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Abstract: In the field of biomedical imaging, the use of Convolutional Neural Networks (CNNs) has
achieved impressive success. Additionally, the detection and pathological classification of breast
masses creates significant challenges. Traditional mammogram screening, conducted by healthcare
professionals, is often exhausting, costly, and prone to errors. To address these issues, this research
proposes an end-to-end Computer-Aided Diagnosis (CAD) system utilizing the ‘You Only Look
Once’ (YOLO) architecture. The proposed framework begins by enhancing digital mammograms
using the Contrast Limited Adaptive Histogram Equalization (CLAHE) technique. Then, features are
extracted using the proposed CNN, leveraging multiscale parallel feature extraction capabilities while
incorporating DenseNet and InceptionNet architectures. To combat the ‘dead neuron’ problem, the
CNN architecture utilizes the ‘Flatten Threshold Swish’ (FTS) activation function. Additionally, the
YOLO loss function has been enhanced to effectively handle lesion scale variation in mammograms.
The proposed framework was thoroughly tested on two publicly available benchmarks: INbreast
and CBIS-DDSM. It achieved an accuracy of 98.72% for breast cancer classification on the INbreast
dataset and a mean Average Precision (mAP) of 91.15% for breast cancer detection on the CBIS-DDSM.
The proposed CNN architecture utilized only 11.33 million parameters for training. These results
highlight the proposed framework’s ability to revolutionize vision-based breast cancer diagnosis.

Keywords: breast cancer detection; breast cancer classification; mammogram screening; Contrast
Limited Adaptive Histogram Equalization (CLAHE); You Only Look Once (YOLO); DenseNet;
InceptionNet; Flatten Threshold Swish (FTS); INbreast; CBIS-DDSM

1. Introduction

The advent of domain-specific architectures like Tensor Processing Units (TPUs) and
Graphical Processing Units (GPUs) has revolutionized the capabilities of Convolutional
Neural Networks (CNNs) in the field of Computer Vision [1]. Notably, in biomedical
imaging [2–4], the integration of CNNs is transforming diagnostic approaches, particularly
in the early-stage detection of diseases. Breast Cancer (BC), characterized by the abnormal
growth of malignant cells within breast tissues, can spread to other parts of the body if left
untreated [5]. BC is the second-leading cause of tumor-related deaths among females. The
early diagnosis of malignant cells is crucial, as it significantly increases the life expectancy
of the patient [6]. Recent advancements in medical technologies have introduced various
diagnostic tools, including Magnetic Resonance Imaging (MRI) [7], Computed Tomography
(CT) scans [8], photoacoustic imaging [9], and microwave imaging [10]. Among these,
mammography has emerged as a particularly effective method for Breast Cancer Diagnosis
(BCD). Mammography is a non-invasive and less painful screening technique compared to
other methods [11–13]. In mammograms, two primary indicators of cancer are identified:
masses and calcifications. Generally, masses or tumors exhibit sharp and irregular edges.
Calcifications, which may appear as coarse, granular, popcorn-like, or ring-shaped forma-
tions with a higher density and scattered distribution, can sometimes signal early tumor
development.
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In recent years, numerous mammogram-based breast cancer diagnosis systems have
been proposed [12,14–19]. However, there are still challenges that need addressing to
enhance the performance of BC detection systems. These challenges include variations
in the illumination, lesion scale, lesion class, and dynamic breast sizes in mammograms.
During the early stages of the disease, lesions appear smaller in mammogram images. As
the disease progresses, the lesions occupy a larger area, leading to variations in lesion size at
different stages, even if the lesion type remains the same. The ‘You Only Look Once’ (YOLO)
detection technique, a single-stage detection method, has been widely used for BCD in
recent years [5,11,19–22]. However, its loss function is not scale-invariant and is biased
towards smaller lesions [23]. Additionally, traditional activation functions (ReLU, Leaky
ReLU, etc.) used in their backbone architectures often lead to dead neurons and gradient
vanishing issues. Addressing these challenges is crucial to enhancing the diagnostic
process’s efficiency and providing more accurate, efficient, and reliable diagnoses. This
could potentially lead to earlier detection and improved treatment outcomes for breast
cancer patients.

