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Abstract: Structural health monitoring (SHM) plays a crucial role in extending the service life of
engineering structures. Effective monitoring not only provides insights into the health and func-
tionality of a structure but also serves as an early warning system for potential damages and their
propagation. Structural damages may arise from various factors, including natural phenomena
and human activities. To address this, diverse applications have been developed to enable timely
detection of such damages. Among these, vibration-based methods have received considerable
attention in recent years. By leveraging advancements in computer processing capabilities, machine
learning and deep learning algorithms have emerged as promising tools for enhancing the efficiency
and accuracy of vibration-based SHM. This study focuses on the application of convolutional neural
networks (CNNs) for the classification and detection of structural damage within a steel-aluminum
building model. An experimental platform was devised and constructed to generate data repre-
sentative of building damage scenarios induced by bolt loosening. Both the typical placement of
sensors on each floor and the utilization of only one accelerometer were employed to understand
the effect of scarcity of accelerometers. By subjecting the building model to controlled vibrations
and environmental conditions, the response data from both sensor configurations were collected
and analyzed to evaluate the effectiveness of the CNN approach in detecting structural damage
under varying sensor deployment strategies. The findings demonstrate that the CNNs exhibited
high accuracy in both damage classification and detection, even under scenarios with limited sensor
coverage. Moreover, the proposed method proved effective in identifying structural damage within
building structures.

Keywords: structural health monitoring; vibration-based methods; damage detection; convolutional
neural networks (CNNs)

1. Introduction

Engineering structures are subject to various types of damage throughout their lifes-
pans, arising from environmental conditions, operational stresses, and human activities.
Detecting and monitoring this damage is critical for ensuring structural integrity and safety.
Traditional methods of inspection, such as visual assessment, are often labor-intensive and
limited in their ability to provide comprehensive insights, particularly for large-scale struc-
tures. As a result, non-destructive techniques, including vibration-based structural health
monitoring (SHM) systems, have gained prominence. Vibration-based SHM systems utilize
sensors to monitor the dynamic response of structures to external forces or environmental
conditions. These systems offer valuable insights into the structural health and perfor-
mance of buildings, bridges, and other infrastructure. However, conventional approaches
typically require sensors to be distributed across multiple locations within a structure,
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which can be impractical or costly to implement, especially for large or complex struc-
tures. To address this challenge, researchers have begun exploring alternative approaches
to structural health monitoring that leverage advancements in artificial intelligence and
machine learning. In particular, convolutional neural networks (CNNs) have emerged as
a promising tool for analyzing sensor data and detecting structural damage. CNNs are
well-suited for capturing complex spatial and temporal patterns in data, making them ideal
for processing the multi-dimensional sensor data generated by SHM systems. This study
focuses on investigating the efficacy of CNNs for structural damage detection in scenarios
where sensor coverage is limited. By utilizing just one accelerometer placed on a structure,
rather than multiple sensors distributed throughout, we aim to develop a cost-effective
and practical solution for SHM. Through experimental testing on a three-story laboratory
frame under different sensor configurations, we evaluate the performance of CNN-based
damage detection algorithms. Additionally, we explore techniques such as data windowing
to enhance the effectiveness of CNNs in scenarios with sparse sensor coverage.

2. Literature Review

Vibration-based building health monitoring systems, which have been developing
recently, serve as an example of non-destructive testing systems. In vibration-based struc-
tural health monitoring or building damage detection, researchers focus on studies aimed
at determining the location, time, and severity of damage in existing structures [1–5]. Many
techniques have been developed to obtain information about structural health by examin-
ing the vibration responses of a structure [6–10]. In such techniques, the response of the
building to forced or free vibrations by means of accelerometers placed at certain points
of the building is tested to obtain information about the structural health by using differ-
ent algorithms [10–12]. We can categorize vibration-based structural health monitoring
methods into parametric and non-parametric approaches. In parametric vibration-based
structural health monitoring, the dynamic parameters of the building (such as modal fre-
quency, mass, rigidity, and mode shapes) are computed from the acceleration data collected
by accelerometers [13–18]. In the parametric method, structural damage estimation is
conducted by comparing the dynamic parameters of the damaged building with those
of the undamaged building [19,20]. In non-parametric vibration-based structural health
monitoring, on the other hand, an attempt to estimate structural damages is carried out
by directly processing acceleration data. In certain studies, researchers have combined
time series analysis with statistical classification to uncover building features that exhibit
distinct responses in the event of damage from raw signals. Subsequently, these signals
were monitored using a classification tool to assess the health status of the building [21,22].
With the advancement of machine learning algorithms, a subset of artificial intelligence,
and the evolution of computer components capable of processing large datasets, machine
learning has gained significant importance in various aspects of our lives. It has begun to
streamline human activities across a wide spectrum, from gaming to military applications
and from auto-completing search engine queries to enabling driverless vehicles. Artificial
intelligence continues to perform tasks that either take humans a longer time to accom-
plish or are beyond human capability entirely. However, since the developers of artificial
intelligence algorithms are currently human, it falls upon humans to identify the most
suitable artificial intelligence model and hyperparameters for a given task. This process is
time-consuming, particularly in the development of deep learning algorithms, and requires
extensive research and expertise to make informed decisions [23].

