a factor of two, if there is a 15 degree Celsius rise in temperature. Thus, the heat
dissipation should be reduced to make CMOS-based systems more reliable.

3. The improvement of CMOS technology results in a growth of the on-chip transistor
densities and in diminishing the delay. Unfortunately, it results in a technology-
imposed utilization wall: only a fraction of an FPGA chip can be used at full speed
within a power budget.

4. It is known that information and telecommunications technology contribute around
3% to the overall carbon footprint [65]. Thus, to contribute to the green computing, it
is necessary to diminish the power consumption of digital systems.

All these factors should be taken into account in the process of FPGA-based FSMs’
design. To achieve this, it is necessary to have efficient methods for reducing the power
consumption represented by (9)–(10). How can it be done?

As follows from (9), the static power is determined by technology. It is shown in [66]
that the value of Pst increases drastically with CMOS scaling. The higher the FPGA chip
density is, the higher the value of Pst is. Obviously, within a certain technology, the static
power consumption of VLSI-based FSM circuit could be decreased by reducing the chip
area occupied by an FSM circuit. Thus, it is necessary to reduce the quantity of internal
occupied resources (IORs) used by an FSM circuit. It means that it is necessary to improve
methods of IOR optimization used in VLSI-based FSM design.

The analysis of (10) shows that the value of Pdyn can be reduced by reducing the value
of Cpar. This can be achieved simply by improving the semiconductor technology. Next, the
reducing supply voltage Vdd significantly diminishes the value of Pdyn, but it diminishes
the possible operating frequency of an FSM circuit. Reducing the value of fop also leads to
a decrease in Pdyn. But very often, there is a deadline for producing FSM outputs yn ∈ Y.
For example, it is very important for real-time embedded systems [14,67,68]. An FSM is a
part of some digital system including various operational blocks. The lower the operating
frequency, the more time is required by a system to fulfill a specific task. The system’s
consumed energy depends on the time of system operation. It means that reducing the fop
of an FSM can increase the overall power consumption of a digital system.

To control the values of Vdd and fop, various methods of dynamic voltage and fre-
quency scaling (DVFS) can be used [3]. Also, it can be done using low-power modes.
These methods belong to a group of power mode management (PMM) sometimes named
dynamic power management (DPM) [69].

Thus, only a parameter whose value can be changed due to the synthesis strategy
represents a switching activity. To minimize the value of α, various methods of state
assignment can be used [70]. We discuss them a bit later.

Appl. Sci. 2024, 14, 2693 7 of 32

The analysis of the literature allows us to classify the known RPC methods. This
classification is shown in Figure 3.

Reducing power consumption

Fine-grained methods

Clock gating

Decomposition
of FSM

Input Disabling

State assignment

Replacing LUTs
by EMBS

Coarse-grained methods

Voltage scaling

Clock frequency
scaling

.

.

.

.

.

.

Figure 3. Classification of reduced power consumption methods.

We have divided RPC methods into two groups. The coarse-grained methods (CGMs)
are the same for any block of a digital system. The fine-grained methods (FGMs) take into
account specifics of a particular block. As a rule, all these methods assume the presence of
some additional block providing the RPC (Figure 4).

Operational
unit 1

Operational
unit K

System
RPC block

FSM1 FSMI

RPC1 RPCI

...

...

...

...

...

Digital system

Figure 4. Providing RPC for a digital system.

The system’s RPC block executes rules of DVFS accepted in a particular digital system.
It could be either the voltage scaling or clock frequency scaling or both. For example, the
value of Vdd can be reduced for any operational or sequential block such as FSM. Also,
either Vdd or Clock could be cut off a particular block. The system’s RPC can replace the
GND voltage by some other voltage to reduce the values of leakage currents.

Obviously, if either Vdd = 0 or fop = 0, then Pdyn = 0. This follows from (10). From
(9), diminishing the value of Ileak leads to reducing the value of Pst. This is a positive effect
of DVFS. But this approach also has two negative effects [69]. Firstly, to implement the
system’s RPC block, it is necessary to use some IORs. Thus, this block requires an additional
chip area. Also, the block consumes some power and adds to the system’s latency time.
If fop = 0, then an FSM is in the idle mode (it is “sleeping”). To “wake up” an FSM, it is

Appl. Sci. 2024, 14, 2693 8 of 32

necessary to start the clock generator. In turn, the generator takes some time to stabilize the
operating frequency. An increase in the latency time is the second negative effect of DVFS.

Therefore, DVFS is connected with a so-called power overhead [70]. The power
overhead includes the three following components: the extra chip area, additional power
consumption, and increased latency time. It is necessary to find a reasonable trade-off
between the inevitable overhead and the required characteristics of a digital system. We do
not discuss these methods in this paper.

As follows from Figure 3, there are three groups of fine-grained methods of RPC.
The clock-gating (CG) approach is connected with interrupting connections between the
clock generator and synchronization inputs of flip-flops. There are two approaches based
on CG: (1) the decomposition of an FSM and (2) the input disability. This approach is
connected with using additional blocks RPC1 − RPCI to control the timing of automata
FSM1 − FSMI (Figure 4). Thus, this approach is connected with an RPC overhead.

The second group of FGMs consists of special methods of state assignment. The states
am ∈ A are encoded in a way that reduces the value of switching activity α. From (10), this
reduces the value of Pdyn (if Cpar, Vdd, and fop have constant values). Sometimes, this leads
to increasing the value of the bit depth of state codes, R, compared to its minimum value
determined by (4). This growth is the RPC overhead for this group of FGM.

The third group is based on the replacement of LUTs by EMBs. In fact, we are moving
from fine-grained LUTs to coarse-grained EMBs. As follows from Figure 5, some group
consisting of four LUTs and their interconnections is replaced by a single EMB.

LUT1 LUT2

LUT3 LUT4

x1 x2 x3 x4

y1 y2

EMB

x1x2 x3x4

(b)(a)

y1 y2

Figure 5. Replacing four LUTs by a single EMB.

The circuit (Figure 5a) consists of 4 LUTs and 11 interconnections. It is replaced by the
circuit having a single EMB and six interconnections (Figure 5b). These interconnections
correspond to inputs and outputs of this circuit. There are no additional interconnections
which can be found in the LUT-based circuit (Figure 5a). Obviously, the EMB-based circuit
has better area, time, and power characteristics than the equivalent LUT-based circuit. It
does not require any power overhead. But this approach has two limitations. First, it can
be used if there are “free” EMBs (very often, EMBs are used for implementing operational
blocks of a system). Second, an EMB can be used if the number of arguments of an SBF
does not exceed the number of address inputs, SA.

Now, we discuss the most known fine-grained methods of reducing power consump-
tion in the next three Sections of this survey. These methods are the clock-gating, FSM
decomposition, state assignment restricting the switching activity, and replacing LUTs
by EMBs.

4. Saving Power by Clock-Gating and FSM Decomposition

In Mealy FSMs, outputs yn ∈ Y are unstable [39]. Because outputs yn ∈ Y depend on
inputs xl ∈ X, then changing inputs during the clock cycle may cause short-term changes
in outputs (glitches). This may cause a malfunction of a digital system. To stabilize the
outputs, it is sufficient to stabilize the FSM inputs. This can be achieved by entering a
special register RGX as shown in Figure 6. This figure also depicts the interaction of an
FSM with other digital system blocks.

Appl. Sci. 2024, 14, 2693 9 of 32

RGX

Clock1

Start

FSM
Other blocks
of a digital

system

Start

Clock

XRX Y

Figure 6. Interaction of an FSM with other blocks of a digital system.

To generate correct output values, an FSM should analyze the outputs of other blocks.
They form the set X = {x1, . . . , xL}. When values of the inputs are correct, the pulse Clock1
is generated. The values of FSM inputs are loaded into RGX. Now, they correspond to
registered inputs from a set XR. The elements of XR are stable during the cycle of Clock.
Thus, an FSM generates the following SBF:

Y = Y(T, XR). (11)

Now, the outputs are stable after the completion of various transients in the FSM circuit.
Let us point out that there is no need of RGX if the model of a Moore FSM is used.

This is connected with the nature of outputs (3). From (3), there is no direct dependence
between the inputs and outputs of a Moore FSM. The outputs depend only on states.
Thus, the outputs are registered. The state register outputs (state variables) are stable
during each cycle of operation. Therefore, if some input is changed between two pulses of
synchronization, the outputs are unchangeable.

Thus, in reality, there are two registers in the circuits of Mealy FSMs. The register
RG includes R flip-flops, the register RGX consists of L flip-flops. These registers are
synchronized by different pulses (Figure 7).

RGX

Block of
synchronization

RG

XR T

X Φ

St
ar

t

C
lo

ck
1

Clock

Figure 7. Registers of a Mealy FSM.

The pulses Clock1 and Clock are generated by the special block of synchronization.
This block contains a quartz generator, delay circuit, and a single vibrator generating
the pulse Start. It is known that clock trees usually consumes up to 50% of the dynamic
power [71]. The internal switching power of flip-flops is responsible for 45–50% of the clock
tree’s power consumption [72]. As a result, it is very important to deliver synchronization
pulses only to flip-flops whose states will be changed in a particular cycle of FSM operation.
This can be achieved by using the clock-gating approach.

CG assumes using an additional clock logic (CL) block [3]. This logic is based on the
precomputation of inputs being disabled [73,74]. In this case, some precomputation logic is
added to the CL. It analyzes inputs and state codes to disable the loading of all or a subset
of flip-flops of RGX (Figure 8).

Appl. Sci. 2024, 14, 2693 10 of 32

RGX

FSM logic

Clock

Loading
controlCL

RG

T

Φ

Clock

Start

Y

X

XC

XR

Figure 8. Organization of clock gating.

The CL generates loading control signals as functions of XC ⊆ X and state variables.
These signals either allow or prevent the passage of Clock1 to inputs of synchronization of
flip-flops creating RGX.

It is very important to choose the subset of X which enters the CL. The smaller the
difference |X| − |XC|, the higher the probability that the CL is active. It leads to reducing
the power consumption of both RGX and FSM logic block. Of course, this is connected
with a CL-based overhead: this block requires some chip area, consumes additional power,
and increases the FSM cycle duration. Thus, it is very important to find a set XC ⊆ X that
reduces the negative influence of the CL and provides the minimum power consumption
of an FSM circuit.

As noted in the monograph [75], 20% of program operators are responsible for 80%
of the program execution time. The same may be true for FSM states. If a state am ∈ A is
a waiting state, then an FSM may remain in that state for a long time. If a state register
consists of D flip-flops, then the code K(am) should be reloaded during a lot of clock cycles.
Based on a similar analysis, the model of a gated-clock FSM was proposed [76].

In [76], the waiting state is named a self-loop. If an FSM enters a self-loop, then a
special logic makes the pulse Clock off. Therefore, in that case, the CL controls the state
register RG (Figure 9).

RGX

FSM logic

Clock

Loading
control

CL

RG

T
Φ

Start

YXC

XR

Clock

X

Figure 9. Organization of a clock-gating FSM [76].

A comparison of Figures 8 and 9 shows that these approaches are very similar. They
have the same positive and negative features. These methods can be used simultaneously.
Mostly, these two methods are used together with FSM decomposition [77].

The first work devoted to FSM decomposition appeared in 1960 [78]. There are three
known basic approaches of decomposition: parallel, cascade, and general [79]. These
approaches are shown in Figure 10.

Appl. Sci. 2024, 14, 2693 11 of 32

FSM1

FSM2

Output
block

X Y

FSM1

FSM2

X

Y

FSM1

FSM2

Output
block

X Y

(a) (b) (c)

Figure 10. Three approaches for FSM decomposition [79].

Both methods of parallel (Figure 10a) and cascade (Figure 10b) decomposition have
rather theoretical value [3]. But the general decomposition (Figure 10c) can be used for any
FSM. This approach was used for implementing PLA-based FSMs [80,81].

Let us discuss the FSM architecture based on the general decomposition. The FSM
circuit includes three combinational blocks and two registers keeping the state codes of
different FSMs (Figure 11).