1.1. Current State-of-the-Art in BCD

In recent years, a myriad of expert systems have been developed for the diagnosis of
breast cancer using mammograms, primarily falling into two categories: (i) conventional
image processing techniques and (ii) deep learning-based diagnosis [24]. Traditional image
processing approaches in breast cancer detection involve steps like image enhancement,
handcrafted feature extraction, and feature classification. Previously, widely recognized fea-
ture extraction methods such as Local Binary Patterns (LBP) [25], Gray Level Cooccurrences
Matrix (GLCM) [25,26], Histogram of Oriented Gradients (HOG) [26], and Scale Invariant
Feature Transform (SIFT) [25,27] have been utilized. Simultaneously, machine-learning
classifiers like Support Vector Machine (SVM) [25], Naive Bayes (NB) [28], and Random
Forest (RF) [25,28] have been employed to distinguish between malignant and benign
tumors in mammographic images. The effectiveness of these traditional diagnostic systems
heavily relies on the precision of the hand-crafted feature extraction techniques and the
efficiency of the classification algorithms [24]. Specifically, crafting optimal and robust
features for tumor identification presents significant challenges due to inherent limitations
such as interclass variations and deformations within mammographic images. However,
with the introduction of domain-specific hardware architectures, such as GPUs and TPUs,
and the consequent advancements in computational power, deep learning-based classifiers
have surged in popularity for breast cancer detection [29]. These modern approaches
leverage the ability of deep learning models to automatically learn feature representations
from mammograms, bypassing the need for manual feature extraction. This shift towards
deep learning has revolutionized the Computer-Aided Diagnosis (CAD) system for breast
cancer detection, enabling the development of models that are not only more accurate
but also capable of handling the complex variations found in breast tissues and tumor
appearances [30]. In the domain of BCD, the literature describes deep learning-based
techniques for the analysis of mammogram images.

Baccouche et al. [5] have made a significant contribution with their YOLO-based fusion
model, designed for the classification and detection of breast cancer using mammogram
images. Their methodology involved augmenting the training dataset and employing a
convolutional neural network (CNN), specifically the DarkNet model, in various configura-
tions. The most efficient configuration, termed the fusion model, demonstrated promising
results in breast cancer detection when evaluated using the CBIS-DDSM and INBreast
datasets. However, this approach has limitations—notably, the YOLO model’s low suit-
ability for mammogram images and the fact that the backbone CNN ignores multiscale
features [31], which are vital for early-stage lesion detection and handling class variations.

Zhao et al. [11] proposed a CAD system for mammogram analysis based on YOLOv3,
a deep-learning model. Their system encompasses three key stages: preprocessing, appli-
cation of the YOLOv3 model, and evaluation. The model is distinct in its dual capability
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of locating masses and classifying various categories such as microcalcification, mass,
benign, and malignant lesions. They developed three specialized training models using
the CBIS-DDSM dataset: a general model using all images, a mass-specific model, and a
microcalcification-focused model.

Xie et al. [19] proposed a multiscale method for early-stage BCD, utilizing DenseNet
and MobileNet as baseline CNN architectures. Their novel approach replaced the last
polling layer of the baseline CNN with a multiscale module and incorporated a Breast
Region Segmentation (BRS) module for image preprocessing. Evaluating their model using
the INBreast benchmark, they found DenseNet to outperform MobileNet. However, they
noted that DenseNet’s complexity and the extensive use of dense connection blocks led
to model overfitting, while MobileNet, being more lightweight, overlooked multilevel
features.

In a related study, Zhang et al. [20] introduced an enhanced version of the YOLOv3
network, termed an anchor-free-YOLOv3, specifically for mass detection in mammograms.
They addressed common issues in bounding box regression by incorporating Generalized
Intersection over Union (GIoU) loss instead of the traditional Mean Squared Error (MSE).
To further refine object detection, they utilized focal loss, which counters the negative
impact of a large number of easy negatives. Their feature fusion technique, the summation
method, was integrated into the model’s top-down pathway.

Meng et al. [21] focused on evaluating the You Only Look Once version 5 (YOLOv5)
for detecting and classifying breast lesions in dynamic contrast-enhanced MRI (DCE-MRI).
Four YOLOv5 sub-models were tested on a dataset comprising over 2000 images, each
of benign and malignant lesions. The study measured the precision, recall rate, and
mean average precision to assess model performance. Among the sub-models, YOLOv5s
outperformed others, with the highest precision (0.916) and mean average precision (0.894
for lesion detection. The study suggests YOLOv5s’s potential for clinical applications in
the rapid and accurate diagnosis of breast lesions on DCE-MRI, indicating its value in
AI-assisted imaging diagnosis.

Complementing these studies, Su et al. [22] developed the YOLO-LOGO model,
combining the strengths of YOLO and LOGO (local-global) networks for mass detection and
segmentation in mammograms. The process begins with the YOLOV5 model identifying
mass locations, followed by cropping these masses from the images. The LOGO training
approach then separately trains global and local transformer branches on both full and
cropped images. The final segmentation decision is derived from merging these two
branches. This innovative approach was validated using both the CBIS-DDSM and INbreast
datasets, demonstrating enhanced balance in model performance for both training and
segmentation tasks.