Machine learning approaches can be categorized into three main types: supervised,
unsupervised, and reinforcement learning. Supervised learning is a machine learning
paradigm that involves mapping an input to an output based on sample input-output
pairs [24]. In simpler terms, supervised learning can be described as teaching the algorithm
using a dataset with labeled examples and then requesting the system to provide possible
outputs for new inputs. On the other hand, unsupervised learning involves extracting
patterns or structures from unlabeled data without any predefined categories or labels [25].
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In other words, unsupervised learning entails classifying data based on their inherent
similarities or differences without relying on predefined categories or labels for unclassified
or unlabeled data. Finally, reinforcement learning is a machine learning approach inspired
by behaviorism, focusing on determining the actions that subjects should take in order
to maximize the rewards within a given environment [26]. In a recent study, researchers
proposed a method for developing MISMs on structural systems, utilizing structured input
data to enrich mechanical understanding. They explored graph neural networks (GNNs) as
a means of representing and embedding knowledge about structural systems, particularly
truss structures. Unlike traditional black box machine learning models, the proposed
approach emphasizes the role of structural mechanics in defining the surrogate model,
aiming to produce physically based outputs for the problem at hand. Specifically, the
researchers developed MISMs to learn deformation maps of the system based on known
structural features. Their approach was applied to both bidimensional and tridimensional
truss structures, demonstrating superior performance compared with standard surrogate
models [27].

In this study, supervised learning algorithms, particularly convolutional neural net-
works (CNNs), will be utilized. In data-driven machine learning methods, as the name
suggests, having a sufficient amount of data is crucial for the algorithm to effectively learn
the underlying system and produce accurate outputs. The process of finding or creating a
dataset is often the most labor-intensive aspect of supervised machine learning.

Deep neural networks (DNNs) refer to cases where artificial neural networks (ANNs)
contain more than three layers. Deep learning represents one of the latest advancements
in machine learning, with widespread applications across various scientific fields. Deep
learning continues to evolve and yield increasingly accurate results. In deep learning
methods, particularly CNNs, the networks can autonomously learn to extract features
directly from the raw data pertinent to the problem at hand, thereby maximizing classifica-
tion accuracy. This inherent capability makes CNNs particularly appealing for complex
engineering applications [28].

CNNs excel at capturing the spatial and temporal dependencies in signal data through
the application of relevant filters. Traditionally, CNNs have been predominantly used in
image recognition tasks within the literature. However, in recent studies, CNNs have also
begun to be employed in vibration-based structural health monitoring systems, leveraging
increased computational power. Yu et al. [29] developed a CNN to ascertain the location
and extent of structural damage in a five-story building model. The authors aimed to
detect damage in the building model by analyzing the acceleration data from the El Centro
dataset. In a similar study, Dang et al. [30] employed a CNN to identify damage in a
population of bridge structures constructed using a large number of random models. The
damage characteristics of this population were extracted, and the CNN was subsequently
utilized to detect damage in newly generated models. The results showed that employing
acceleration signals as CNN inputs achieved the highest detection accuracy, reaching
99.4%. This underscores the efficacy of the proposed approach in enabling CNNs to identify
damage across multiple structures.

This study aims to investigate the performance of a CNN in scenarios where there is
an insufficient number of measurement sensors, meaning only one accelerometer is placed
on the structure, neglecting the placement of one accelerometer on each floor as is typical.
To achieve this, a three-story single-bay laboratory frame is experimentally examined under
both sufficient and insufficient sensor configurations. In this context, the effectiveness of the
CNN technique is enhanced by applying windowing to the transformed data. The results
obtained indicate that the employed CNN approach can successfully estimate damage
detection even in situations with limited sensor placement.

In order to validate the efficacy of a CNN in scenarios with limited sensor placement,
the experimental test set-up serves as a critical component, providing real-world data for
analysis and comparison. By meticulously configuring the three-story single-bay labora-
tory frame under both sufficient and insufficient sensor configurations, the experimental
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set-up simulates realistic conditions, allowing for a comprehensive evaluation of CNN
performance. This set-up not only facilitates the investigation of a CNN’s capabilities in
scenarios with limited sensor coverage but also enables the assessment of its robustness
and reliability in practical structural health monitoring applications.

3. Experimental Test Set-Up

In the laboratory, a three-story aluminum building model was constructed and utilized
as a test platform (Figure 1). The building model consisted of rectangular tube beam
elements and flat bar column elements, with the connections between them provided by
bolts. The bottom plate of the three-story building model was mounted horizontally and
supported by two 400 cm long, 25 mm wide steel rails. A spring capable of working in
the tensile direction was installed on the bottom surface of the table at the ground level
of the three-story system and the plate supporting the entire system. The purpose of this
spring was to prevent the system from moving away from the shaker. Additionally, an
8 mm diameter gear shaft connected to this spring and a knob were placed at the end to
adjust the tension of the spring. This set-up reduced the collision effect between the shaker
output shaft and the floor plate, which occurred at different vibration frequencies, and
ensured proper shaking of the system. The floor table on the rails and the other parts of the
system mounted on it could move horizontally and on a single axis. The floor table and
columns were fixed with 4 M6 bolts made of A2 steel to prevent corrosion from moisture.
The entire system was made of aluminum, except for the skid on which the floor table sat
and the connection equipment. The total length of the system was 750 cm, the width was
350 cm, and the distance between the floors was 17 cm.
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Figure 1. Three views of the building model (adapted from [31]).

When any of the bolt connections were loosened, and the system was exposed to
environmental and operational conditions, both nonlinear signals due to bolt loosening
and signals due to noise were obtained from the sensors. These nonlinear signals represent
damage. The primary objective of structural health monitoring is to distinguish the effects
caused by damage from noisy signals due to environmental factors and use them as a
damage index. By loosening the bolt and allowing 0.3 mm of axial movement from the
nut’s contacted surface, a damage simulation was created. A feeler gauge was used to
measure how far the nut moved. Since there were three bolts in total, a total of 23 = 8
scenarios could be produced.
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The building model was mounted on foam that could isolate the noise, sub-plates,
rails, shafts, trolleys, shaker, and all mechanical connection equipment that made up the
system. This foam reduces the transfer of external noise to the system [31].