FSM1 logic

FSM2 logic

RG1

RG2

Output
Block

Y

Y1

Clock

Start

Clock

Start

X

X1

X2

T1

T2

Y2

Φ1

Φ2

Figure 11. Structural diagram of an FSM based on general decomposition.

The set A is decomposed by two disjoint sets, A1 and A2. The states am ∈ A1 are
encoded using R1 state variables, which form a set T1. The value of R1 is determined by
R1 =

⌈
log2

∣∣A1
∣∣⌉. The states am ∈ A2 are encoded using R2 state variables, which form a

set T2. The value of R2 is determined by R2 =
⌈
log2

∣∣A2
∣∣⌉. There are R1 elements in the

set of IMFs Φ1; there are R2 elements in the set of IMFs Φ2. Both registers have the same
pulses Start and Clock. The set of FSM inputs is represented as X = X1

⋃
X2. It is quite

possible to have identical elements in these sets.
As follows from Figure 11, the following SBFs should be implemented:

Φ1 = Φ1(T1, T2, X1);

Φ2 = Φ2(T1, T2, X2);

Y1 = Y1(T1, T2, X1); (12)

Y2 = Y2(T1, T2, X2);

Y = Y(Y1, Y2).

For FSMs based on (12), the following design method is proposed in [3]:

1. Select disjoint subsets A1 and A2.
2. Generate STGs for each sub-FSM. Add additional RESET states into each STG.
3. Copy all transitions from the initial STG in unmodified form into new STGs.
4. Replace the transitions ⟨am, as⟩ where am ∈ A1 and as ∈ A2 by the two following

transitions: ⟨am, RESET2⟩ and ⟨RESET2, as⟩.

Appl. Sci. 2024, 14, 2693 12 of 32

5. Replacing the transitions ⟨am, as⟩ where am ∈ A2 and as ∈ A1 by the two following
transitions: ⟨am, RESET1⟩ and ⟨RESET1, as⟩.
In [3], this approach is combined with clock gating for both inputs and state registers.

This combines approaches from [76,77] with some new approach. The initial FSM is divided
into two FSMs: FSM1 and FSM2.

FSM1 is small; it includes states am ∈ A1 with very high probabilities of transitions
⟨am, as⟩ where as∈ A1. This FSM corresponds to the famous 20% of operators determined
by [75]. All other initial FSM states belong to the set A2. FSM1 is mostly active, and FSM2
is mostly idle. As a result, it is possible to disable the flip-flops of RG2 and RGX for FSM2.
If FSM1 is idle, its state register RG1 can be disabled too. This idea leads to the structural
diagram shown in Figure 12.

FSM1 logic

FSM2 logic

RG1

RG2

Output
Block

Y

Y1

X

X1

X2

T1

T2

Y2

Φ1

Φ2

E02

EN2

NS1

E01

RGX2

X2

NS2

EN1

Figure 12. Structural diagram of a decomposed FSM [75].

The following sets can be obtained from Figure 12: sets of inputs X1 and X2 which
can have common elements; sets of outputs Y1 and Y2 which can be disjoint; disjoint
sets of IMFs Φ1 and Φ2; disjoint sets of state variables T1 and T2; sets of internal control
signals (ICSs) SC1 and SC2. These last sets are the following: CS1 = {EO1, EN1, NS1}
and CS2 = {EO2, EN2, NS2}. Using the ICS EN, FSM1 may disable both RGX2 and RG2.
The signal EO1 determines the required state of FSM2. The same function is executed by
FSM1 using outputs EO2. The signals EN1 and EN2 disable the registers of FSM2 and
FSM1, respectively. Also, the signal EN1 disables the loading of inputs xl ∈ X2 into RGX2.

In [3], the authors show results of experiments conducted using the CAD system
SIS [36] and library [82]. The results show that the “impressive power savings correspond
to larger FSMs (for example, 79.5% for the benchmark planet)”. There is no gain for small
FSMs. This can be explained by adding some circuitry and two extra states. For example,
around 30% of the area is added to the FSM circuit implementing the benchmark planet.

Each FSM of a decomposed circuit can be treated as a superstate (SS). For example,
the structural diagram from Figure 12 corresponds to the STG shown in Figure 13.

SS1 SS2

X22/SC2

X12/SC1 X21/Y2X11/Y1

Figure 13. State transition graph with two superstates.

We divided the sets X1, X2 ⊆ X into two subsets each. For example, the set X11 ⊆ X1
causes transitions inside FSM1 with the generation of outputs yn ∈ Y1. The set X12 ⊆ X1
causes transitions into the RESET state of FSM2. These transitions are accompanied with

Appl. Sci. 2024, 14, 2693 13 of 32

the generation of ICSs from set SC1. Because the transitions are determined by FSM states
and inputs, then it makes sense to use clock gating for both states and inputs.

As shown in [70], the approach similar to [71] has two drawbacks:

1. The decomposed network always includes only two FSMs.
2. The blocks of clock logic are synchronized, and Clock pulses enter these blocks. As a

result, the CL blocks consume a lot of power.

In [70], an approach is proposed that has the following advantages:

1. The decomposed FSM is represented by K submachines FSM1, ..., FSMK, where K ≥ 2.
2. The blocks of clock logic are asynchronous.

Summarizing the results [70], it is possible to represent an FSM as a network including
K interrelated partial FSMs. Each of them includes its own synchronization circuit of CL.
The circuits CL1 − CLK are interrelated (Figure 14).

FSM1
Clock

CLK RG

Y

g01

Clock

X1

XK

Output
Block

.

.

.

CL1

g0K

act1

actK

Y1

YK

.

.

.

Figure 14. Decomposition of an FSM based on [70].

Special signals g0k(k ∈ {1, . . . , K}) point to the machine FSMk that should be active in
the next cycle of Clock. Using this signal, blocks CLk generate signals actk(k ∈ {1, . . . , K}).
Only one of these signals are equal to one. This determines the particular active sub-FSM.
The ABD gates help to implement the synchronization for sub-FSMs:

Ck = actk&Clock (k ∈ {1, . . . , K}). (13)

In [71], the clock signal enters the circuits of clock logic. This is the signal with the
highest switching activity among all other signals such as FSM inputs, outputs, and state
variables. If the pulse Clock enters the circuits of CL, then the power consumption is
increased as compared with the case discussed in [70].

As shown in [70], there are three operating modes for clock logic blocks. During a
transition between different sub-FSMs (hand-over mode), all CL blocks are active. In this
mode, the maximum amount of power is consumed by these blocks. If actk = 0, then
the block CLk is in the disable mode. It means that the power is consumed only by AND
gate. The third mode is connected with enabling the block CLk (actk = 1). The circuits of
clock logic are passive; no power is consumed. Of course, switching AND gates requires
some power.

The asynchronous approach allows a significant saving in power consumption com-
pared with the synchronous approach. As shown in [70], the power consumption is
1.36 times less for the hand-over mode, 4.13 times less for the enable mode, and 5.9 times
less for the disable mode. Also, the difference in power consumption is greater (for
different modes).

In [70], experimental results are shown based on the use of the proposed approach for
benchmarks bbara, dk512, ex1, keyb, styr, donfile, tma, and scf. They show that for the
rather simple benchmark dk512, the value of K = 3 provides the best solution. At the same
time, the best result for the not too complex benchmark ex1 is connected with K = 4. The

Appl. Sci. 2024, 14, 2693 14 of 32

most complex benchmark is scf (M = 121, L = 27, N = 56). But the best solution for this
benchmark is provided by splitting it into only two interrelated FSMs (K = 2). The same
occurs for the simplest FSM represented by the benchmark bbara, having the following
characteristics: M = 10, L = 4, and N = 2. Thus, the optimal value of K does not depend
on the number of states, M, or inputs, L, or outputs, N. The results in [70] show that the
optimal value of partial FSMs, K, depends on the probabilities of interstate transitions.

Also, the results in [70] indicate that saving power is connected with the overhead. The
conclusion is the same as for other discussed methods: the more complex an original FSM
is, the smaller the relative overhead area added. The same is true for the decomposed FSM
performance: the more complex the original FSM is, the smaller the impact of additional
circuitry on the performance is.

5. Saving Power by State Assignment

A huge number of state assignment methods are known. Some of them are aimed
solely at power consumption reduction. But if some method minimizes the chip area
occupied by an FSM circuit, then this method minimizes the static power consumption
too. Due to this fact, we do not separate these two groups of methods. To prepare this part
of our survey, we used the following sources: [83–111]. Of course, this is only the tip of
the iceberg, but the generalization of these methods gives a general idea of executing RPC
through the state assignment.

The power consumption depends significantly on the chip area occupied by an FSM
circuit. This was proven, for example, in [109]. In [109], four different state assignment
approaches are investigated: binary (with R = ⌈log2M⌉), one-hot (with R = M), two-hot,
and JEDI (the output-dominated version).

In the case of two-hot state assignment, no more than two code bits can be equal to
one, simultaneously. This allows the use of less than M bits for the state codes. If M = 6,
for example, then three bits are required to encode the states. The following codes are used:
001, 010, 100, 101, 011, and 110. This gives the same value of R as it is for the binary state
assignment. But if M = 7, then four bits are necessary to create two-hot state codes. This is
less than for the one-hot approach (R = 7), but more than for the binary approach (R = 3).

In [109], the benchmarks from [82] were used. The benchmarks were represented
in the KISS format. The FPGA Express by Synopsis and Xilinx Foundation Tools F3
were used to obtain FSM circuits. The KISS files were transformed into a VHDL-based
representation. To obtain the circuits’ characteristics, the authors used the following
FPGA sample: XC401EPC84-1. The characteristics were measured using the following
operating frequencies: 100 Hz, 2 MHz, and 8 MHz. SL = 4 was used for the FPGAs of
XC401E/XL [112].

The occupied area was measured as a number of CLBs. This approach is still used
nowadays [113]. Sometimes, the number of used flip-flops is added to the number of CLBs.
Some results of the investigations in [82] are shown in Table 1.

We selected the results of experiments for five benchmarks having a wide range of
characteristics. The last row of Table 1 includes the numbers of inputs, L, outputs, N, and
states, M, of particular FSMs. The number of state variables, R, is the same as the number
of flip-flops. It was taken from the reports generated by the CAD tools.

As follows from Table 1, the number of inputs influences significantly the area charac-
teristics. For example, practically the same value of R is obtained for benchmarks ex4 and
kirkman. But there are two times more CLBs in the circuit for kirkman. This is connected
with the significant difference in the values of L for these two benchmarks.

The following conclusion is made in [109]: “For FSMs with up to 8 states, the binary
encoding must be used. For FSMs with more than 16 states, the one-hot is always the best
choice”. We think this is true if FSMs have the same number of inputs xl ∈ X. Otherwise, a
lot depends on the value of L + R.

Appl. Sci. 2024, 14, 2693 15 of 32

Table 1. Results of experiments from [82].

Characteristics Method bbarabbarabbara dk512dk512dk512 ex4ex4ex4 kirkmankirkmankirkman planetplanetplanet

Area (CLB + FF) Binary 11 + 3 14 + 4 22 + 4 45 + 4 113 + 6
One-hot 8 + 7 10 + 14 15 + 14 43 + 16 65 + 48
JEDI 10 + 3 9 + 4 19 + 4 45 + 4 106 + 6
Two-hot 15 + 4 16 + 5 18 + 5 57 + 5 99 + 10

Delay (ns) Binary 30.0 20.8 31.2 38.3 60.6
One-hot 25.6 20.4 29.4 36.2 41.3
JEDI 29.4 26.0 27.0 38.9 54.3
Two-hot 31.2 23.9 27.2 36.6 61.1

Power (mW/MHz) Binary 1.39 2.46 2.51 4.14 14.4
One-hot 1.38 1.54 1.66 4.00 6.23
JEDI 1.87 1.85 2.10 3.73 13.2
Two-hot 1.46 2.48 2.11 5.21 11.7

L + N + M 4 + 2 + 7 1 + 3 + 15 6 + 9 + 14 12 + 6 + 16 7 + 19 + 48

It is very interesting that “for any state encoding, the power is linearly correlated with
the number of states. The coefficient of correlation is over 0.85” [109]. The same is true for
the relationship “number of states-area”.