Saber et al. [32] focused on a deep transfer learning-based model, assessing various pre-
trained models for BC classification. Their comparative study using the MIAS benchmark
demonstrated that the VGG-16 architecture, based on transfer learning, surpassed other
models like Inception V3, ResNet50, and Inception-V2 ResNet in performance. However,
they observed that the VGG-16 model did not account for multiscale features, which are
crucial for comprehensive lesion detection and classification.

Ibrokhimov et al. [33] introduced a two-stage deep-learning framework utilizing
Faster-RCNN. Their model first extracted the Region of Interest (RoI) and then classified
breast masses into different categories. Tested against the INBreast benchmark, their
framework showed superior performance compared to baseline architectures, indicating
effectiveness in both lesion detection and classification.

Table 1 provides a critical analysis and brief description of various BCD frameworks,
highlighting their methodologies and areas for improvement.
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Table 1. Literature analysis.

Author Methods Dataset Limitations

Vijayan et al. [25]

They proposed a feature fusion
strategy utilizing global (e.g.,
morphological features and
GLCM) and local (e.g., SIFT and
LBP) features for BCD.

CBIS-DDSM

The reliance on predefined feature sets limits the
adaptability and generalization of models across
diverse mammogram datasets, and the complex
shapes and sizes of lesions present significant
challenges for models trained on
specific features.

Irshad et al. [26] Utilized the HOG and GLCM
handcrafted features for BCD. BreakHis

HOG features are sensitive to geometric and
photometric transformations, while
GLCM-derived texture features are particularly
vulnerable to noise in mammogram images.

Selvi et al. [27]
Utilized the Kalman filter for
noise removal and SIFT features
in their BCD framework.

CBIS-DDSM

The SIFT mechanism’s reliance on gradient
orientation and magnitude can lead to limited
effectiveness in capturing the complex textural
details and slight intensity variations often
present in mammographic images of breast
cancer tissues.

Baccouche et al. [5]

Proposed a YOLO V2-based
framework that utilized
Darknet19 CNN architecture for
feature extraction and BCD.

CBIS-DDSM and
INbreast.

DarkNet-19 is a feed-forward CNN that
overlooks the importance of multi-level and
multi-scale features. This oversight can lead to
challenges such as gradient vanishing or
exploding, limiting its effectiveness in managing
class variation crucial for accurate BCD [23].

Zhao et al. [11]

Proposed a YOLO v3-based
framework that utilized
Darknet53 CNN architecture for
feature extraction and BCD.

CBIS-DDSM

Although DarkNet-53 utilizes multilevel features
to mitigate the gradient vanishing problem, it
still ignores multi-scale features, which are vital
for a scale-invariant BCD framework.

Xie et al. [19]
Utilized DenseNet and
MobileNet CNN architectures
for BCD.

INbreast

DenseNet’s computational complexity and
extensive use of dense connection blocks can
lead to model overfitting; on the other hand,
MobileNet, while more lightweight, tends to
overlook multi-level features.

Meng et al. [21]

Proposed a YOLO v5-based
framework that utilized Cross
Stage Partial-DarkNet53 CNN
architecture.

DCE-MRI

The CSP-DarkNet53 architecture is
computationally expensive, which hinders
deployment in resource-constrained settings. Its
feature integration does not optimally capture
multi-scale details, which are critical for
detecting subtle breast cancer signs.

Su et al. [22]
Proposed the YOLO-LOGO
framework based on YOLOV5
CNN architecture.

CBIS-DDSM and
INbreast

The YOLOv5 CNN architecture is
computationally expensive and ignores
multiscale features.

Saber et al. [32]

Proposed a transfer
learning-based BCD framework
that utilized VGG-16 CNN
architecture.

MIAS VGG-16 is a simple CNN architecture that
ignores multilevel and multiscale features.

Ibrokhimov
et al. [33]

Proposed a Faster-RCNN-based
framework for BCD. INBreast

The Faster-RCNN architecture, as a two-stage
detector, first extracts RoIs and then performs
classification, which slows down the detection
process and increases the overall
system complexity.

1.2. Research Gap Analysis

The existing literature reveals several research gaps. First, while advancements in
YOLO-based models for mammogram analysis show good results, these models often
overlook the variation in lesion sizes at different stages of progression. This oversight
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can lead to misclassification, as lesions of similar lengths might be categorized incorrectly
depending on their stage of development. Another significant challenge lies in the com-
plexity and depth of neural networks. Deeper networks do not necessarily translate to
increased efficiency, primarily due to the vanishing gradient problem. This issue slows
down the training process in deep networks, as the gradient signal may diminish or even
drop to zero, particularly in the shallower layers. Occasionally, gradients can also explode,
reaching excessively high levels, thereby destabilizing the training process. Furthermore,
the current YOLO models have limitations in their loss function and activation functions.
The loss function is not scale-invariant and exhibits bias [23], which can disturb the accu-
racy of lesion detection. Additionally, the use of traditional activation functions like ReLU,
Sigmoid, and LeakyReLU in these models may result in dead neurons and exacerbate
the gradient vanishing problem [34]. Addressing these gaps requires further research on
developing models that can accurately classify lesions regardless of their size and stage,
improving the robustness of CNN against gradient issues, and enhancing the model to be
more scale-invariant. Such advancements would significantly improve the precision of
BCD systems.