Following the construction of the three-story aluminum building model and the es-
tablishment of the experimental set-up, the tests were conducted, employing both the
three-accelerometer and single-accelerometer configurations. For the three-accelerometer
set-up, the sensors were strategically placed on each floor of the building model to capture
comprehensive vibration data across different levels. This configuration aimed to provide
detailed insights into the structural response to various stimuli and potential damage occur-
rences. Conversely, in the single-accelerometer configuration, only one accelerometer was
utilized, neglecting the typical placement of sensors on each floor. This scenario simulated
situations with limited sensor coverage, which are common in practical applications where
deploying multiple sensors might not be feasible due to cost or logistical constraints. By
subjecting the building model to controlled vibrations and environmental conditions, the
response data from both sensor configurations were collected and analyzed to evaluate the
effectiveness of the CNN approach in detecting structural damage under varying sensor
deployment strategies.

4. Materials and Methods
4.1. Dataset

At the end of the test period, a 3D tensor was obtained with dimensions of 8298 × 5 × 64.
For each loosening case, the tests were repeated 8 times, resulting in a total of 64 datasets.
The first column of the dataset concerns time (s), whereas the second, third, fourth, and
fifth columns concern the accelerometer signals (m/s2). Notably, the ground acceleration
data in the second column were not utilized in this analysis. To feed the data into the
Conv1D layer, they needed to be reshaped into a one-dimensional format. Therefore,
the data were reshaped so that the third axes were horizontally stacked on top of each
other. This prepared the data to be fed into convolutional neural networks. Since the data
were artificially created, the dataset was balanced (i.e., there were an equal number of
examples for each damage case). Additionally, the states of the bolts in each damage case
are presented in Table 1.

Table 1. Damage cases with the states of the bolts.

Damage Case Bolt 1 Bolt 2 Bolt 3

1 0 0 0
2 0 1 0
3 0 0 1
4 0 1 1
5 1 0 0
6 1 0 1
7 1 1 0
8 1 1 1

Here, “1” represents the system being damaged, while “0” shows that the system is healthy.

In neural networks, data are generally divided into training, validation, and test sets.
It is noted that 8 tests were carried out for each of the 8 damage cases. The first 6 tests
were chosen as the training set, while the seventh and eighth tests were designated as the
validation and test sets, respectively.

4.2. Methods

CNN architectures come in various dimensions, including 1D, 2D, and 3D formats.
Among these, 2D CNNs are most prevalent and are commonly employed for tasks such as
image classification, similarity clustering, and object recognition in scenes. The rationale
behind the prevalent use of 2D CNNs in image classification stems from the inherently
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two-dimensional nature of image data [32]. Conversely, Conv1D architectures are typically
applied for analyzing time series data. Given that the vibration data obtained from building
structures also exhibit temporal characteristics, Conv1D architectures can be effectively
utilized for the classification of acceleration data [33].

In the context of this research, a convolutional neural network (CNN) model was de-
veloped. Although CNNs operate as black box systems, where input batches are processed
to yield corresponding outputs, designing effective machine learning models involves
selecting appropriate algorithms and techniques, which in turn require decisions regarding
specific parameters [34]. In deep neural network models, designers must determine key
factors such as dropout rates, the number of layers, and the quantity of neurons. How-
ever, deciding on these parameters is often not a straightforward process, as their optimal
values may not be immediately apparent. These parameters, which vary depending on
the problem and dataset, are known as hyperparameters. Different combinations of hy-
perparameters may yield varying levels of model performance, and selecting the most
suitable combination is a crucial challenge. Typically, hyperparameter selection relies on
the designer’s intuition, past experience, reflection on applications in related fields, current
trends, and the inherent design characteristics of the model. However, recent advancements
have introduced techniques aimed at systematically identifying the most appropriate hy-
perparameter combinations for optimal problem solving. The number of hyperparameters
in a model can vary significantly, ranging from just a few to several hundred. Examples
of hyperparameters include the number of layers and epochs, kernel size, stride, padding
batch size, activation function, layer types, and units. Hyperparameter tuning is essential
for creating the most effective model for a given dataset, and various methods exist for
achieving this goal.

After discussing the basics of convolutional neural networks (CNNs) and their applica-
tion in vibration-based structural damage detection, it is important to delve into the concept
of hyperparameters and their significance in model design and performance optimization.
In machine learning models, hyperparameters are parameters whose values are set before
the learning process begins. These parameters govern the behavior of the model during
training and influence its ability to learn from the data. Some common hyperparameters in
CNNs include the following:

Number of Layers: This refers to the depth of the neural network, including convolu-
tional layers, pooling layers, and fully connected layers. Deeper networks can potentially
capture more complex patterns but may also be prone to overfitting.

Epochs: An epoch is one complete pass through the entire training dataset. The
number of epochs determines how many times the model will see the entire dataset
during training.

Kernel Size: In convolutional layers, the kernel size defines the spatial dimensions of
the filter applied to the input data. Larger kernels capture broader patterns, while smaller
kernels focus on finer details.

Stride: The stride parameter specifies the step size at which the kernel moves across
the input data during convolution. A larger stride reduces the spatial dimensions of the
output feature maps.