Also, there is a very important conclusion made in [109]: “between area and power,
there is the coefficient of correlation 0.91”. It is shown in [109] that “the 77% of smaller
circuits consume lower power”. The results of [109] show that “area, time and power
consumption correlation with other FSM parameters (inputs, outputs and states) and
combinations of these parameters neither produce significant results”.

As shown in [109], the proper state assignment can give up to 57% of power saving.
Of course, this is true only for the investigated benchmarks and that particular FPGA chip.
The saving amount can be different for a different suite. It is interesting that the discussed
methods do not use probabilities of interstate transitions. If we take them into account,
we can reduce the switching activity, α. To do it, some special state assignment methods
are used.

One of the first algorithms decreasing the switching activity was proposed in [85]. It
targets a state assignment that minimizes the switching activity and takes into account the
issue of area. Due to this integral approach, both types of power consumption, static and
dynamic, are optimized. The method is based on a probabilistic description of FSMs.

The method uses an average switching activity to find the switching (transition)
probability. This allows the obtainment of the probabilities of FSM interstate transitions.
This information is used for executing the state assignment. But to do it, it is necessary to
have the input switching probabilities. In [85], an STG is modeled as a Markov chain [114].
The Markov chain model describes an STG as a directed graph with weighted edges and a
structure isomorphic to the initial STG. The STG is transformed into a weighted undirected
graph. The weight of each edge is proportional to the total probability of a transition
between FSM states am, as ∈ A connected by this edge. This final STG is used as the initial
information for the state assignment step.

The main idea of [85] is “to find a state assignment that minimizes the number of state
variables that change their values when the FSM moves between two adjacent states”. In
the best case, only a single state variable is changed, as it is for Gray codes. But M/2 state
variables are necessary for the Gray state assignment. The aim of [85] was to find the value
of state code bits close to the minimum value defined by (4).

A state encoding is represented by a Boolean matrix. Its rows correspond to state
codes and columns to state variables. The required state assignment can be found by the
solution of the integer linear programming problem formulated in [85].

For small FSMs, it is possible to find the exact solution. For complex FSMs, only a
suboptimal solution can be found because the problem is NP-complete. Thus, there are a
lot of heuristic algorithms for its solution [90,91,115]. In [85], the column-based approach

Appl. Sci. 2024, 14, 2693 16 of 32

is used. In this case, each state variable corresponds to a column. The method includes
R iterations, when each state variable Tr ∈ T receives either zero or one. The assignment
is done in a way that minimizes the switching activity. The algorithm tries to minimize
the number of different values of state variables for states with the highest switching
probabilities. The algorithm produces a semi-exact solution.

To minimize the chip area, some additional constraints are used. Additional metrics
are used, similar to the ones proposed in [90]. One of them is a fan-out-oriented metric. It
can be used for FSMs with a small number of inputs and a large number of outputs. The
second metric is a fan-in-oriented metric. It can be used for FSMs with a large number of
inputs and a small number of outputs. These area constraints are added as weights for
an STG.

To reach some trade-off for area–power, the parameter α ≤ 1 is introduced in [85]. It
shows what is more important for a given task. The weight ωm,s of an edge connecting
states am and as is determined by

ωm,s = (1 − α)ωarea
m,s + αω

power
m,s . (14)

The weights for area (ωarea
m,s) are determined using the MUSTANG approach [90]. The

weights for power (ωpower
m,s) are determined by the heuristic algorithm from [85].

The results of experiments with the benchmarks from [82] show that the saving power
increases with the growth in FSM complexity. If R = 4, then the maximum saving is up
to 8%; if R = 5, the maximum saving is up to 16%; if R = 6, then the maximum saving is
up to 25%. Thus, adding one to R improves the power consumption by approximately 8%.
Also, the growth in the number of state variables, R, leads to reducing the area overhead. It
means that applying similar approaches makes sense for rather complex FSMs.

Using [85] allows the creation of the block diagram shown in Figure 15. In this algorithm,
we assume that pairs P1, ..., PI are created for FSM states. These pairs include states am, as ∈ A
such that there is at least a single transition between these states (either ⟨am, as⟩ or ⟨as, am⟩).
Each pair has a weight W(Pi). The block diagram is shown in Figure 15.

In the beginning, it is necessary to organize a queue γ of pairs P1, ..., PI. The pairs are
placed in the queue in the descending order of weights W(Pi). The algorithm has no more
than I steps.

Every step is connected with the following operations. The ith pair is selected from
the queue γ (block 3). The pair includes some states am and as. If state am has no code (the
output “No” from block 4), then we check whether state as has a code (block 5). If there is a
preliminary selected code K(as) (the output “Yes” from block 5), then we should select the
best possible code for state am (block 7). The best possible code is selected from still “free”
state assignments. The best code should have a minimum possible Hamming distance
(HD) with the code K(as). Next, the value of i is increased by one (block 9). If the queue is
not empty, then the selection process is repeated (the transition to block 3). Otherwise, the
process is terminated. If there is still no code for state as (the output “No” from block 5),
then the selection of the best codes for both states is executed.

If K(am) already exists (the output “Yes” from block 4), then we check for code K(as)
(block 6). If there is no code K(as) (the output “No” from block 6), then a possible best
code K(as) is selected (block 8). Otherwise, no codes should be selected, and the process is
repeated (go to block 9).

Consider the following example. Consider the set A = {a1, . . . , a5} for some FSM S1.
These states form the following I = 9 pairs: P1 = ⟨a3, a4⟩, P2 = ⟨a2, a4⟩, P3 = ⟨a3, a2⟩, P4 =
⟨a1, a5⟩, P5 = ⟨a1, a2⟩, P6 = ⟨a4, a1⟩, P7 = ⟨a2, a5⟩, P8 = ⟨a3, a3⟩, and P9 = ⟨a5, a4⟩. R = 3
and K(a1) = 000. Now, we should find the best state codes using the algorithm shown in
Figure 15. The process of state assignment is shown in Figure 16.

Appl. Sci. 2024, 14, 2693 17 of 32

START

Creating queue γ

i := 1

Selection the i-th pair from γ

K(am)

K(as)K(as)

Selection the
best K(as)

Selection the best
codes K(am), K(as)

Selection the
best K(as)

i := i + 1

1

2

3

4

5 6

7 8

9

11

i > I

10

END
Yes

No

No

Yes

Yes

YesNo

No

Figure 15. Block diagram of algorithm [85].

a1 * * *

* * * *

00 01 11 10

0

1

T1T2

T3

a1 a3 * *

a2 a4 * *

00 01 11 10

0

1

T1T2

T3

a1 a3 * a5

a2 a4 * *

00 01 11 10

0

1

T1T2

T3

a1 a3 * *

* a4 * *

00 01 11 10

0

1

T1T2

T3
(a)

(c)

(b)

(d)

Figure 16. Process of state assignment for saving power.

The start point of the state assignment process is shown in Figure 16a. The code 000
is assigned to the initial state a1 ∈ A. All other cells of the Karnaugh map contain the
asterisk signs.

Step 1. The first pair of the queue is selected. This the pair P1 = ⟨a3, a4⟩. To encode
the states a3, a4 ∈ P1, we should select codes with a minimum number of ones,
and HD = 1. This means, the actions from block 11 are executed. The codes of
a3, a4 ∈ P1 are shown in Figure 16b.

Step 2. Now, the pair P2 = ⟨a2, a4⟩ is selected. Because the transition state a4 ∈ P2 is
already encoded, the action from block 7 is executed. The best possible solution is
shown in Figure 16c.

Step 3. The pair P3 = ⟨a3, a2⟩ is selected. Both states from this pair are encoded. Thus, no
new codes are assigned during this step.

Step 4. The pair P4 = ⟨a1, a5⟩ is selected. Now, the code for a5 ∈ A should be selected.
This corresponds to block 8. The final solution is shown in Figure 16d.

Appl. Sci. 2024, 14, 2693 18 of 32

This algorithm belongs to the group of “greedy” algorithms. It makes the optimal
choice at each step. The algorithm does not change already selected codes. As a result, such
a solution is not optimal. It can be improved.

Consider what causes the overhead for this algorithm. For example, an STG includes
the subgraph shown in Figure 17a.

a3 a5

X1/y1

a4

...

...

(a)

LUT1

T1 T2 T3

LUT1

x1

y1

(b)

LUT1

T1 T2 x1

y1

(c)

Figure 17. Explanation of power overhead for algorithm [85].

If R = 3, then the algorithm [85] will select the codes K(a3) = 001 and K(a5) = 011.
Because the code K(a5) is now fixed, there is a limited choice of possible codes for a4. To
provide HD = 1, the algorithm can assign the code 010 to a4. These codes provide the best
solution from the greedy algorithm’s point of view.

But this approach does not take into account LUT counts for the output logic. As
follows from Figure 17a, y1 = A3x1

∨
A4x1 = T1T2T3x1 ∨ T1T2T3x1. If an FSM circuit is

implemented with LUTs having three inputs, then two LUTs are necessary to implement
the circuit for y1 (Figure 17b). This circuit has two levels of LUTs and six interconnections.

If a JEDI-based style of state assignment is used, then the states a3 and a4 will have
adjacent codes. If, for example, there is K(a3) = 001 and K(a4) = 101, then it gives the
Boolean equation y1 = T2T3x1. The corresponding circuit has only a single LUT, a single
level of logic, and four interconnections (Figure 17c).

Thus, for the discussed case, the JEDI-based circuit is faster and requires fewer LUTs.
This is quite possible that the circuit from Figure 17c has better power characteristics than
its equivalent shown in Figure 17b.

The following conclusion can be made from this example. To find a desirable trade-off
among power consumption, area, and performance, it is necessary to take into account the
output logic too. There are special resynthesis methods [116] that can improve the overall
quality of an FSM circuit. They are out the scope of this survey.

Let us only point out that the resynthesis allows a reduction in the number of logic
levels and simplifies the interconnection system. These two issues are very important in
the LUT-based design [116].

As mentioned in [117], many systems of emerging computing and communications
equipment are control-dominated. The controllers are mostly implemented as FSMs.
Because many devices are mobile, then a RPC is a very important issue. In the case of
controllers, it is very important to decrease the power consumption, because “controllers
are always active. As a result, a good amount of system power is consumed by the
controllers” [117]. This explains the necessity of RPC for FSMs.

The RPC can be achieved by adding states [95] or adding bits to state codes [108].
These additional states and bits can also be viewed as the power overhead.

We start from the state splitting approach [95]. The approach takes its roots in
1963 [118]. This approach was used for optimizing FSMs [119] and minimizing the number
of FSM states [120]. Also, it can improve the power consumption.

Consider a part of an STG (Figure 18a) taken from [95]. The state codes are shown
near the graph nodes.

Appl. Sci. 2024, 14, 2693 19 of 32

a1

a3

a4

a5a2

100

011 010

001

0001

1

(a) (b)

a3 a4

a5a3

100

011 010

001

a1

a2
2

1

100

011

x=1

x=0

1

1

Figure 18. Initial STG (a) and its transformation (b).

To reduce the switching activity, α, it is necessary to diminish the value of the Hamming
distance. In the best case, HD = 1 for all pairs ⟨am, as⟩ existing in a particular STG. Obviously,
each state code can have only R adjacent state codes with HD = 1. The state a3 (Figure 18a)
is connected with R + 1 = 4 states. HD = 1 for the pairs ⟨a1, a3⟩, ⟨a3, a4⟩, and ⟨a3, a5⟩. But
HD = 2 for the pair ⟨a2, a3⟩.