1.3. Contributions

This research presents a BCD framework, significantly enhancing mammogram image
analysis through various key contributions. First, the framework utilizes CLAHE for image
enhancement. Then, a parallel CNN architecture is designed to extract features at multiple
levels. This approach successfully minimizes information loss at the initial stages of the
network. Further, dense connection blocks are integrated to extract multilevel features,
addressing the challenge of class variation in lesion types. Additionally, a multiscale block
is introduced, adeptly managing the scale variation problem often encountered in lesion
detection across different stages of progression. A state-of-the-art activation function is
used within the network, which effectively overcomes the issue of dead neurons. Moreover,
an improved loss function is specifically designed to reduce the impact of lesion scale
variation. These contributions collectively position this BCD framework as a cutting-edge
solution in the field, offering substantial improvements in the detection and classification
of breast lesions.

1.4. Organization

This paper is systematically structured to provide a comprehensive insight into our
study. Section 2 presents Material and Methods for diagnosing breast cancer from mam-
mograms using CNN. This section explains the datasets, methodologies, and algorithms
implemented in developing the framework. Following this, Section 3 is dedicated to
presenting and analyzing the results obtained from the application of the proposed CNN-
based approach. It offers a detailed examination of the performance metrics, comparative
analyses, and a discussion on the effectiveness of the model. The final section, Section 4,
concludes the paper by summarizing our key findings and contributions.

2. Material and Methods

This research proposed a BCD framework using a parallel multi-scale CNN architecture.

2.1. Datasets for Performance Evaluation

In assessing the effectiveness of the proposed framework, we utilized two benchmark
datasets, each tailored to evaluate distinct aspects of the framework’s performance in classi-
fication and detection. The first dataset, INbreast [35], comprises 410 digital mammograms
from 115 different cases. Each image in this dataset is assigned a category based on the
‘Breast Imaging-Reporting and Data System (BI-RADS)’ by an expert radiologist. The
dataset categorizes images into three groups: benign, malignant, and normal. It includes
116 positive case samples (benign and malignant) and 294 negative (normal) mammo-
grams. Post-data augmentation, the dataset expanded to 2870 images, offering a robust
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base for evaluating the classification capability of the framework. The second dataset,
the ‘Curated Breast Imaging Subset of the Digital Database for Screening Mammography’
(CBIS-DDSM) [36], is a recognized benchmark in digital mammogram-based breast cancer
screening, encompassing 6775 cases with 10,239 images. We customized the CBIS-DDSM
for our purposes, manually annotating the dataset using LabelImg, which is an open-source
image annotation tool. During annotation, the bounding box coordinates were created. The
Pascal VOC format was used to save annotations as XML files. This customization helped
construct and train the breast cancer detection framework. This dual-dataset approach
ensures a detailed assessment of the proposed framework’s capabilities in BCD.

2.2. Image Preprocessing

In this study, we employed Contrast Limited Adaptive Histogram Equalization
(CLAHE) to enhance the image quality of mammograms within the CBIS-DDSM and
INbreast datasets. The optimization of CLAHE parameters was crucial to achieving a
balance between enhancing the contrast of mammographic images and preventing the
introduction of noise that could potentially obscure critical diagnostic details. After an
extensive empirical evaluation aimed at maximizing the efficacy of lesion detection, we
determined the optimal settings for CLAHE to be a clip limit of 2.0 and a tile grid size
of 8 × 8. These parameters were chosen to ensure localized contrast enhancement that
is essential for highlighting the subtle features of lesions, while the clip limit was set to
mitigate the risk of over-enhancing the image, which could lead to noise amplification. This
careful parameterization allows for a significant improvement in the visibility of pertinent
features in mammograms, thereby facilitating the more accurate detection and analysis of
breast cancer indicators. Following this enhancement, each image was resized to a uniform
dimension of 416 × 416 pixels, as shown in Figure 1.
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To mitigate the overfitting issue, we expanded the INbreast benchmark’s dataset using
various geometric transformation-based augmentation methods. Flipping was employed,
involving both horizontal and vertical axis transformations. We also applied image rotation
at angles of 90◦, 180◦, and 270◦ to the original training samples. Lastly, we introduced noise
injection, utilizing a matrix with a random Gaussian distribution. These methods effectively
diversified the dataset, creating varied orientations of the same image and making it more
robust in recognizing and classifying images with varying levels of noise and distortion.
These augmentation methods collectively contribute to a more comprehensive training
regime, reducing the risk of overfitting while improving the model’s performance.
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2.3. Breast Cancer Diagnosis Framework