Padding: Padding is used to preserve the spatial dimensions of the input data when
applying convolutional filters. It involves adding zeros around the input data to ensure
that the output feature maps have the desired size.

Batch Size: The batch size determines the number of samples processed by the model
in each training iteration. Larger batch sizes can accelerate training but may require
more memory.

Activation Function: Activation functions introduce nonlinearity into the network
and enable it to learn complex mappings between inputs and outputs. Common activation
functions include ReLU, sigmoid, and tanh.

Dropout: Dropout is a regularization technique used to prevent overfitting by ran-
domly deactivating a fraction of the neurons during training.
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Learning Rate: The learning rate controls the step size of the gradient descent al-
gorithm used to update the model weights during training. It influences the speed and
stability of the training process.

Through meticulous tuning of these hyperparameters, researchers and practitioners
can optimize the performance of CNNs for specific tasks and datasets, thereby enhancing
generalization and predictive accuracy. Various techniques, such as grid search, random
search, and Bayesian optimization, can be employed to identify the optimal combination of
hyperparameters for a given problem.

The overall CNN architecture for the current study is illustrated in Figure 2. Labeled
acceleration data sampled at regular intervals were inputted into 1D convolutional layers.
Interspersed between these layers were dropout layers, which served to mitigate overfitting
of the neural network structure to the training data. Additionally, batch normalization
layers were incorporated to normalize activations in the intermediate layers, thereby
improving the accuracy.
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Figure 2. Proposed neural network in present study.

In the upcoming section, we will detail a comprehensive strategy for hyperparameter
optimization, a critical phase aimed at refining the effectiveness of our network architecture.
Through extensive experimentation and systematic adjustment of the hyperparameters,
our objective was to identify the optimal configuration that maximized the network’s
performance across various metrics. This rigorous process ensured the robustness and
adaptability of our model, allowing us to gain valuable insights into the complex inter-
actions among different architectural components and their influence on the network’s
predictive abilities.

Hyperparameter Tuning

The advent of deep learning introduced complex architectural structures with multiple
layers, each governed by a set of hyperparameters determined by the designer. While
some hyperparameters, such as optimization algorithms and activation functions, involve
straightforward selection from a limited pool of options, others, including the number of
layers and neurons, learning rates, and kernel sizes, require meticulous consideration due
to their broad range of potential values. Choosing the appropriate hyperparameter values
is often an iterative process, as the initial selections may not yield optimal results. Designers
typically adjust these parameters iteratively, observing the model’s performance with each
change to identify the most suitable hyperparameter combination. Additionally, automated
methods exist to streamline this selection process. Two common hyperparameter tuning
techniques are random search and grid search. In random search, values are randomly
selected from predetermined ranges for each hyperparameter, with iterations continuing
until the best-performing combination is found. On the other hand, grid search evaluates
all possible combinations within specified ranges to identify the optimal hyperparameter
group. The concept of random search for hyperparameter optimization was initially
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proposed by Bengio et al. [35]. Similar to grid search, this approach involves predetermining
the hyperparameter ranges based on prior knowledge of the problem. However, instead
of testing every value within these ranges, random values are selected and evaluated
until the best-performing hyperparameter group is discovered or a desired performance
level is achieved [36]. In addition to the techniques mentioned, Figure 3 illustrates a
comparison of search algorithms, where the axes represent different hyperparameters. Each
dot corresponds to a specific combination of hyperparameters evaluated by each method.
In this visual representation, the different exploration strategies employed by each method
can be observed, as well as how the hyperparameter space is navigated by them.
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While random search and grid search are widely used methods, recent advancements
like Hyperband have emerged to address the need for more efficient exploration of the hy-
perparameter space. Hyperband is a hyperparameter optimization technique that aims to
efficiently search the hyperparameter space to find the optimal configuration for a machine
learning model. It is designed to balance the trade-off between exploration and exploitation
during the hyperparameter tuning process. The Hyperband algorithm works by iteratively
allocating resources to a set of candidate hyperparameter configurations and then eliminat-
ing the poorly performing configurations based on their initial performance. It consists of
two main components: random search and successive halving. Hyperband starts with a
random sampling of hyperparameter configurations. Each configuration is evaluated using
a predetermined amount of computational resources, such as the training time or epochs.
This initial random search phase helps identify promising configurations to explore further.
Then, Hyperband employs a successive halving strategy to efficiently allocate resources to
the most promising configurations. This involves dividing the set of configurations into
smaller subsets, or “brackets”, and allocating more resources to the configurations with
the highest performance in each bracket. The configurations with worse performance are
eliminated at each stage, allowing more resources to be focused on the most promising
candidates. By iteratively applying random search and successive halving, Hyperband
aims to quickly identify the best-performing hyperparameter configuration with minimal
computational resources. It efficiently balances the exploration of the hyperparameter
space with the exploitation of promising configurations, making it a popular choice for
hyperparameter optimization tasks [37].

In the CNN model proposed in this study, after every Conv1D layer, there were max
pooling layers and dropout layers. Max pooling layers help with reducing the spatial
dimensions of the input data, thereby reducing the computational complexity of the model
and extracting the most salient features from the data. This helps with capturing the
essential information while discarding redundant or less important features, leading to
better generalization and improved performance of the model. The dropout layers, on
the other hand, were added to prevent overfitting of the CNN model to the training
data. Overfitting occurs when the model learns to memorize the training data instead
of generalizing patterns, leading to poor performance on unseen data. By randomly
deactivating a fraction of the neurons during training, the dropout layers forced the model
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to learn more robust and generalized representations, thereby improving its ability to
generalize to unseen data.