It is possible to “split” the state a3 into two equivalent states a1
3 and a2

3. These states
have the same transitions. Now, each of the new states (a1

3 and a2
3) has exactly R adjacent

states. If the state codes are the ones shown in Figure 18b, then HD = 1 for all existing
adjacent state pairs (⟨a1, a1

3⟩, ⟨a1
3, a4⟩, ⟨a1

3, a5⟩, ⟨a1, a2
3⟩,⟨a2

3, a4⟩, and ⟨a2
3, a5⟩.

Each state am ∈ A can be characterized by two sets. The set FI(am) includes states
as ∈ A, such that there are transitions ⟨as, am⟩. The set FO(am) includes states as ∈ A,
such that there are transitions ⟨am, as⟩. As follows from Figure 18a, the following sets can
be formed: FI(a3) = {a1, a2} and FO(a3) = {a4, a5}. The splitting state a3 makes sense
because the following relations hold: |FI(a3)| = 2⟩1 and |FI(a3)|+ |FO(a3)| = 4 > R = 3.
This means that the splitting can be executed if

(|FI(am)| > 1) ∧ (|FI(am)|+ |FO(am)| > R) = 1. (15)

For states of transitions, state codes K(as) depend on the codes of previous states. As
a result, there are a lot of splitting options. It is necessary to choose the option leading to
the maximum RPC.

In [95], two algorithms are proposed for the state splitting. In the first case, all possible
splittings are investigated for states satisfying (15). This approach requires the extensive
search of an optimal solution. In the second case, only two subsets are formed for FI(am).
One subset includes a state as having the maximum probability of transition into the state
am to be split. The second subset includes states ai ∈ FI(am)/{as}. This solution is a
suboptimal one.

In [95], experimental results are provided. They were obtained using the library [82]
and the software package ZUBR [121]. The results show that a RPC takes place for 27
benchmarks (57.4% of all benchmarks).

The results [95] show that the proposed approach reduces the power consumption
by an average of 6.92%. At the same time, the maximum RPC is equal to 81.02% (for the
benchmark tma). The simplified algorithm produces solutions very close to optimal. The
average difference is around 0.08%.

Consider Figure 18a. FI(a3) = {a1, a2} and FO(a3) = {a4, a5}; R = 3. As follows
from (15), it is impossible to assign adjacent codes to all states included into the set FI(a3)∪
FO(a3). If the number of state variables is greater than what is defined by (4), then the
condition (15) is violated. In this case, there is an optimum solution shown in Figure 19.

Appl. Sci. 2024, 14, 2693 20 of 32

a1

a3

a4

a5a2

0001

0010 0100

1000

00001

1

Figure 19. Optimal codes for the STG from Figure 18a.

The analysis of Figure 19 shows that the following relation holds: HD(a1, a3) =
HD(a2, a3) = HD(a4, a3) = HD(a5, a3) = 1. The codes (Figure 19) provide the minimum
power consumption for this part of the STG. But they add a power overhead since R = 4
instead of R = 3. It means that there is an additional flip-flop and additional loading for
the clock tree.

A method [108] based on this idea was tested using the benchmarks from [82]. The
outcomes of this approach were compared with results obtained for NOVA, JEDI, and
a column algorithm [85]. The experiments were conducted for the following conditions:
Vdd = 5 V, f = 5 MHz, Cpar = 3 pF.

The approach from [108] allowed a reduction in the power consumption by a factor
of 1.7 (NOVA), 1.36 (JEDI), and 1.12 (column algorithm). For example, in the case of
benchmark tbk, adding one to the minimum value of R diminished the power consumption
by 34%. Of course, it is necessary to take into account the influence of increasing the
number of state variables on both area and time characteristics of a resulting FSM circuit.

All discussed methods of state assignment have the same specificity: a state code
K(am) is assigned to the state am ∈ A as an R-bit string during some step of the state
assignment process. In [122], a method is proposed where each state assignment step gives
only a single bit of state codes.

The method [122] reduces the switching activity, α. But at the same time, it diminishes
a chip area occupied by an FSM circuit. The decomposition strategy of the state assignment
is proposed in [122]. The approach produces a binary tree whose leaves correspond to
state codes.

As presented in [122], we explain this approach using the benchmark dk27 [82]. The
benchmark’s STG is shown in Figure 20.

a5 a3

1

a7

a2

0

0

1

a6

a1

0
0

a4

0

1

-

1
0

1

Figure 20. State transition graph of benchmark dk27 [122].

The state assignment [122] starts by calculating the probabilities pm,s of interstate
transitions. To get the total probabilities of transitions Pm,s, the product of probabilities
Pm and pm,s is calculated. The value of Pm determines a probability that the FSM is in the
state am ∈ A. For dk27, the following values of Pm are used: P1 = P2 = 0.19, P3 = 0.095,
P4 = 0.095, P5 = 0.167, P6 = 0.214, P7 = 0.048.

Appl. Sci. 2024, 14, 2693 21 of 32

The summation of the direct edges’ probabilities for each pair of states produces an
undirected graph with edge weights (Figure 21). Now, it is necessary to minimize the
Hamming distance between the codes K(am) and K(as) with the high transition probability.

a5 a3

a7

a2

a6

a1

a4
0.048

0.179

0.024

Figure 21. Undirected weighted graph for dk27 [122].

Using the algorithm [122] gives the binary tree for dk27 (Figure 22). The values zero
and one correspond to state code bits. To find the code, we should move from the leaves to
the tree root.

a1; a2; a3; a4; a5; a6; a7

a1; a4; a6 a2; a3; a5; a7

a1; a6 a4

a4a1 a6

0

0

0

1

1

11

a2; a5

a2 a5

0

0 1

a3; a7

a3 a7

0 1

1
a1 * a4 a6

a2 a3 a7 a5

00 01 11 10

0

1

T1T2(b) T3

(a)

Figure 22. Binary tree for dk27 [122] (a) and Karnaugh map with state codes (b).

The resulting state codes are shown in the Karnaugh map (Figure 22b). R = 3 (this is
the number of tree levels). For example, the following codes can be found: K(a1) = 000,
K(a2) = 001, and so on.

To optimize the power consumption, it is necessary to take into account dependencies
between states at some level of the tree. The optimization can be performed by swapping the
nodes on the same tree level. It results in changing values of bit codes. For example, swapping
state codes a5 and a2 (Figure 22a) produces state codes K(a5) = 001 and K(a2) = 101.

As shown in [122], the state assignment (Figure 22b) gives a sum of all Hamming
distances equal to 16. Also, it gives a switching activity equal to 1.357. After swapping
codes for pairs of states ⟨a5, a2⟩ and ⟨a3, a7⟩, the sum is equal to 15 and the average switch-
ing activity is equal to 1.19. Obviously, the less switching activity there is, the less the
power consumption.

In [122], some results of experiments were shown. The system SIS [36] was used to
calculate power consumption. The results were compared with results obtained using one-
hot approach, JEDI, NOVA, and the one-level tree (OLT) algorithm [83]. The calculations
were performed for the benchmarks from [82], with Vdd = 5 V and fop = 20 MHz.

The results of these experiments showed the following values of power consumption
and area (Table 2).

Appl. Sci. 2024, 14, 2693 22 of 32

Table 2. Results of experiments [122].

Method One-Hot JEDI NOVA OLT [122]

Power 8085 7754 9159 7732 7135
Area 6053 3280 3781 4012 3598

These results show that the method in [122] provides the minimum power consump-
tion for the benchmarks from [82]. At the same time, the minimum area is provided by
JEDI. The worst area characteristics are provided by the one-hot approach, whereas the
maximum power is consumed by NOVA.

We can evaluate the overall efficiency of an algorithm by finding the product
“Area × Power”. In the discussed case, the following values of this product were found:
48.9 × 106 for one-hot, 25.4 × 106 for JEDI, 44.6 × 106 for NOVA, 31.02 × 106 for OLT, and
25.8 × 106 for [122]. A comparison these products show that both JEDI and [122] produce
practically the same results.

All discussed state assignment methods are deterministic. To optimize power con-
sumption in FPGA-based circuits, it is necessary to minimize the switching activity of
flip-flops. This reduces the dynamic power consumption. To reduce the static power, it is
necessary to reduce the chip area occupied by an FSM circuit. The chip area is determined
by the number of LUTs and their interconnections. As noted in [92], the deterministic
algorithms “are far from being optimal”.

To improve the power consumption, various nondeterministic evolutionary methods
have been developed. A survey of them can be found, for example, in [94]. All these meth-
ods deal with NP-complex problem, where NP stands for nondeterministic-polynomial
time [123].

In [124], a genetic algorithm is proposed. For a given FSM, the algorithm optimizes
the chip area occupied by its circuit. To get the optimal result, this algorithm uses a fitness
function to evaluate the resulting chip area. In another genetic algorithm [125], the authors
use literal counts as a cost function. In [93], both literal count (for area) and switching
probability (for power) are used as an approximate cost function. In [111], the genetic
algorithm optimizes both static and dynamic power consumption. To do it, the algorithm
uses a fitness function based on the number of product terms, the switching activity, and
Hamming distance among pairs of state codes. In [87,126], a genetic algorithm tries to
optimize both static and dynamic power consumption. In [127], a multiobjective genetic
algorithm optimizes both the area and power. To create a fitness function, it uses the
number of product terms, the switching probability for state pairs, and the Hamming
distance among pairs of states.

Some algorithms are based on simulated annealing for optimizing area and/or power.
In [128], the approximate fitness function is used to optimize the area. In [129], both area
and power are optimized. To do it, a fitness function is based on three characteristics:
(1) the number of product terms, (2) the switching probability for state pairs, and (3)
the Hamming distance. Also, approaches such as binary particle swarm and cuckoo
search are used for optimizing the static power consumption (the circuit area) [130,131].
In [92], a probabilistic swap search state assignment algorithm is proposed. It is based on
(1) assigning probabilities of each pair of code swaps and (2) probabilistically exploring
pairwise code swaps. As a result, both area and power consumption are minimized for
multi-level FSM circuits.

As follows from this short analysis, the outcome of state assignment significantly
influences the power characteristics of FSM circuits. In this survey, we mostly analyzed
FPGA-based FSMs. As a rule, LUT-based FSM circuits are multi-level. To decrease the
static power, it is necessary to diminish the number of literals in SBFs (5)–(6). This allows
a reduction in the chip area occupied by an FSM circuit. To reduce the dynamic power
consumption, it is necessary to optimize Hamming distances between state codes for pairs
of states with a high switching probability.

Appl. Sci. 2024, 14, 2693 23 of 32

6. Replacing LUTs by Embedded Memory Blocks

As we have shown before, even a single EMB can replace a lot of LUTs and interconnec-
tions (Figure 5). To optimize the resulting FSM circuit, it is necessary to find a configuration
⟨S∗

A, t∗F⟩ which allows us to obtain a single-level EMB-based FSM circuit. In this case, there
are very important relations among the EMB characteristics (S∗

A, t∗F) and FSM parameters
(L, N, and R). The LUT count of a LUT-based FSM circuit is not important for replacing
LUTs by EMBs.

An EMB is a coarse-grained element compared to a LUT. Thus, the transition from
LUT-based FSMs to EMB-based FSMs is a transition from fine-grained to coarse-grained
elements. This is similar to the transition from radio components (transistors, capacitors,
resistors, inductors, and so on) to integrated circuits. Such a transition improves the
final product quality (reducing the size, increasing the performance, reducing the power
consumption, increasing the reliability) by reducing the number of interconnections. Also,
there is a simplification of complex tasks such as the mapping, placement, and routing.
Thus, we can expect the same effect from replacing LUTs by EMBs.

All EMB-based FSM design methods originate in microprogram control units (MCUs).
The idea of MCUs was proposed in 1951 by M. Wilkes [132,133]. The MCUs have been
used to control the process of program execution in computers. The MCU design methods
depend on the approach used for addressing the microinstructions (MIs). One of the first
addressing methods is compulsory addressing [134,135].