The BCD framework localizes the suspected lesion regions in a mammogram image
by generating Bounding Boxes (BBs) around the lesions and classifying them as mass or
calcification. It processes the mammogram by dividing it into a grid S × S (i.e., 13 × 13).
If the center coordinates (Cx, Cy) of a lesion’s BB fall into a Grid Cell (GC), that GC is
accountable for identifying that lesion. Each GC (Si, Sj) calculates confidence scores for BBs
overlapping it. The scores indicate the model’s certainty that the BB surrounds a lesion. If
no lesion is present in a GC, the scores should be zero, and no BB is produced. Otherwise,
the score equals the Intersection Over Union (IOU) between the Ground Truth BB (GTBB )
and Predicted BB (PBB ), as expressed in Equation (1). Furthermore, each GC predicts four
BBs in this case.

ConfBBi = Pr(Lesion)∗ IOUGTBB
PBB

(1)

For each BB, the proposed CNN predicts five crucial information components: the
Confidence Score, which indicates the likelihood of a lesion within the BB; the width and
height of the BB, providing spatial dimensions; the two center coordinates (x, y), pinpoint-
ing the lesion’s location; and the conditional class probability Pr (Class i| Lesion ), which
estimates the probability of the lesion belonging to a specific class. This probability is
conditioned on the presence of a lesion within the respective grid cell of the mammogram.
Notably, the model is designed to predict only one set of class probabilities per GC, regard-
less of the number of BBs detected within that cell, ensuring focused and specific lesion
characterization.

Figure 2 presents the block diagram of the proposed framework, illustrating the
comprehensive workflow of the CAD system for breast cancer detection. It encapsulates the
end-to-end process, from image preprocessing to the final diagnostic output, showcasing
the integration of advanced techniques and architectures to achieve superior performance
in BCD.
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2.4. Proposed Backbone CNN Architecture

The proposed CNN backbone architecture extracts multiscale features using the Paral-
lel Feature Extraction Stem (PFES), Dense Connection Blocks (DCB), and Inception Blocks
(IB), as shown in Figure 3. The PFES extracts multiscale features using four differently
sized filters (9 × 9, 7 × 7, 5 × 5, and 3 × 3) in its four parallel convolutional layers. These
layers extract high-level features in a simple feed-forward manner. In the PFES, after two
consecutive convolutional layers, a MaxPooling layer is introduced to downsample the
feature maps. The output of the PFES results in 104 × 104-dimensional feature maps
with 512 channels. Then, a 1 × 1 convolution is applied to reduce these feature maps to
256 channels. The 1 × 1 convolutional layer is strategically employed as a parameter
reduction technique, effectively controlling the overall number of parameters within the
network. This approach not only streamlines the model by minimizing computational
complexity but also maintains the integrity of feature representation, ensuring efficient
processing without compromising performance. MaxPooling layers are used to further
reduce the sample dimensions to 52 × 52.
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After extracting high-level features, these feature maps with dimensions of 52 × 52 × 256
are fed into the DCB and IB. Four CNN layers use 64 filters of a 3 × 3 size each. In the DCB,
as the CNN model forward propagates, the relationship between the L-1th layer and the Lth
layer is described in Equation (2).

xl = f
(

xl−1∗ wl + bl
)

(2)

where f presents the activation function (i.e., FTS), xl−1 is the input, wl are the kernel
weights, ∗ is the sign for convolution operation, and bl represents the bias. In the dense
connection block, the feature maps of layer L–1 are concatenated and used as the input for
the next Lth layer.

DCB play a vital role in enhancing the model’s ability to analyze mammographic
images. In DCB, each layer receives inputs from all preceding layers, facilitating the deeper
and more efficient propagation of features throughout the network. This design significantly
enhances feature reuse and ensures the generation of rich semantic feature maps. These
maps are helpful in accommodating the vast irregularities observed in the appearances
of breast tissues and the characteristics of lesions in mammograms. Furthermore, the
enhanced information flow mitigates the risks of vanishing or exploding gradients, thereby
improving the model’s training stability and performance across diverse classes.