In the context of hyperparameter optimization, the “search space” refers to the range
or set of possible values that each hyperparameter can take. Essentially, it encompasses
all the potential options that the optimization algorithm explores when seeking the best-
performing combination of hyperparameters. For example, if we consider hyperparameters
like the learning rate, number of layers, and dropout rate, then the search space for each
would consist of the various values or ranges within which these parameters could be
adjusted. In essence, the search space defines the boundaries within which the optimization
algorithm operates to find the optimal configuration for the neural network model. Main-
taining a consistent search space across different experiments ensures fair comparisons
between models trained on different datasets or with different configurations, allowing for
a comprehensive evaluation of their performance. For example, if we were optimizing a
CNN model using the HyperBand algorithm, then we would explore different configura-
tions by varying the number of filters in the convolutional layers. This hyperparameter
determines the number of filters or kernels that are applied to the input data during the
convolution operation. Thus, for a specific experiment, we might try using 128 filters in
one configuration, 160 filters in another, and so on up to 256 filters. Each configuration
would be evaluated to determine its performance on the given dataset, and the algorithm
would iteratively search through these options to find the best-performing combination
of hyperparameters.

Table 2 displays the search space of the hyperparameters considered in the optimiza-
tion process. Due to the extensive range of hyperparameters, the optimization algorithm
necessitated a total of 9 hours to achieve optimal results. Generally, random search out-
paces grid search in speed but often sacrifices performance. However, in this study, a
novel approach to random search, termed the HyperBand hyperparameter optimization
technique, was leveraged. This innovative method facilitated the attainment of a high level
of accuracy in a relatively brief timeframe. Having max pooling layers and dropout layers
after every Conv1D layer also meant that the number of Conv1D layers was the same as
the number of max pooling layers and dropout layers. But the hyperparameters for the
layers and the number of layers changed throughout the hyperparameter optimization
procedure. After the best hyperparameters were found using the Hyperband, the model
had been trained with the best hyperparamaters.

Table 2. Search space for the HyperBand algorithm.

Hyperparameter Search Space

Number of filters 128, 160, 192, 224, 256
Conv1D layers 1, 2, 3, 4, 5, 6

Dropout 0.1, 0.2, 0.3, 0.4, 0.5
Dense layers 1, 2, 3, 4

Number of units in dense layer 128, 256, 512, 1024, 2048

In this study, the presence of accelerometers on every story of the building facilitated
comprehensive data collection for structural health monitoring. However, constraints such
as scarcity of accelerometers or technical limitations may necessitate working with fewer
sensors in some scenarios. Consequently, to address this variability in data availability,
separate neural networks were trained using data from single accelerometers in addition to
the complete dataset. This approach enabled a comparative analysis of the accuracy levels
between the models trained on the entire dataset and those trained on subsets with fewer
sensors. To ensure a fair comparison among these neural networks, the search space of
the hyperparameters, optimization type, and other relevant parameters remained constant
across all experiments. Detailed results, including the accuracy and loss values for each
combination of hyperparameters and datasets, are provided in the Appendices A–C for
thorough examination and comparison.
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5. Results

The hyperparameter optimization results for the model trained on the whole dataset
are provided in Appendix A. Despite even the worst-performing combination achieving an
accuracy of over 90%, hyperparameter optimization was still necessary to discover the best
combination of hyperparameters for improved performance on unseen test data. The best
model exhibited a 98.9% training accuracy and 99% validation accuracy, outcomes achieved
through hyperparameter optimization. The final model structure is given in Figure 4, and
the hyperparameters are given in Table 3.
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Table 3. Optimum combination of hyperparameters obtained by random search method.

Hyperparameter Optimal Value

n_layers 6
conv_0 288
conv_1 288
conv_2 224
conv_3 32
dropout 0.2

dense layers 3
n_nodes 256

The training and validation accuracies, as well as the loss versus epoch graphs, for the
best-performing combination of hyperparameters are depicted in Figure 5. The optimized
model achieved 98.3% accuracy and 0.02 loss on the training data and 94% accuracy and
0.018 loss on the validation data. These results indicate that the optimized model performed
exceptionally well on the data on which it had been trained. However, the true performance
would be assessed using the test data.
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Figure 5. The training and validation accuracy (left) and training and validation loss (right) for the
optimized model.

Before delving into the results, it is essential to understand some key evaluation
metrics used to assess the performance of classification models: precision, recall, and F1
score, as well as the confusion matrix.
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Precision, also known as the positive predictive value, measures the accuracy of
positive predictions made by the model. It is calculated as the ratio of true positive
predictions to the total number of positive predictions made by the model. A high precision
score indicates that the model has fewer false positive predictions.

Recall, also known as the sensitivity or true positive rate, measures the ability of the
model to correctly identify positive instances from the total actual positive instances in
the dataset. It is calculated as the ratio of true positive predictions to the total number of
actual positive instances. A high recall score indicates that the model can capture most of
the positive instances.