To design an MCU circuit, it is necessary to represent an initial STG as a microprogram.
A microprogram is an ordered set of microinstructions kept into a special control memory
(CM). A microinstruction location into CM is determined by its address. A format of an
MI with compulsory addressing includes four fields [134]. The field FY includes a code of
the collection of outputs (COs) executed in a particular cycle of MCU performance. The
field FX includes a code K(xl) of an FSM input xl ∈ X to be checked for determining the
transition address. The field FA0 includes a transition address for the case when xl = 0.
The field FA1 includes a transition address for the case when xl = 1. For unconditional
transitions, the field FX is empty; in this case, the next address is determined by the
contents of FA0.

The following rule determines the next microinstruction address:

At+1 =

[FA0]t if [FX]t = ∅;
[FA0]t if xt

e = 0;
[FA1]t if xt

e = 1.
(16)

In (16), t = 0, 1, 2, . . . is a cycle time, At+1 is the next address (an address of an MI
executed in the cycle t + 1), [FX]t, [FA0]t, [FA1]t are the contents of the corresponding
fields in the current operation cycle, xt

l is a value of an FSM input determined by the field
[FX]t. The unconditional transition is determined by the first line of (16).

The following blocks represent the circuit of an MCU with compulsory addressing:
block addressing (BA), register of microinstruction address, RG, control memory, and
control flip-flop (TF). A structural diagram of an MCU is shown in Figure 23.

BA RG CM

Start

Clock

Φ X T Y

Address part

S

R

TFS

R

TF
Fetch

yE

Figure 23. Structural diagram of an MCU.

Appl. Sci. 2024, 14, 2693 24 of 32

The MCU (Figure 23) operates in the following manner. If Start = 1, then (1) the
first address of the microprogram is loaded into RG and (2) Fetch := 1. If Fetch = 1, then
the current MI is read from the CM. At the instant t, a microinstruction MIt is fetched
from CM. Its field FY is transformed into outputs yn ∈ Y. They enter other blocks of the
digital system. The address part of MI (fields FX, FA0, FA1) enters the BA, together with
new values of FSM inputs. According to (16), BA generates variables Tr ∈ T representing
an address of the MI to be executed in the next cycle of MCU operation. The process is
terminated if yE = 1. In this case, Fetch = 0, and it is impossible to read MIs from the
control memory.

In the first MCUs, the CM was implemented using read-only memory (ROM) blocks.
The circuit of BA is implemented using gates and multiplexers [134]. If a microprogram
includes M microinstructions, then the number of address bits is determined by (4). Obvi-
ously, the following relation holds: |T| = |Φ| = R.

In the case of FPGA-based FSMs, the analog of the CM is implemented by EMBs, the
analog of the addressing block is implemented using LUTs and dedicated multiplexers [46].
There is a significant difference between ROMs and EMBs. Namely, EMBs are synchronized
blocks having a special control input which can be connected with the pulse Clock [46].
Thus, there is no need to have a separate register of addresses. The RG is hidden inside
an EMB. Also, an EMB has a special control input to generate the zero code on its outputs.
This input can be connected with the pulse Start. A typical EMB has SA address inputs, tF
cell outputs, and three control inputs (Clk, En, Cl) (Figure 24).

EMBClock

En

Cl

Enable

Start

Clk

Inputs
SA

Outputs
tF

Figure 24. Organization of an embedded memory block.

If Clock = 1, then the outputs of a cell determined by the address inputs are loaded
into the internal register of EMB. If Clear = 1, then RG = 0, and the address inputs are
ignored. If Enable = 0, then the EMB operates in its standard mode. If Enable = 1, then the
EMB outputs are in the third state. This means that the EMB is not connected with other
existing blocks.

In [46], the authors propose to use EMBs for implementing Mealy FSM circuits. They
propose an approach when the input MX cuts off the “don’t care” FSM inputs (Figure 25).

MX EMB

Start
Clock

X’X Y

T

GND

En

Figure 25. Structural diagram of an EMB-based Mealy FSM.

In [46], the authors show that using EMBs instead of LUTs allows a reduction in
the power consumption. They write that “although memory arrays have greater power
consumption when compared to individual LUTs and flip-flops, for state machine which
uses several flip-flops, LUTs, and significant routing resources, the EMB-based approach

Appl. Sci. 2024, 14, 2693 25 of 32

has lower power consumption”. In Figure 25, the pulse Clock is connected with the Clk
input of EMB, the pulse Start is connected with Cl, and En = 0.

The results of experiments are presented in [46]. They were obtained using the chip
XC2V250-6fg256 by Virtex-II (Xilinx) and the library of standard FSM benchmarks [82]. To
calculate the main characteristics of the FSM circuits (the number of EMBs, LUT counts,
and power consumption), the authors used an experimental flow based on the CAD tool
SIS [36]. This flow is shown in Figure 26.

SIS
Translator
to VHDL

Technology
mapping

Placement
and Routing

Modelsim
Simulation

Xpower tool

.bilf VHDL .edif

Power consumption

STG
of benchmark

.ncd

Figure 26. Experimental flow used in [46].

Using an initial STG, SIS generates a net-list of an FSM in bli f format. This file
describes the combinational circuit represented by (5)–(6) and the FSM state register. This
file is transformed into a VHDL program using the translator from bli f to VHDL. The tool
Simplify-pro by Sinplicity executes the technology mapping. As a result, an edi f file is
generated. It describes LUTs, FFs, and their interconnections. To execute the placement and
routing, they use the Xilinx ISE 4.2.03i design tool suite. To calculate the power dissipation,
the ncd file enters Xpower tool. This tool also uses the vcd (value change dump) file
produced by ModelSim simulator. These files are used to estimate the power dissipation.

The results of the experiments in [46] show that using EMBs leads to a significant area
and power consumption improvement. The area was measured as a mutual LUT count
and the number of flip-flops. Table 3 includes the results of experiments on some of the
benchmarks from [82].

Table 3. Results of experiments [46].

Benchmark LUT-Based FSMs EMB-Based FSMs % for
100 MHz

LUT FF P (µW) LUT FF P (µW)

dk16 114 5 144.33 0 1 131.38 9.0
tbk 342 10 177.14 0 1 132.61 25.19
keyb 112 5 141.85 16 1 131.93 7.0
donfile 66 5 141.00 0 1 137.75 2.3
sand 263 10 185.08 20 2 162.83 12.2
styr 241 8 184.76 16 2 165.51 10.4
ex1 144 5 197.50 15 3 190.37 3.6
planet 320 12 224.39 18 3 199.85 11.0

The power was measured for different clock frequencies. But in Table 4, we show only
results obtained for 100 MHz. The column “%” includes the percentage of power saving
due to the replacement of LUTs by EMBs.

Also, in [46], the authors propose to enable the EMB input for further power saving. If
an FSM does not change its state (this is an idle state), then the pulse Clock is disconnected
from the synchronization input.

To save power, it is necessary to add some LUT-based logic for the timing control. For
Mealy FSMs, this block is synthesized using some inputs xl ∈ X1, where X1 ⊆ X, and some
outputs yn ∈ Y1, where Y1 ⊆ Y. The outputs can be used for situations where a state is not
changed, but outputs are changed. This situation is shown in Figure 27.

Appl. Sci. 2024, 14, 2693 26 of 32

a3 a4

x1/y1y2

x1x2/y3

x1x2/y4

Figure 27. Changing outputs for unchangeable state a3.

As follows from Figure 26, the state a3 is not changed if there is either x1 = 1 or
x1x2 = 1. But during these idle cycles, different collections of outputs are generated:
λ(a3, x1) = {y1, y2} and λ(a3, x1x2) = {y3}.

The EMB-based Mealy FSM with the enabling Clock is shown in Figure 28. The block
CL represents the clock logic. This block generates the function

En = f (T, X1, Y1). (17)

MX EMB

Start
Clock

X’X

En

CL

T

Y

Y’

Figure 28. Structural diagram of an EMB-based Mealy FSM with clock logic [46].

As shown in [46], using CL allows a reduction in the power consumption compared
with the Mealy FSM shown in Figure 25. But this approach is connected with the power
overhead: the CL adds delay in performance and increases LUT count. Both saving power
and area overhead are shown in Table 4.

Table 4. Saving and overhead from enabling EMB.

Benchmark Power (µW) for
100 MHz % Area Overhead

LUTs Slices

dk16 127.97 11.33 4 2
tbk 127.86 26.12 62 32
keyb 129.13 9.00 4 3
donfile 134.44 4.60 4 2
sand 158.07 14.50 47 25
styr 159.09 13.89 17 10
ex1 188.75 4.44 49 28
planet 190.47 15.20 9 13

In Table 4, the column “%” includes power saving for the frequency equal to 100 MHz.
This saving takes into account the power consumed by the block CL. As follows from
Table 4, using EMBs and CL allows a saving from 4% to 26% compared with equivalent
LUT-based FSMs. Of course, these numbers are valid only for these experiments’ conditions.
But this approach may be used if the power saving is the most important issue of a
particular project.

There is no need for the input register RGX for EMB-based FSMs. Due to the existence
of the internal register inside EMB, the outputs yn ∈ Y are registered. The registering
outputs have the same positive effect as the registering inputs xl ∈ X. In both cases, the
FSM outputs are stable. Also, using EMBs has a clear advantage over LUT-based approach.
Namely, there is no need for using additional LUTs to create the input register RGX.

Appl. Sci. 2024, 14, 2693 27 of 32

Using EMBs makes sense only till there is no need for the cascading EMBs. Let the
symbol SAmax stand for the number of address inputs if tF = 1. The cascading should be
used if the following condition holds:∣∣∣X1

∣∣∣+ R > SAmax. (18)

This is quite possible than more than a single EMB is used for implementing an FSM
circuit (even if (18) is violated). In this case, it is necessary to compare the characteristics
of equivalent LUT- and EMB-based FSM circuits. Also, a mixed approach should be
investigated too. In the case of a mixed approach, a circuit is represented as a network of
LUTs and EMBs [22,48–54].

7. Conclusions

Modern digital systems should be power-efficient. They should consume as little
power as possible [3]. This is true for each block of a digital system. Obviously, this is
true for various sequential blocks which play very important roles in digital systems. For
example, control units operate in each cycle of a digital system operation. Very often,
the sequential blocks are represented by finite state machines. In this survey, we mostly
analyzed known methods of saving power for FPGA-based FSMs.

There are two sources of power dissipation in CMOS-based circuits: static and dy-
namic. They have a different nature. The static power dissipation is connected with the
imperfection of MOS transistors, which leads to the presence of leakage currents in the
stable state of an FSM circuit. To decrease the static power consumption, it is necessary to
reduce the chip area occupied by an FSM circuit. There are thousands and thousands of
methods developed to solve this problem. Their analysis can be found, for example, in the
survey [136]. The dynamic power consumption is connected with the existence of parasitic
capacitors which must be charged or discharged during the state change of combinational
and sequential elements creating FSM circuits. To reduce this component of the power
consumption, it is necessary to diminish the switching activity of an FSM. Finally, the third
approach for saving power is associated with an increase in the granularity of the circuit
elements. In the case of FPGA-based FSMs, this path leads to the replacement of LUTs with
embedded memory blocks.

The existing methods can be divided into two groups: coarse-grained and fine-grained
methods. The coarse-grained methods are general for all CMOS-based systems. The most
popular coarse-grained methods are the voltage scaling and clock frequency scaling. These
methods have some disadvantages. The main ones are: (1) the area overhead (to execute
scaling, it is necessary to have some additional circuitry) and (2) the time overhead (to
switch from reduced voltages or frequencies to normal ones, some time is needed, which
is added to the total operation time required to complete the task of a digital system).
Therefore, the coarse-grained methods can be used if a digital system based on them is able
to complete the required task in a given time (the time should not exceed some deadline).

The fine-grained methods take into account specifics of both FSMs and FPGAs. Three
groups of these methods exist. The first of them is clock gating. The method is based on
disconnecting synchronization pulses from some blocks of the FSM circuit. This can be
achieved by either a decomposition of an initial FSM or by disabling the input. The second
approach is based on a proper state assignment leading to reducing the switching activity
of flip-flops. The third approach is based on replacing LUTs by EMBs.