IB, inspired by the principles of InceptionNet [37], are integrated into our system
to harness their capability of extracting and leveraging features at multiple scales [31].
This block utilizes 1 × 1, 3 × 3, and 5 × 5 convolutional filters for extracting multiscale
features. These features are particularly beneficial for addressing the scale variation of
lesions, ranging from minute calcifications to larger masses. By capturing patterns at
various scales, IB contribute to the model’s robustness, enabling it to more effectively
identify breast cancer lesions of different sizes and shapes.

The output feature maps (52 × 52 × 1024) from the DCB and IB are concatenated. Then,
a 1 × 1 convolution is applied to reduce these feature maps to 512 channels. MaxPooling
layers are used to further reduce the sample dimensions to 26 × 26. Subsequently, the
resultant feature maps with dimensions of 26 × 26 × 512 are passed through a second set of
DCB and IB. Similar to the previous stages, features are concatenated, reduced in channel
count, and dimensionally compressed. These processed features are then fed into the final
output layers, which predict all the parameters associated with its GCs, vital for BCD.

2.5. Activation Function

In model training, the choice of an activation function is crucial, as it transforms input
signals into output while introducing non-linearity, essential for effective classification.
Traditional activation functions like Sigmoid, ReLu, and Tanh are commonly used, but each
has limitations. For instance, Sigmoid and Tanh can lead to gradient disappearance in deep
layers due to diminishing propagation values, and Sigmoid’s complex power operations
can slow training. ReLu, despite its strong convergence rate, is prone to creating dead
neurons and fails to constrain the scale of data points as the network depth increases.
To overcome these drawbacks, newer and more stable activation functions like Flatten-T
Swish (FTS) have been proposed. In our study, we adopt the FTS activation function for our
proposed multilevel and multiscale CNN architecture, replacing ReLu. FTS, formulated
in Equation (3), with a threshold of −0.20, offers enhanced stability and performance in
handling data nonlinearity.

FTS(x) =

{
x

1+e−x + Thr , i f x ≥ 0

Thr , i f x < 0
(3)

2.6. Loss Function

To accurately classify and localize bounding boxes (BBs) in the YOLO-BCD framework,
we employ a dynamic approach to calculate the loss function. This includes several
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components, namely, BB localization loss (LossLoc), BB dimension loss (LossDim), class
confidence loss (LossCon f ), and classification loss (LossClass).

The general loss is illustrated in Equation (4).

Loss(PBB , GTBB ) = LossLoc + LossDim + LossCon f + LossClass (4)

The localization loss for bounding boxes is denoted as LossLoc and is detailed in
Equation (5). This loss is calculated based on the center coordinates of predicted and
ground truth BB, ensuring precise localization.

LossLoc = λCoord

S

∑
i=0

S

∑
j=0

K

∑
k=0

Lesion

∏
ijk

[(
C_x ij − C_x́ijk

)2
+
(

C_y ij − C_ýijk

)2
]

(5)

The dimensions of a BB are crucial and are determined using its width and height.
We calculate the BB dimension loss, denoted as LossDim, described in Equation (6). This
calculation is pivotal for maintaining the accuracy of the BB size in the model’s predictions.

LossDim = λCoord

S

∑
i=0

S

∑
j=0

K

∑
k=0

Lesion

∏
ijk

(Wij − Ẃijk

Ẃijk

)2

+

(
Hij − H́ijk

Ẃijk

)2
 (6)

Alongside the dimensions and location, our model also predicts the class of each BB.
To calculate the loss associated with the confidence score, we use Equation (7).

LossCon f = λNoLesion
S
∑

i=0

S
∑

j=0

K
∑

k=0

NoLesion
∏
ijk

[(
CSij − CŚijk

)2
]

+λVehicle
S
∑

i=0

S
∑

j=0

K
∑

k=0

Lesion
∏
ijk

[(
CSij − CŚijk

)2
] (7)

Furthermore, the classification result of each BB is denoted as
Class = [Class1 , Class2 , . . . , Classc ]

T . Then, the Pr (Classl)l ∈ C denotes the GT, while
the predicted probability of the lesion belonging to the l class is denoted as Ṕ (Classl)l ∈ C.
The class loss is estimated as explained in Equation (8).

LossClass = λClass

S

∑
i=0

S

∑
j=0

K

∑
k=0

Lesion

∏
ijk

C

∑
l=0

[
−Prij

(
Classl j

)
log Ṕrij (Classl)

]
(8)

2.7. Performance Evaluation Matrices

In this study, the performance of the proposed CNN architecture was rigorously eval-
uated using a comprehensive set of metrics, including precision, recall, F1-Score, accuracy,
and mean Average Precision (mAP) [38,39]. These metrics were selected to provide a
holistic assessment of the model’s effectiveness in terms of both its predictive accuracy and
its ability to balance the trade-off between precision and recall, thereby offering a nuanced
understanding of its overall performance in various operational contexts.