The F1 score is the harmonic mean of the precision and recall. It provides a balance
between precision and recall, especially in cases where there is an imbalance between the
number of positive and negative instances in the dataset. The F1 score is calculated as
shown in Equation (1):

2 × precision × recall
precision + recall

(1)

In order to gauge the performance of the optimized model, it was subjected to evalua-
tion using the test data. The confusion matrix, depicted in Figure 6, and the corresponding
classification report in Table 4 provide insights into the model’s predictive capabilities.
While the optimized model demonstrated high accuracy in predicting most damage cases,
it exhibited some confusion, particularly with damage_7 classification. This poor per-
formance for damage_7 might be attributed to various factors such as imbalanced data
distribution, insufficient representation of damage_7 instances in the training dataset, or
the presence of unique features in damage_7 cases that were not effectively captured by
the model. Despite achieving F1 scores exceeding 90% for other damage categories, the F1
score for damage_7 stood at 86%, indicating relatively poorer performance in predicting
instances of this specific damage type. However, it is worth noting that the overall accuracy
for the test data remained commendable at 97%, surpassing acceptable levels.
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Furthermore, considering the potential influence of overfitting in the single-accelerometer
models, addressing this issue through future work is imperative. Further analysis and
refinement are necessary to assess the generalization capability of these models and mitigate
any adverse effects of overfitting.

It was stated there were a total of four accelerometers in every story and at the ground
level. Hyperparameter optimization was also conducted for the neural network by using
the data of the accelerometers on each floor separately, except for the ground acceleration
data. The accuracy of the neural network on the test set was 89, 90, and 83% for acc1, acc2,
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and acc3, respectively. Even though the neural network was expected to perform worse
with less data, the results for training of the neural network on single-accelerometer data
were fairly satisfying. The confusion matrix and the classification report for all neural
networks trained on the single-accelerometer data are presented in Figure 7 and Table 5,
respectively. Overall, the performance of the neural network dropped mildly. This was
the expected result. However, given that the network was working with four times less
data, the model was trained and tested far faster. This is an advantage because of the
computing power. All data handling, training, and testing of the data were carried out
on an AMD 3600X processor and RTX2070 GPU. While the hyperparameter optimization
for single accelerometers took roughly 2 h for each, it took approximately 7 h for the
whole dataset. This ratio is also valid for testing cases. All hyperparameter optimization
results are given in the tables in Appendix B. A receiver operating characteristic (ROC)
curve is a graphical plot that illustrates the performance of a binary classifier system as its
discrimination threshold varies. It is created by plotting the true positive rate (TPR) against
the false positive rate (FPR) at various threshold settings. The area under the curve (AUC)
is a measure of the overall performance of the classifier, where a larger area under the
curve represents better performance. ROC-AUC curves are a helpful tool for determining
the accuracy of a binary classifier system. They can be used to compare different models,
allowing for a better understanding of the performance of each model. Additionally, the
AUC metric can be used to measure the overall performance of a model and help identify
when a model is over- or underfitted. The ROC-AUC curves for all model are given in
Appendix C.

Table 4. Classification report for test set.

Damage Precision Recall f1-Score Support

Damage_1 1.00 1.00 1.00 810
Damage_2 0.99 0.98 0.98 810
Damage_3 0.99 1.00 0.99 810
Damage_4 1.00 0.99 1.00 810
Damage_5 0.94 1.00 0.97 810
Damage_6 0.89 1.00 0.94 810
Damage_7 0.99 0.76 0.86 810
Damage_8 0.95 1.00 0.97 810
Accuracy 0.97 6480

Macro average 0.97 0.97 0.96 6480
Weighted average 0.97 0.97 0.96 648

Table 5. Classification report for test set for each accelerometer configuration.

Acc_1 Acc_2 Acc_3

Damage Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score Support

Damage_1 0.91 1.00 0.95 0.93 1.00 0.96 0.99 1.00 1.00 810
Damage_2 0.92 0.91 0.91 0.83 0.81 0.82 0.53 0.31 0.39 810
Damage_3 0.92 1.00 0.96 0.84 0.83 0.84 0.93 0.99 0.96 810
Damage_4 0.98 0.81 0.89 0.90 0.85 0.88 0.94 0.89 0.91 810
Damage_5 0.86 1.00 0.92 0.98 0.96 0.97 0.87 1.00 0.93 810
Damage_6 0.81 0.99 0.89 0.86 1.00 0.92 0.80 0.86 0.83 810
Damage_7 0.97 0.54 0.69 0.90 0.79 0.84 0.56 0.66 0.60 810
Damage_8 0.80 0.86 0.83 1.00 1.00 1.00 0.98 0.96 0.97 810
Accuracy 0.89 0.90 0.83 6480

Macro average 0.90 0.89 0.88 0.90 0.90 0.90 0.82 0.83 0.82 6480
Weighted average 0.90 0.89 0.88 0.90 0.90 0.90 0.82 0.83 0.82 6480
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6. Discussion

The achieved accuracy of 97% on the test set of the whole data reflects the effectiveness
of the proposed CNN model in accurately classifying various types of structural damage.
The performance of the CNN model in damage detection surpassed traditional methods,
particularly visual inspection and non-destructive testing. The speed and accuracy of the
proposed approach highlight the potential for transitioning from labor-intensive manual
inspections to automated, data-driven methods.

The CNN’s ability to accurately classify and detect structural damage, even with noisy
signals, underscores its efficacy in non-destructive testing. This is particularly valuable
in scenarios where destructive testing is impractical or poses risks to structural integrity.
The high accuracy of the model suggests its potential for real-time monitoring of structural
health. Rapid and precise detection of damage types can facilitate timely interventions,
preventing the progression of structural issues and enhancing overall safety.

An intriguing aspect of this study is the satisfactory performance achieved by the
CNN models trained on individual accelerometer data from different floors. Despite the
reduction in available data, the models demonstrated noteworthy accuracy levels: 89%,
90%, and 83% for acc1, acc2, and acc3, respectively. The ability to achieve meaningful
results with models trained on data from a single accelerometer is promising for practical
applications. This implies that in scenarios where sensor deployment is constrained or
costly, a simplified monitoring set-up with fewer sensors may still provide valuable insights
into structural health.