All these methods were analyzed in our current survey. The power saving could be
reached by a twofold state assignment [137,138], but this approach was out of the scope of
our survey. We hope that the review will help broaden the horizons of experts in the field
of sequential circuit design. A good knowledge and understanding of existing methods of
reducing power consumption is a prerequisite for the development of new, more effective
methods to solve this very important problem.

Appl. Sci. 2024, 14, 2693 28 of 32

All these methods were presented in our current survey. We hope that the review
provides an extensive analysis of the history and current state of affairs in the field of
reducing power consumption in FSM-based blocks of digital systems. In this regard, we
think that the review may be used by designers of digital systems to (1) select the method
most suitable for a particular project and (2) develop new methods to solve this problem.

Author Contributions: Conceptualization, A.B. and L.T.; methodology, A.B.; software, J.B.; validation,
A.B. and L.T.; formal analysis, A.B.; investigation, J.B. and K.K.; resources, J.B. and K.K.; data curation,
A.B.; writing—original draft preparation, A.B. and L.T.; writing—review and editing, A.B. and J.B.;
visualization, J.B.; supervision, A.B.; project administration, L.T. and J.B.; funding acquisition, L.T.
and A.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Kharchenko, V.; Kondratenko, Y.; Kacprzyk, J. (Eds.) Green IT Engineering: Social, Business and Industrial Applications; Springer

International Publishing: Cham, Switzerland, 2019. [CrossRef]
2. Barkalov, A. Microprogram control unit as composition of automate with programmable and hardwired logic. Autom. Comput.

Sci. 1983, 17, 36–41.
3. Monteiro, J.C. Power Optimization Using Dynamic Power Management. In Proceedings of the XIIth Conference on Integrated

Circuits and Systems Design, Natal, Brazil, 2 October 1999; pp. 134–139.
4. De Micheli, G. Synthesis and Optimization of Digital Circuits; McGraw–Hill: Sydney, Australia, 1994; p. 578.
5. Baillieul, J.; Samad, T. (Eds.) Encyclopedia of Systems and Control; Springer: London, UK, 2015. [CrossRef]
6. Baranov, S. Logic and System Design of Digital Systems; TUT Press: Tallinn, Estonia, 2008; p. 276.
7. Minns, P.; Elliot, I. FSM-Based Digital Design Using Verilog HDL; John Wiley and Sons: Hoboken, NJ, USA, 2008.
8. Czerwinski, R.; Kania, D. Finite State Machine Logic Synthesis for Complex Programmable Logic Devices; Lecture notes in electrical

engineering; Springer: Berlin, Germany, 2013; Volume 231, p. 172. [CrossRef]
9. Sklyarov, V.; Skliarova, I.; Barkalov, A.; Titarenko, L. Synthesis and Optimization of FPGA-Based Systems; Lecture notes in electrical

engineering; Springer International Publishing: Cham, Switzerland, 2014; Volume 294, p. 432. [CrossRef]
10. Kubica, M.; Opara, A.; Kania, D. Logic Synthesis for FPGAs Based on Cutting of BDD. Microprocess. Microsystems 2017, 52, 173–187.

[CrossRef]
11. Kubica, M.; Kania, D.; Kulisz, J. A Technology Mapping of FSMs Based on a Graph of Excitations and Outputs. IEEE Access 2019,

7, 16123–16131. [CrossRef]
12. Opara, A.; Kubica, M.; Kania, D. Methods of Improving Time Efficiency of Decomposition Dedicated at FPGA Structures and

Using BDD in the Process of Cyber-Physical Synthesis. IEEE Access 2019, 7, 20619–20631. [CrossRef]
13. Kubica, M.; Kania, D. Area-oriented technology mapping for LUT-based logic blocks. Int. J. Appl. Math. Comput. Sci. 2017,

27, 207–222. [CrossRef]
14. Barkalov, O.; Titarenko, L.; Mazurkiewicz, M. Foundations of Embedded Systems; Studies in Systems, Decision and Control; Springer

International Publishing: Cham, Switzerland, 2019; Volume 195, p. 167.
15. Arora, M. Embedded System Design: Introduction to SoC System Architecture; Learning Bytes Publishing: Islamabad, Pakistan, 2016.
16. Jimenez, J.J.; Trojman, L.; Procel, L.M. Power and Area Reduction of MD5 based on Cryptoprocessor Using novel approach of

Internal Counters on the Finite State Machine. In Proceedings of the 2019 IEEE Fourth Ecuador Technical Chapters Meeting
(ETCM), Guayaquil, Ecuador, 11–15 November 2019. [CrossRef]

17. Brown, B.D.; Card, H.C. Stochastic neural computation. I. Computational elements. IEEE Trans. Comput. 2001, 50, 891–905.
[CrossRef]

18. Ardakani, A.; Leduc-Primeau, F.; Onizawa, N.; Hanyu, T.; Gross, W.J. VLSI Implementation of Deep Neural Network Using
Integral Stochastic Computing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2017, 25, 2688–2699. [CrossRef]

19. Li, P.; Lilja, D.J.; Qian, W.; Riedel, M.D.; Bazargan, K. Logical Computation on Stochastic Bit Streams with Linear Finite-State
Machines. IEEE Trans. Comput. 2014, 63, 1474–1486. [CrossRef]

20. Xie, Y.; Liao, S.; Yuan, B.; Wang, Y.; Wang, Z. Fully-Parallel Area-Efficient Deep Neural Network Design Using Stochastic
Computing. IEEE Trans. Circuits Syst. II Express Briefs 2017, 64, 1382–1386. [CrossRef]

http://doi.org/10.1007/978-3-030-00253-4
http://dx.doi.org/10.1007/978-1-4471-5058-9
http://dx.doi.org/10.1007/978-3-642-36166-1
http://dx.doi.org/10.1007/978-3-319-04708-9
http://dx.doi.org/10.1016/j.micpro.2017.06.010
http://dx.doi.org/10.1109/ACCESS.2019.2895206
http://dx.doi.org/10.1109/ACCESS.2019.2898230
http://dx.doi.org/10.1515/amcs-2017-0015
http://dx.doi.org/10.1109/etcm48019.2019.9014878
http://dx.doi.org/10.1109/12.954505
http://dx.doi.org/10.1109/TVLSI.2017.2654298
http://dx.doi.org/10.1109/TC.2012.231
http://dx.doi.org/10.1109/TCSII.2017.2746749

Appl. Sci. 2024, 14, 2693 29 of 32

21. Glaser, J.; Damm, M.; Haase, J.; Grimm, C. TR-FSM: Transition-Based Reconfigurable Finite State Machine. ACM Trans.
Reconfigurable Technol. Syst. 2011, 4, 23:1–23:14. [CrossRef]

22. Das, N.; Priya, P.A. FPGA Implementation of Reconfigurable Finite State Machine with Input Multiplexing Architecture Using
Hungarian Method. Int. J. Reconfigurable Comput. 2018, 2018, 6831901. [CrossRef]

23. Altera. Available online: http://www.altera.com (accessed on 1 January 2024).
24. Atmel. Available online: http://www.atmel.com (accessed on 1 January 2024).
25. Xilinx. Available online: http://www.xilinx.com (accessed on 1 January 2024).
26. Rodriguez-Andina, J.J.; Valdes-Pena, M.D.; Moure, M.J. Advanced Features and Industrial Applications of FPGAs—A Review.

IEEE Trans. Ind. Informatics 2015, 11, 853–864. [CrossRef]
27. Monmasson, E.; Cirstea, M. FPGA Design Methodology for Industrial Control Systems—A Review. IEEE Trans. Ind. Electron.

2007, 54, 1824–1842. [CrossRef]
28. Rabaey, J. Low Power Design Essentials; Integrated Circuits and Systems; Springer: Greer, SC, USA, 2009.
29. Baranov, S. Logic Synthesis of Control Automata; Kluwer Academic Publishers: Norwell, MA, USA, 1994; p. 312.
30. Gajski, D. Principles of Digital Design; Prentice-Hall International Editions; Prentice-Hall International: Hoboken, NJ, USA, 1997.
31. Opara, A.; Kubica, M.; Kania, D. Strategy of logic synthesis using MTBDD dedicated to FPGA. Integration 2018, 62, 142–158.

[CrossRef]
32. Brayton, R.; Mishchenko, A. ABC: An academic industrial-strength verification tool. In Proceedings of the Computer Aided

Verification, Edinburgh, UK, 15–19 July 2010; pp. 24–40. [CrossRef]
33. Mealy, G.H. A method for synthesizing sequential circuits. Bell Syst. Tech. J. 1955, 34, 1045–1079. [CrossRef]
34. Moore, E.F. Gedanken-Experiments on Sequential Machines. In Automata Studies. (AM-34); Princeton University Press: Princeton,

NJ, USA, 1956; pp. 129–154. [CrossRef]
35. Glushkov, V. Synthesis of Digital Automata; FTD-MT, Translation Division, Foreign Technology Division; Fizmatgiz: Moscow,

Russia, 1965; p. 487.
36. Sentowich, E.; Singh, K.; Lavango, L.; Moon, C.; Murgai, R.; Saldanha, A.; Savoj, H.; P, P.S.; Bryton, R.; Sangiovanni-Vincentelli, A.

SIS: A System for Sequential Circuit Synthesis; Technical report; University of California: Berkely, CA, USA, 1992.
37. ABC System. Available online: https://people.eecs.berkeley.edu/~alanmi/abc/ (accessed on 1 January 2024).
38. Baranov, S.; Skliarov, V. Digital Devices with Programmable LSIs with Matrix Structure; Radio and Sviaz: Moscow, Russia, 1986;

p. 272. (In Russian)
39. Skliarov, V. Synthesis of Automata with Matrix LSIs; Nauka i Technika: Minsk, Belarus, 1984; p. 256. (In Russian)
40. Grout, I. Digital Systems Design with FPGAs and CPLDs; Elsevier Science: Amsterdam, The Netherlands, 2011; p. 718.
41. Scholl, C. Functional Decomposition with Application to FPGA Synthesis; Kluwer Academic Publishers: Boston, MA, USA, 2001.
42. Dahl, O.J.; Dijkstra, E.W.; Hoare, C.A.R. (Eds.) Structured Programming; Academic Press Ltd.: Cambridge, MA, USA, 1972; p. 234.
43. Feng, W.; Greene, J.; Mishchenko, A. Improving FPGA Performance with a S44 LUT Structure. In Proceedings of the 2018

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, New York, NY, USA, 25–27 February 2018; FPGA
’18, pp. 61–66. [CrossRef]

44. Kilts, S. Advanced FPGA Design: Architecture, Implementation, and Optimization; Wiley-IEEE Press: Hoboken, NJ, USA, 2007; p. 312.
45. Barkalov, A.; Titarenko, L.; Kołopieńczyk, M.; Mielcarek, K.; Bazydło, G. Logic Synthesis for FPGA-Based Finite State Machines;

Studies in Systems, Decision and Control; Springer International Publishing: Cham, Switzerland; Heidelberg, Germany, 2015;
Volume 38, p. 280.

46. Tiwari, A.; Tomko, K. Saving power by mapping finite-state machines into Embedded Memory Blocks in FPGAs. In Proceedings
of the Conference on Design, Automation and Test in Europe, Paris, France, 16–20 February 2004; pp. 916–921.

47. Kołopieńczyk, M.; Barkalov, A.; Titarenko, L. Hardware reduction for RAM-based Moore FSMs. In Proceedings of the 7th
International Conference on Human System Interactions—HSI 2014, Costa da Caparica, Portugal, 16–18 June 2014; pp. 255–260.

48. Kołopieńczyk, M.; Titarenko, L.; Barkalov, A. Design of EMB-Based Moore FSMs. J. Circuits Syst. Comput. 2017, 26, 1–23.
[CrossRef]

49. Garcia-Vargas, I.; Senhadji-Navarro, R. Finite State Machines With Input Multiplexing: A Performance Study. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 2015, 34, 867–871. [CrossRef]

50. Garcia-Vargas, I.; Senhadji-Navarro, R.; Jiménez-Moreno, G.; Civit-Balcells, A.; Guerra-Gutierrez, P. ROM-based finite state
machine implementation in low cost FPGAs. In Proceedings of the IEEE International Symposium on Industrial Electronics ISIE
2007, Vigo, Spain, 4–7 June 2007; pp. 2342–2347.