2.8. Experimental Setup and Implementation

The experiments were conducted on a Windows 10 computer equipped with an Intel
Xeon E5-2643 3.3 GHz CPU, 32 GB of RAM (Intel, Santa Clara, CA, USA), and an NVIDIA
Titan X GPU with 12 GB of memory (NVIDIA, Santa Clara, CA, USA). For model weight
optimization, we utilized the adaptive moment estimation method, setting the momentum
at 0.9 and the decay at 0.0005. The batch size was set to 32. The network underwent training
for 145 epochs, starting with a learning rate of 0.001. This rate was specifically chosen
based on our experimental conditions and the datasets used. Notably, we adjusted the
learning rate to 10% of its initial value at the 20th and 70th epochs to optimize training
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efficacy. To gauge the lesion detection proficiency of our model, we measured the mean
Average Precision (mAP) at an Intersection over Union (IoU) threshold of 0.5.

3. Results and Discussion

Two experiments were conducted to evaluate the performance of the proposed parallel
multiscale CNN architecture.

3.1. Breast Cancer Classification Comparative Analysis

In this experiment, the INbreast benchmark was utilized to evaluate the classifica-
tion performance of the proposed CNN. The ability of the CNN architecture to classify
breast cancer cases is evident from the confusion matrix presented in Figure 4. The pro-
posed CNN model using the FTS activation function accurately identified 105 malignant,
116 benign, and 342 normal cases, demonstrating high precision across all categories. De-
spite its exceptional accuracy, the model had a few misclassifications: only three cases were
incorrectly labeled as ‘Malignant’ and two were incorrectly labeled as ‘Benign’.
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Figure 4. Confusion matrix of proposed CNN architecture.

Based on the values from the confusion matrix, the precision, recall, F1-score, and accu-
racy of each model were calculated and are presented in Table 2. This comparative analysis
of the breast cancer diagnosis results highlights the effectiveness of various frameworks.
The Faster RCNN approach by Ibrokhimov et al. [33] achieved a precision of 84.36%, a
recall of 85.23%, an F1-Score of 84.70%, and an overall accuracy of 87.80%. Meanwhile, the
YOLO V3-based model proposed by Zhang et al. [20] marked an improvement, yielding a
precision of 90.94%, a recall of 89.83%, an F1-Score of 90.36%, and an accuracy of 92.16%.
Further advancements were observed in the YOLO V5-based framework by Meng et al. [21],
which accomplished a precision of 92.08%, a recall of 91.31%, an F1-Score of 91.67%, and an
accuracy of 93.72%. The YOLO-LOGO model by Su et al. [22] achieved 95.53% precision,
95.47% recall, 95.50% F1-Score, and 96.51% accuracy. We evaluated the impact of various
activation functions on the classification accuracy of our proposed CNN model. By re-
placing traditional activation functions—specifically, Leaky ReLU—with a state-of-the-art
activation function, namely, FTS, we observed a notable improvement. The implementation
of the FTS activation function resulted in an increase in the classification accuracy by 0.52%
compared to the baseline model utilizing Leaky ReLU. The proposed YOLO-BCD CNN
architecture using the FTS activation function outperformed all, exhibiting a remarkable
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precision of 97.13%, a recall of 97.93%, an F1-Score of 97.51%, and the highest accuracy of
98.08%. These results illustrate the enhancement in breast cancer classification accuracy
through advanced deep learning models, concluding in the superior performance of the
proposed architecture.

Table 2. Performance comparison of breast cancer classification using the INbreast dataset.

Framework Activation Function Precision (%) Recall (%) F1-Score (%) Accuracy (%)

Faster RCNN
Ibrokhimov et al. [33] ReLU 84.36 85.23 84.70 87.80

YOLO V3
Zhang et al. [20] Leaky ReLU 90.94 89.83 90.36 92.16

YOLO V5
Meng et al. [21] Leaky ReLU 92.08 91.31 91.67 93.72

YOLO-LOGO
Su et al. [22] Leaky ReLU 95.53 95.47 95.50 96.51

YOLO-BCD (Proposed) Leaky ReLU 96.39 97.03 96.70 97.56

YOLO-BCD (Proposed) FTS 97.13 97.93 97.51 98.08

3.2. Ablation Experiment Breast Cancer Detection

In our research, we assessed the impact of specific model components on breast
lesion detection through ablation studies, focusing on multiscale features via IB, multilevel
features through DCB, CLAHE for image enhancement, FTS activation function, and a scale-
invariant loss function, revealing their crucial roles in enhancing detection performance.
The results, presented in Table 3, illustrate the significant impact of different features on the
detection process. By incorporating all characteristics, the proposed YOLO-BCD framework
achieved a 91.15% mAP. Notably, the absence of multiscale and multilevel feature blocks
resulted in mAP scores of 87.07% and 88.02%, respectively, highlighting their importance in
capturing complex patterns. With the exclusion of image enhancement, the model achieved
an 88.66% mAP. Excluding the scale-invariant loss function, the model attained an 89.94%
mAP. Without the FTS activation function, YOLO-BCD achieved a 90.60% mAP.