The reduced dataset for single accelerometers implies a more data-efficient train-
ing process. This efficiency is particularly beneficial in situations where data collection
is challenging or expensive, showcasing the adaptability of the model to resource con-
straints. The training and testing of these single-accelerometer models were notably faster
compared with the model trained on the entire dataset. This computational advantage
is crucial for real-world applications, enabling quicker assessments and interventions in
time-sensitive situations.

7. Conclusions

The findings of this study underscore the potential for practical and cost-effective
structural health monitoring through the use of single accelerometers. The remarkable
performance achieved by models trained on data from individual accelerometers introduces
a paradigm shift in the deployment of monitoring systems. While the comprehensive model
trained on the entire dataset remains a valuable tool, the demonstrated efficacy of simplified
monitoring set-ups using fewer sensors holds significant promise.

The adaptability showcased in this research has far-reaching implications across vari-
ous applications. In situations where resource constraints or retrofitting challenges pose
limitations on deploying an extensive sensor network, the option of relying on strategically
placed single accelerometers emerges as a viable and insightful alternative. This adapt-
ability is particularly relevant in the context of existing structures, where the feasibility of
retrofitting with modern sensor technology may be challenging.

The cost-effectiveness and efficiency of models trained on single accelerometer data
pave the way for new avenues in structural health monitoring. The ability to obtain
meaningful insights with a reduced number of sensors addresses practical challenges
and opens doors for broader implementation. This adaptability could be instrumental in
various fields, ranging from civil engineering and infrastructure monitoring to historical
building preservation.

As we move forward, further research endeavors can delve into optimizing the in-
tegration of single accelerometers into structural health monitoring strategies. Exploring
the optimal placement of these sensors and their combination with other non-intrusive
sensing methods may enhance the overall accuracy and reliability of monitoring systems.
This pursuit of efficiency aligns with the demand for accessible and practical solutions,
particularly in scenarios where extensive sensor networks are not feasible.
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In conclusion, this study not only contributes valuable insights to the field of struc-
tural health monitoring but also encourages a shift toward more accessible and efficient
solutions. The adaptability demonstrated in this research underscores the potential for
single accelerometers to play a pivotal role in shaping the future landscape of structural
health monitoring, making it more feasible and impactful in real-world applications.
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Appendix A

Table A1. Hyperparameter optimization results for the model trained on whole dataset.

n_Layers conv_0 conv_1 conv_2 conv_3 conv_4 conv_5 Dropout Dense Layers n_Nodes Training_acc val_acc Training_Loss val_Loss

4 288 288 224 32 0.2 3 256 0.9897 0.9997 0.0330 0.0019

3 128 224 224 0.5 2 512 0.9733 0.9994 0.0811 0.0104

2 320 512 0.2 2 128 0.9871 0.9991 0.0422 0.0056

2 480 0.2 1 256 0.9918 0.9991 0.0237 0.0059

2 224 448 0.1 2 128 0.9911 0.9987 0.0291 0.0040

1 352 448 0.1 2 256 0.9887 0.9962 0.0368 0.0109

1 288 0.4 1 1024 0.9864 0.9946 0.0397 0.0186

2 448 352 96 352 0.1 4 256 0.9857 0.9943 0.0467 0.0174

5 352 160 64 96 0.3 4 2048 0.9372 0.9915 0.1714 0.0647

3 288 288 0.5 2 512 0.9744 0.9899 0.0735 0.0289

2 192 160 0.4 2 512 0.9850 0.9896 0.0474 0.0312

3 256 320 224 0.3 3 2048 0.9839 0.9892 0.0520 0.0243

1 384 288 32 0.4 3 128 0.9828 0.9886 0.0560 0.0314

3 384 160 128 0.3 3 1024 0.9811 0.9858 0.0565 0.0490

2 480 64 320 0.1 3 1024 0.9872 0.9756 0.0461 0.0682

2 512 64 288 416 0.5 4 2048 0.9642 0.9747 0.1050 0.0591

5 448 288 288 0.2 3 1024 0.9836 0.9741 0.0477 0.0788

1 320 64 160 0.4 3 512 0.9781 0.9687 0.0663 0.0766

2 480 224 0.2 2 2048 0.9881 0.9627 0.0355 0.1451

2 416 128 64 448 0.2 4 128 0.9834 0.9595 0.0476 0.1178
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Appendix B

Table A2. Hyperparameter optimization results for the model trained on acc_1.

n_Layers conv_0 conv_1 conv_2 conv_3 conv_4 conv_5 Dropout Dense Layers n_Nodes Training_acc val_acc Training_Loss val_Loss