51. Senhadji-Navaro, R.; Garcia-Vargas, I. High-Speed and Area-Efficient Reconfigurable Multiplexer Bank for RAM-Based Finite
State Machine Implementations. J. Circuits Syst. Comput. 2015, 24, 1550101. [CrossRef]

52. Senhadji-Navarro, R.; Garcia-Vargas, I. High-Performance Architecture for Binary-Tree-Based Finite State Machines. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 2018, 37, 796–805. [CrossRef]

53. Senhadji-Navarro, R.; Garcia-Vargas, I.; Jiménez-Moreno, G.; Civit-Balcells, A.; Guerra-Gutierrez, P. ROM-based FSM implemen-
tation using input multiplexing in FPGA devices. Electron. Lett. 2004, 40, 1249–1251. [CrossRef]

54. Sklyarov, V. Synthesis and Implementation of RAM-based Finite State Machines in FPGAs. In Proceedings of the Field-
Programmable Logic and Applications: The Roadmap to Reconfigurable Computing, Villach, Austria, 27–30 August 2000;
pp. 718–727. [CrossRef]

http://dx.doi.org/10.1145/2000832.2000835
http://dx.doi.org/10.1155/2018/6831901
http://www.altera.com
http://www.atmel.com
http://www.xilinx.com
http://dx.doi.org/10.1109/TII.2015.2431223
http://dx.doi.org/10.1109/TIE.2007.898281
http://dx.doi.org/10.1016/j.vlsi.2018.02.009
http://dx.doi.org/10.1007/978-3-642-14295-6_5
http://dx.doi.org/10.1002/j.1538-7305.1955.tb03788.x
http://dx.doi.org/10.1515/9781400882618-006
https://people.eecs.berkeley.edu/~alanmi/abc/
http://dx.doi.org/10.1145/3174243.3174272
http://dx.doi.org/10.1142/S0218126617501250
http://dx.doi.org/10.1109/TCAD.2015.2406859
http://dx.doi.org/10.1142/S0218126615501017
http://dx.doi.org/10.1109/TCAD.2017.2731678
http://dx.doi.org/10.1049/el:20046007
http://dx.doi.org/10.1007/3-540-44614-1_76

Appl. Sci. 2024, 14, 2693 30 of 32

55. Rawski, M.; Selvaraj, H.; Łuba, T. An application of functional decomposition in ROM-based FSM implementation in FPGA
devices. J. Syst. Archit. 2005, 51, 423–434. [CrossRef]

56. Rawski, M.; Tomaszewicz, P.; Borowski, G.; Łuba, T. Logic Synthesis Method of Digital Circuits Designed for Implementation with
Embedded Memory Blocks on FPGAs. In Design of Digital Systems and Devices. LNEE 79; Adamski, M., Barkalov, A., Węgrzyn, M.,
Eds.; Springer: Berlin, Germany, 2011; pp. 121–144.

57. Rafla, N.I.; Gauba, I. A reconfigurable pattern matching hardware implementation using on-chip RAM-based FSM. In Proceedings
of the 2010 53rd IEEE International Midwest Symposium on Circuits and Systems, Seattle, WA, USA, 1–4 August 2010; pp. 49–52.
[CrossRef]

58. Maxfield, C. The Design Warrior’s Guide to FPGAs; Academic Press, Inc.: Orlando, FL, USA, 2004.
59. Maxfield, C. FPGAs: Instant Access; Elsevier: Newnes, Australia, 2008.
60. Smith, M. Application-Specific Integrated Circuits; Addison-Wesley: Boston, MA, USA, 1997.
61. Veendrick, H.J.M. Short-circuit dissipation of static CMOS circuitry and its impact on the design of buffer circuits. IEEE J.

Solid-State Circuits 1984, 19, 468–473. [CrossRef]
62. Butts, J.A.; Sohi, G.S. A static power model for architects. In Proceedings of the 33rd Annual ACM/IEEE International Symposium

on Microarchitecture. Association for Computing Machinery, Monterey, CA, USA, 1 December 2000; pp. 191–201. [CrossRef]
63. Tsui, C.y.; Monteiro, J.; Pedram, M.; Devadas, S.; Despain, A.; Lin, B. Power Estimation Methods for Sequential Logic Circuits.

Very Large Scale Integr. (VLSI) Syst. IEEE Trans. 1995, 3, 404–416. [CrossRef]
64. Gajski, D.D.; Abdi, S.; Gerstlauer, A.; Schirner, G. Embedded System Design: Modeling, Synthesis and Verification, 1st ed.; Springer

Publishing Company, Incorporated: New York, NY, USA, 2009.
65. Smarr, L. Project GreenLight: Optimizing Cyber-infrastructure for a Carbon-Constrained World. Computer 2010, 43, 22–27.

[CrossRef]
66. 2011 International Technology Roadmap for Semiconductors (ITRS); Technical report; Semiconductor Industry Association: Washing-

ton, DC, USA, 2011.
67. Ashford, L.; Sanjit Arunkumar, S. Introduction to Embedded Systems: A Cyber-Physical Systems Approach, 2nd ed.; The MIT Press:

Cambridge, MA, USA, 2016.
68. Marwedel, P. Embedded System Design: Embedded Systems Foundations of Cyber-Physical Systems, and the Internet of Things, 3rd ed.;

Springer International Publishing: Cham, Switzerland, 2018; p. 423. [CrossRef]
69. Mittal, S. A survey of techniques for improving energy efficiency in embedded computing systems. Int. J. Comput. Aided Eng.

Technol. 2014, 6, 440. [CrossRef]
70. Oelmann, B.; Tammemäe, K.; Kruus, M.; O'Nils, M. Automatic FSM Synthesis for Low-power Mixed Synchronous/Asynchronous

Implementation. VLSI Des. 2001, 12, 167–186. [CrossRef]
71. Machalec, M.; Stastny, J. Synchronous FSM Design Methodology for Low Power Smart Sensors and RFID Devices. Electro. Rev.

2010, 1, 46–54.
72. Shabel, J. Analysis of Clock Trees; Technical report; SNUG: Boston, MA, USA, 2005.
73. Monteiro, J.C.; Oliveira, A.L. Finite State Machine Decomposition for Low Power. In Proceedings of the 35th Annual Design

Automation Conference, San Francisco, CA, USA, 15–19 June 1998; pp. 758–763. [CrossRef]
74. Alidina, M.; Monteiro, J.; Devadas, S.; Ghosh, A.; Papaefthymiou, M. Precomputation-based sequential logic optimization for low

power. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 1994, 2, 426–436. [CrossRef]
75. Knuth, D.E. The Art of Computer Programming, Volume II: Seminumerical Algorithms; Addison-Wesley: Boston, MA, USA, 1969.
76. Benini, L.; De Micheli, G. Automatic synthesis of low-power gated-clock finite-state machines. IEEE Trans. Comput.-Aided Des.

Integr. Circuits Syst. 1996, 15, 630–643. [CrossRef]
77. Chow, S.H.; Ho, Y.C.; Hwang, T.; Liu, C.L. Low Power Realization of Finite State Machines—a Decomposition Approach. ACM

Trans. Des. Autom. Electron. Syst. 1996, 1, 315–340. [CrossRef]
78. Hartmanis, J. Symbolic analysis of a decomposition of information processing machines. Inf. Control 1960, 3, 154–178. [CrossRef]
79. Devadas, S.; Newton, A. Decomposition and factorization of sequential finite state machines. IEEE Trans. Comput.-Aided Des.

Integr. Circuits Syst. 1989, 8, 1206–1217. [CrossRef]
80. Levin, I.S. Decompositional Design of Automata Based on PLA with Memory. Autom. Control Comput. Sci. 1986, 20, 61–68.
81. Levin, I.S. A Hierarchical Model of the Interaction of Microprogrammed Automata. Autom. Control Comput. Sci. 1987, 21, 67–73.
82. McElvain, K. LGSynth93 Benchmark Set. Version 4.0., 1993. Available online: https://people.engr.ncsu.edu/brglez/CBL/

benchmarks/LGSynth93/LGSynth93.tar (accessed on 1 February 2018).
83. Bacchetta, P.; Daldos, L.; Sciuto, D.; Silvano, C. Low-power state assignment techniques for finite state machines. In Proceedings

of the 2000 IEEE International Symposium on Circuits and Systems (ISCAS’2000), Geneva, Switzerland, 28–31 May 2000; Volume 2,
pp. 641–644.

84. Agrawal, R.; Borowczak, M.; Vemuri, R. A State Encoding Methodology for Side-Channel Security vs. Power Trade-off
Exploration. In Proceedings of the 2019 32nd International Conference on VLSI Design and 2019 18th International Conference
on Embedded Systems (VLSID), Delhi, India, 5–9 January 2019; pp. 70–75.

85. Benini, L.; De Micheli, G. State assignment for low power dissipation. IEEE J. Solid-State Circuits 1995, 30, 258–268. [CrossRef]
86. Benini, L.; De Micheli, G.; Macii, E. Designing low-power circuits: Practical recipes. IEEE Circuits Syst. Mag. 2001, 1, 6–25.

[CrossRef]

http://dx.doi.org/10.1016/j.sysarc.2004.07.004
http://dx.doi.org/10.1109/MWSCAS.2010.5548558
http://dx.doi.org/10.1109/JSSC.1984.1052168
http://dx.doi.org/10.1145/360128.360148
http://dx.doi.org/10.1109/92.406998
http://dx.doi.org/10.1109/MC.2010.20
http://dx.doi.org/10.1007/978-3-319-56045-8
http://dx.doi.org/10.1504/IJCAET.2014.065419
http://dx.doi.org/10.1155/2001/27496
http://dx.doi.org/10.1145/277044.277235
http://dx.doi.org/10.1109/92.335011
http://dx.doi.org/10.1109/43.503933
http://dx.doi.org/10.1145/234860.234862
http://dx.doi.org/10.1016/S0019-9958(60)90744-0
http://dx.doi.org/10.1109/43.41505
https://people.engr.ncsu.edu/brglez/CBL/benchmarks/LGSynth93/LGSynth93.tar
https://people.engr.ncsu.edu/brglez/CBL/benchmarks/LGSynth93/LGSynth93.tar
http://dx.doi.org/10.1109/4.364440
http://dx.doi.org/10.1109/7384.928306

Appl. Sci. 2024, 14, 2693 31 of 32

87. Chattopadhyay, S. Area conscious state assignment with flip-flop and output polarity selection for finite state machines
synthesis—A genetic algorithm. Comput. J. 2005, 48, 443–450. [CrossRef]

88. Chattopadhyay, S.; Chaudhuri, P. Genetic algorithm based approach for integrated state assignment and flipflop selection in
finite state machines synthesis. In Proceedings of the IEEE International Conference on VLSI Design, Chennai, India, 4–7 January
1998; pp. 522–527.

89. Chen, C.; Zhao, J.; Ahmadi, M. A semi-Gray encoding algorithm for low-power state assignment. In Proceedings of the 2003
International Symposium on Circuits and Systems, IEEE, Bangkok, Thailand, 25–28 May 2003; Volume 5, pp. 389–392.

90. Devadas, S.; Ma, H.; Newton, A.; Sangiovanni-Vincentelli, A. MUSTANG: State assignment of finite state machines targeting
multilevel logic implementation. IEEE Trans. Comput.-Aided Des. 1988, 7, 1290–1300. [CrossRef]

91. Du, X.; Hachtel, G.; Lin, B.; Newton, A. MUSE: A multilevel symbolic encoding algorithm for state assignment. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 1991, 10, 28–38. [CrossRef]

92. El-Maleh, A. A Finite State Machine-based Fault Tolerance Technique with Enhanced Area and Power of Synthesized Sequential
Circuits. IET Comput. Digit. Tech. 2017, 11, 159–164. [CrossRef]

93. El-Maleh, A.; Sait, S.; Khan, F. Finite state machine state assignment for area and power minimization. In Proceedings of the 2006
IEEE International Symposium on Circuits and Systems, IEEE, Kos, Greece, 21–24 May 2006; pp. 5303–5306.