Table 3. Ablation Experiment using the CBIS-DDSM dataset.

Multi-Scale
Features

Multi-Level
Features CLAHE Activation

Function Loss Function Mass AP% Cal AP% mAP%

✕ ✔ ✔ FTS Scale-invariant 87.17 86.98 87.08

✔ ✕ ✔ FTS Scale-invariant 88.44 87.59 88.02

✔ ✔ ✕ FTS Scale-invariant 89.14 88.17 88.66

✔ ✔ ✔ FTS YOLO Loss 89.77 90.11 89.94

✔ ✔ ✔ Leaky ReLU Scale-invariant 90.55 90.64 90.60

✔ ✔ ✔ FTS Scale-invariant 90.95 91.35 91.15

(✕) represents feature exclusion; (✔) represents feature incorporation.

3.3. Breast Cancer Detection Comparative Analysis

The comparative analysis of the proposed YOLO-BCD framework against existing
state-of-the-art BC detection schemes is detailed in Figure 5 and Table 4. Notably, Figure 5
illustrates that the proposed framework covers the maximum area under the PR-curve
for both classes, indicating its superior balance between precision and recall over other
frameworks. This is a critical indicator of the efficiency of a BC detection model, particularly
in medical diagnostics, where both false positives and false negatives carry significant
concerns.
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Table 4. Performance comparison using the CBIS-DDSM dataset.

Framework Activation Function Mass AP% Cal AP% mAP%

Faster RCNN
Ibrokhimov et al. [33] ReLU 80.94 77.66 79.30

YOLO V3
Zhang et al. [20] Leaky ReLU 77.83 79.70 78.76

YOLO V5
Meng et al. [21] Leaky ReLU 85.49 82.18 83.84

YOLO-LOGO
Su et al. [22] Leaky ReLU 88.31 88.89 88.60

YOLO-BCD (Proposed) FTS 90.95 91.35 91.15

Table 4 further reveals this point by presenting the Average Precision (AP) for each
class and the mean Average Precision (mAP) across different models. The proposed YOLO-
BCD framework demonstrates the highest average precision scores using the FTS activation
function for both Mass (90.95%) and Calcification (Cal) (91.35%) detection, leading to an
impressive mean Average Precision of 91.15%. This surpasses other models, such as the
Faster RCNN by Ibrokhimov et al. [33], with an mAP of 79.30%, the YOLO V3-based
model by Zhang et al. [20], with an mAP of 78.76%, YOLO V5 by Meng et al. [21], with an
mAP of 83.84%, and YOLO-LOGO by Su et al. [22], with an mAP of 88.60%. These results
collectively underscore the superior accuracy of the YOLO-BCD framework in detecting
breast cancer indicators. In Figure 6, some qualitative results are presented to demonstrate
the detection of breast cancer in test images from the CBIS-DDSM dataset.
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4. Conclusions

This study introduces a novel YOLO-based BCD framework, designed for the accu-
rate classification and detection of cancer tissues. To enhance the image clarity for more
effective feature extraction by the CNN model, we adopted the CLAHE technique, which
shows a 2.49 mAP improvement during evaluation. Data augmentation strategies were
implemented to generate additional samples and mitigate overfitting risks. We proposed
a parallel CNN architecture that utilizes multilevel and multiscale features. The model’s
effectiveness was rigorously evaluated using publicly available datasets, including IN-
breast and CBIS-DDSM. The absence of multiscale and multilevel feature blocks resulted
in lower mAP scores, highlighting their importance in capturing complex patterns. We
employed an advanced activation function, namely, FTS, to prevent gradient vanishing
and exploding issues in CNN training. The results reveal that the use of FTS instead of
traditional LeakyReLU improved the mAP by 0.55. The scale-invariant loss function was
utilized instead of the traditional YOLO loss function, improving the mAP by 1.21. Overall,
it achieved an accuracy of 98.72% for breast cancer classification on the INbreast dataset and
a mean Average Precision (mAP) of 91.15% for breast cancer detection on the CBIS-DDSM
dataset. Notably, our proposed CNN architecture is computationally efficient, requiring
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only 11.33 million parameters for training. This optimization was achieved through careful
model design, parameter reduction techniques, and the efficient use of the FTS activation
function, ensuring that our system remains accessible for practical applications without
compromising its effectiveness.
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