5 384 512 448 288 384 288 0.2 2 256 0.97 0.99 0.0900 0.0324

5 320 128 160 160 96 416 0.1 3 2048 0.96 0.94 0.1050 0.1787

5 288 256 480 320 128 416 0.2 2 1024 0.96 0.98 0.1105 0.0566

4 64 416 160 160 288 0.2 2 128 0.94 0.94 0.1670 0.1671

3 96 512 0.1 4 256 0.92 0.57 0.2071 3.3172

1 288 384 128 256 320 64 0.1 2 256 0.92 0.84 0.2198 0.4849

2 128 448 128 160 64 96 0.3 3 1024 0.89 0.69 0.2711 1.3627

2 448 160 256 416 384 512 0.3 1 2048 0.88 0.86 0.2924 0.2869

2 352 448 416 352 160 480 0.3 3 128 0.87 0.84 0.3105 0.3669

1 352 480 96 64 64 288 0.3 2 256 0.87 0.78 0.3195 0.6040

2 384 288 320 160 288 288 0.4 3 256 0.86 0.84 0.3303 0.3307

2 480 224 352 192 480 352 0.5 3 256 0.86 0.84 0.3468 0.3857

5 192 96 480 288 0.3 1 512 0.86 0.83 0.3580 0.4165

2 192 384 480 384 128 288 0.2 2 2048 0.86 0.81 0.3472 0.4565

4 32 384 64 192 224 512 0.4 1 512 0.84 0.59 0.3871 2.4890

1 352 448 480 320 256 352 0.2 1 512 0.83 0.80 0.4149 0.5179

1 288 448 448 128 416 64 0.4 1 2048 0.83 0.77 0.4359 0.5905

4 96 320 416 96 192 160 0.5 4 1024 0.82 0.54 0.4445 7.0866

3 352 128 96 160 416 96 0.5 4 1024 0.82 0.53 0.4490 2.5421

3 512 480 32 192 448 96 0.5 4 2048 0.81 0.73 0.4585 0.6584
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Table A3. Hyperparameter optimization results for the model trained on acc_2.

n_Layers conv_0 conv_1 conv_2 conv_3 conv_4 conv_5 Dropout Dense Layers n_Nodes Training_acc val_acc Training_Loss val_Loss

5 512 416 128 384 480 288 0.1 1 128 0.98 0.92 0.0588 0.2706

4 288 320 352 416 384 0.2 3 256 0.96 0.67 0.1048 2.8291

3 128 192 256 352 384 288 0.2 3 128 0.96 0.60 0.1240 3.1881

4 192 448 128 416 320 0.2 2 1024 0.95 0.76 0.1328 1.7607

2 128 256 256 448 320 0.1 2 512 0.95 0.82 0.1431 0.7209

2 320 480 480 128 0.2 2 128 0.95 0.65 0.1528 3.0664

2 320 288 192 480 480 0.1 2 2048 0.95 0.69 0.1540 2.0947

4 64 288 288 480 0.2 4 1024 0.94 0.68 0.1609 2.6214

3 448 192 256 256 480 0.3 4 128 0.94 0.69 0.1713 2.2131

3 256 288 64 64 128 0.3 1 1024 0.92 0.56 0.2125 4.9644

3 320 96 480 256 480 256 0.4 3 1024 0.90 0.58 0.2580 4.1960

4 320 192 192 224 64 160 0.4 2 128 0.89 0.67 0.3023 2.4496

5 256 96 224 224 128 0.3 3 2048 0.89 0.72 0.3163 1.8157

3 320 224 0.3 3 512 0.87 0.71 0.3352 1.6952

1 288 64 64 384 160 0.2 3 2048 0.87 0.84 0.3260 0.4649

2 288 64 96 224 256 0.4 3 1024 0.86 0.59 0.3744 2.4204

3 192 352 32 416 0.4 2 128 0.85 0.49 0.3945 3.3817

1 128 352 64 384 448 0.4 2 256 0.84 0.75 0.4114 0.6401

1 512 256 128 288 352 160 0.5 1 512 0.31 0.14 1.6103 2.2394

1 480 512 384 320 192 0.1 1 128 0.12 0.13 2.0797 2.0794
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Table A4. Hyperparameter optimization results for the model trained on acc_3.

n_Layers conv_0 conv_1 conv_2 conv_3 conv_4 conv_5 Dropout Dense Layers n_Nodes Training_acc val_acc Training_Loss val_Loss

4 448 96 192 416 256 448 0.1 1 2048 0.99 0.95 0.0424 0.1455

5 160 64 320 480 320 96 0.1 2 128 0.98 0.93 0.0462 0.2458

2 480 448 224 160 512 480 0.1 2 1024 0.98 0.98 0.0652 0.1329

3 160 64 224 384 224 64 0.1 2 512 0.97 0.89 0.0776 0.5161

5 448 512 512 288 288 416 0.3 1 128 0.97 0.99 0.0756 0.0356

4 512 256 480 480 64 96 0.2 4 512 0.97 0.90 0.0916 0.2836

2 64 320 96 96 320 352 0.2 2 1024 0.96 0.86 0.1070 0.4428

2 512 512 448 224 384 160 0.2 4 128 0.96 0.95 0.1146 0.1290

4 160 288 352 256 128 32 0.4 2 512 0.94 0.72 0.1695 2.3537

1 192 160 352 32 192 96 0.3 4 512 0.94 0.91 0.1836 0.2745

3 192 320 384 416 224 160 0.4 3 2048 0.93 0.98 0.1889 0.0794

5 352 352 64 192 64 160 0.3 3 128 0.92 0.97 0.2121 0.0974

1 512 32 192 288 160 288 0.4 2 256 0.92 0.97 0.2178 0.0791

5 96 128 128 416 224 480 0.4 2 1024 0.92 0.89 0.2177 0.3085

5 192 128 352 256 288 320 0.4 4 2048 0.91 0.95 0.2325 0.1870

2 96 416 160 192 384 384 0.5 2 256 0.91 0.75 0.2451 0.9783

2 320 480 160 96 288 224 0.5 2 2048 0.91 0.91 0.2477 0.2369

3 480 64 480 96 96 192 0.5 2 128 0.88 0.78 0.3083 0.7575

4 192 320 320 32 32 352 0.5 1 2048 0.84 0.92 0.4252 0.2290

5 128 128 0.4 1 512 0.76 0.91 0.6235 0.3470
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