94. El-Maleh, A.H. A probabilistic pairwise swap search state assignment algorithm for sequential circuit optimization. Integr. VLSI
J. 2017, 56, 32–43. [CrossRef]

95. Grześ, T.N.; Solov’ev, V.V. Minimization of power consumption of finite state machines by splitting their internal states. J. Comput.
Syst. Sci. Int. 2015, 54, 367–374. [CrossRef]

96. Gupta, B.; Narayanan, H.; Desai, M. A state assignment scheme targeting performance and area. In Proceedings of the 12th
International Conference on VLSI Design, Goa, India, 7–10 January 1999; pp. 378–383.

97. Hu, H.; Xue, H.; Bian, J. A heuristic state assignment algorithm targeting area. In Proceedings of the 5th International Conference
on ASIC, Beijing, China, 21–24 October 2003; Volume 1, pp. 93–96.

98. Huang, J.; Jou, J.; Shen, W. ALTO: An Iterative Area/Performance Algorithms for LUT-based FPGA Technology Mapping. IEEE
Trans. VLSI Syst. 2000, 18, 392–400. [CrossRef]

99. Iranli, A.; Rezvani, P.; Pedram, M. Low power synthesis of finite state machines with mixed D and T flip-flops. In Proceedings of
the Asia and South Pacific–DAC, Kitakyushu, Japan, 21–24 January 2003; pp. 803–808.

100. Kubatova, H.; Becvar, M. FEL–Code: FSM Internal State Encoding Method. In Proceedings of the 5th International Workshop on
Boolean Problems, Freiberg, Germany, 19–20 September 2002; pp. 109–114.

101. Nöth, W.; Kolla, R. Spanning tree based state encoding for low power dissipation. In Proceedings of the Conference on Design,
automation and test in Europe, Association for Computing Machinery, Munich, Germany, 1 January 1999; p. 37.

102. Park, S.; Cho, S.; Yang, S.; Ciesielski, M. A new state assignment technique for testing and low power. In Proceedings of
the 41st annual Design Automation Conference. Association for Computing Machinery, San Diego, CA, USA, 7–11 June 2004;
pp. 510–513.

103. Park, S.; Yang, S.; Cho, S. Optimal state assignment technique for partial scan designs. Electron. Lett. 2000, 36, 1527–1529.
[CrossRef]

104. Pedram, C.; Despain, A. Low-power state assignment targeting two- and multilevel logic implementations. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 1998, 17, 1281–1291.

105. Pomerancz, I.; Cheng, K. STOIC: State assignment based on output/input functions. IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. 1993, 12, 1123–1131. [CrossRef]

106. Salauyou, V.; Grześ, T. FSM State Assignment Methods for Low-Power Design. In Proceedings of the 6th International Conference
on Computer Information Systems and Industrial Management Applications (CISIM’07), Elk, Poland, 28–30 June 2007; pp.
345–350. [CrossRef]

107. Shiue, W. Novel state minimization and state assignment in finite state machine design for low-power portable devices. Integr.
VLSI J. 2005, 38, 549–570. [CrossRef]

108. Solov’ev, V.V. Changes in the length of internal state codes with the aim at minimizing the power consumption of finite-state
machines. J. Commun. Technol. Electron. 2012, 57, 642–648. [CrossRef]

109. Sutter, G.; Todorovich, E.; López-Buedo, S.; Boemo, E. Low-power FSMs in FPGA: Encoding alternatives. In Integrated Circuit
Design. Power and Timing Modeling, Optimization and Simulation; Springer: Seville, Spain, 2002; pp. 363–370.

110. Wu, X.; Pedram, M.; Wang, L. Multi-code state assignment for low-power design. IEEE Proc. Circuits Devices Syst. IET 2000, 147,
271–275. [CrossRef]

111. Xia, Y.; Almani, A. Genetic algorithm based state assignment for power and area optimization. IEEE Proc. Comput. Digit. Tech.
2002, 149, 128–133. [CrossRef]

112. Xilinx. XC4000E and XC4000X Series Field Programmable Gate Arrays; Technical report; Xilinx: San Jose, CA, USA, 1999.
113. Available online: http://www.cypress.com (accessed on 1 January 2016).
114. Trivedi, K.S. Probability and Statistics with Reliability, Queuing and Computer Science Applications; Prentice Hall: Montgomery, IL,

USA, 1982.
115. Agerwala, T. Microprogram optimization: A survey. IEEE Trans. Comput. 1976, 25, 962–973. [CrossRef]

http://dx.doi.org/10.1093/comjnl/bxh099
http://dx.doi.org/10.1109/43.16807
http://dx.doi.org/10.1109/43.62789
http://dx.doi.org/10.1049/iet-cdt.2016.0085
http://dx.doi.org/10.1016/j.vlsi.2016.08.001
http://dx.doi.org/10.1134/S1064230715030090
http://dx.doi.org/10.1109/92.863618
http://dx.doi.org/10.1049/el:20001086
http://dx.doi.org/10.1109/43.238605
http://dx.doi.org/10.1109/CISIM.2007.32
http://dx.doi.org/10.1016/j.vlsi.2004.08.004
http://dx.doi.org/10.1134/S1064226912060113
http://dx.doi.org/10.1049/ip-cds:20000671
http://dx.doi.org/10.1049/ip-cdt:20020431
http://www.cypress.com
http://dx.doi.org/10.1109/TC.1976.1674537

Appl. Sci. 2024, 14, 2693 32 of 32

116. Mishchenko, A.; Brayton, R.; Jiang, J.H.R.; Jang, S. Scalable Don’t-Care-Based Logic Optimization and Resynthesis. ACM Trans.
Reconfigurable Technol. Syst. 2011, 4, 1–23. [CrossRef]

117. Pradhan, S.N.; Kumar, M.T.; Chattopadhyay, S. Low power finite state machine synthesis using power-gating. Integration 2011,
44, 175–184. [CrossRef]

118. Hartmanis, J.S.R. Some gangers in the state reduction of sequential machines. Inform. Control 1962, 5, 252–260. [CrossRef]
119. Devadas, S.; Ma, H.K.; Newton, A.; Sangiovanni-Vincentelli, A. Irredundant sequential machines via optimal logic synthesis.

In Proceedings of the Computer-Aided Design of Integrated Circuits and Systems, Kailua-Kona, HI, USA, 2–5 January 1990;
Volume 9, pp. 417–426. [CrossRef]

120. Pfleeger, C. State Reduction in Incompletely Specified Finite-State Machines. IEEE Trans. Comput. 1973, C-22, 1099–1102.
[CrossRef]

121. Salauyou, V.; Klimowicz, A.; Grześ, T.; Bulatowa, I.; Dimitrowa-Grekow, T. Synthesis methods of finite state machines imple-
mented in package ZUBR. In Proceedings of the 6th International Conference on Computer-Aided Design in Discrete Devices
(CAD DD’7), Minsk, Belarus, 14–15 November 2007; pp. 53–56.

122. Kajstura, K.; Kania, D. Low Power Synthesis of Finite State Machines — State Assignment Decomposition Algorithm. J. Circuits,
Syst. Comput. 2017, 27, 185004–185014. [CrossRef]

123. Sait, S.Y.H Iterative Computer Algorithms with Application in Engineering: Solving Combinatorial Optimization Problems; California:
IEEE Computer Society Press: Los Alamitos, CA, USA, 1999.

124. Amaral, J.; Tumer, K.; Ghosh, J. Designing genetic algorithms for the state assignment problem. IEEE Trans. Syst. Man, Cybern.
1995, 25, 687–694. [CrossRef]

125. Almaini, A.; Miller, J.; Thomson, P.; Billina, S. State assignment of finite state machines using a genetic algorithm. IEE Proc.
Comput. Digit. Tech. 1995, 142, 279. [CrossRef]

126. Chu, Y.C. Computer Organization and Microprogramming; Prentice Hall: Hoboken, NJ, USA, 1972.
127. Jassani, B.A.; Urquhart, N.; Almaini, A. State assignment for sequential circuits using multi-objective genetic algorithm. IET

Comput. Digit. Tech. 2011, 5, 296. [CrossRef]
128. Aly, W.M. Solving the State Assignment Problem Using Stochastic Search Aided with Simulated Annealing. Am. J. Eng. Appl. Sci.

2009, 2, 703–707. [CrossRef]
129. Yang, M. State Assignment for Finite State Machine Synthesis. J. Comput. 2013, 8. [CrossRef]
130. El-Maleh, A.H.; Sheikh, A.T.; Sait, S.M. Binary particle swarm optimization (BPSO) based state assignment for area minimization

of sequential circuits. Appl. Soft Comput. 2013, 13, 4832–4840. [CrossRef]
131. El-Maleh, A.H.; Sait, S.M.; Bala, A. State assignment for area minimization of sequential circuits based on cuckoo search

optimization. Comput. Electr. Eng. 2015, 44, 13–23. [CrossRef]
132. Wilkes, M. The best way to design an automatic calculating machine. In Proceedings of the Manchester University Computer

Inaugural Conference, Manchester, UK, 9–12 July 1951.
133. Wilkes, M.V.; Stringer, J.B. Micro-programming and the design of the control circuits in an electronic digital computer. Math. Proc.

Camb. Philos. Soc. 1953, 49, 230–238. [CrossRef]
134. Barkalov, A.; Titarenko, L. Logic Synthesis for Compositional Microprogram Control Units; Springer: Berlin, Germany, 2008; Volume 22.
135. Barkalov, A.; Węgrzyn, M. Design of Control Units With Programmable Logic; University of Zielona Gora Press: Zielona Gora,

Poland, 2006; p. 150.
136. Barkalov, A.; Titarenko, L.; Krzywicki, K. Structural Decomposition in FSM Design: Roots, Evolution, Current State—A Review.

Electronics 2021, 10, 1174. [CrossRef]
137. Barkalov, O.; Titarenko, L.; Mielcarek, K. Hardware reduction for LUT-based Mealy FSMs. Int. J. Appl. Math. Comput. Sci. 2018,

28, 595–607. [CrossRef]
138. Barkalov, O.; Titarenko, L.; Mielcarek, K. Improving characteristics of LUT-based Mealy FSMs. Int. J. Appl. Math. Comput. Sci.

2020, 30, 745–759. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/2068716.2068720
http://dx.doi.org/10.1016/j.vlsi.2011.03.003
http://dx.doi.org/10.1016/S0019-9958(62)90588-0
http://dx.doi.org/10.1109/HICSS.1990.205142
http://dx.doi.org/10.1109/T-C.1973.223655
http://dx.doi.org/10.1142/S021812661850041X
http://dx.doi.org/10.1109/21.370202
http://dx.doi.org/10.1049/ip-cdt:19951885
http://dx.doi.org/10.1049/iet-cdt.2010.0045
http://dx.doi.org/10.3844/ajeassp.2009.703.707
http://dx.doi.org/10.4304/jcp.8.6.1406-1410
http://dx.doi.org/10.1016/j.asoc.2013.08.004
http://dx.doi.org/10.1016/j.compeleceng.2015.03.014
http://dx.doi.org/10.1017/S0305004100028322
http://dx.doi.org/10.3390/electronics10101174
http://dx.doi.org/10.2478/amcs-2018-0046
http://dx.doi.org/10.34768/amcs-2020-0055

	Introduction
	FSMs and FPGAs: Background Information
	Methods of Reducing Power Consumption in CMOS Integrated Circuits
	Saving Power by Clock-Gating and FSM Decomposition
	Saving Power by State Assignment
	Replacing LUTs by Embedded Memory Blocks
	Conclusions
	References

