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Abstract: Physics-informed DeepONet (PI_DeepONet) is utilized for the reconstruction task of struc-
tural displacement based on measured strain. For beam and plate structures, the PI_DeepONet is built
by regularizing the strain–displacement relation and boundary conditions, referred to as geometric
differential equations (GDEs) in this paper, and the training datasets are constructed by modeling
strain functions with mean-zero Gaussian random fields. For the GDEs with more than one Neumann
boundary condition, an algorithm is proposed to balance the interplay between different loss terms.
The algorithm updates the weight of each loss term adaptively using the back-propagated gradient
statistics during the training process. The trained network essentially serves as a solution operator of
GDEs, which directly maps the strain function to the displacement function. We demonstrate the
application of the proposed method in the displacement reconstruction of Euler–Bernoulli beams and
Kirchhoff plates, without any paired strain–displacement observations. The PI_DeepONet exhibits
remarkable precision in the displacement reconstruction, with the reconstructed results achieving a
close proximity, surpassing 99%, to the finite element calculations.

Keywords: displacement reconstruction; physics-informed DeepONet; geometric differential equations;
beam and plate structure

1. Introduction

Structural Health Monitoring (SHM) is dedicated to evaluating the health and perfor-
mance of engineering structures, such as buildings, bridges, airplanes, ships, etc. Among
the various parameters inspected by SHM, structural displacement is one of the most
valuable pieces of information when evaluating both safety and serviceability [1,2]. By
observing the long-term displacement history of a structure, the degree of deterioration and
damage can be determined [3]. Given these considerations, the researchers have explored
different methods to measure the displacement of structures. The methods of structural
displacement measurement can be classified into two main categories: direct and indirect
methods. Direct methods involve the utilization of devices such as laser displacement
sensors, micrometers, radar, GPS, and digital cameras to directly capture structural displace-
ment data [4,5]. Indirect methods generally rely on easily accessible parameters such as
velocity, acceleration, and strain, which can be converted to displacement [6]. Strain is one
of the most easily measurable parameters of the structure using various strain sensors, such
as strain gauges and fiber Bragg grating (FBG) sensors. The FBG sensors are particularly
useful for measuring strain due to their high resolution and accuracy. Moreover, the FBG
strain sensors are less susceptible to environmental factors and minimally impact the struc-
tural responses. The aim of this study is to develop a method for real-time displacement
reconstruction with FBG-based strain gauges.
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The techniques for reconstructing displacement from surface strain measurements
on a structure have been extensively studied. There are five main methods for strain-
based displacement reconstruction, including the Ko method [7,8], curvature method [9,10],
modal-based method [11,12], inverse finite element method (iFEM) [13,14], and deep
learning method [3,15,16]. The Ko method is based on Euler–Bernoulli beam theory and
reconstructs the displacement by integrating the strain segment by segment [7]. The per-
formance of the Ko method is constrained by the assumption that the strain is linearly
distributed in each segment of the beam. The curvature method reconstructs the displace-
ment of the structure by transforming the strain information into curvature information [10],
and the reconstruction accuracy is significantly influenced by the accumulated error. The
modal-based method links the discrete strain with the displacement through the trans-
formation relationship between strain and displacement mode shapes [12]. However, the
modal-based method necessitates the assistance of finite element models to improve the
reconstruction accuracy in most scenarios [17]. The iFEM is based on the conventional finite
element method (FEM) and the weighted least-squares variational principle to reconstruct
the displacement via strain [14]. This necessitates sophisticated designs of inverse finite
element and measurement layout, as well as a complex programming process. In real
applications, sensors cannot be applied to the entire structure due to practical constraints
and economic limitations, and the insufficiently described strain field on the structure
limits its implementation in accurate displacement field computations. Furthermore, the
sophisticated calculations in iFEM make the real-time monitoring of structural displace-
ment impossible [18]. In recent years, notable advancements have been achieved in the
field of deep learning. Ding et al. [16] employed a back-propagation network to directly
fit the relationship between strain and displacement for carbon fiber composite laminates.
Moon [3] reconstructed the vertical displacement of a bridge from strains using an artificial
neural network. The strain-based displacement reconstructions obtained through the deep
learning method can eliminate the dependence on mechanical properties and increase
computational efficiency. However, the effectiveness of the conventional deep learning
method heavily relies on training datasets that include expected mechanical responses [18],
and building these training datasets is often challenging and costly.

To diminish the reliance of neural networks on paired input–output observations,
Raissi [19] formalized physics-informed neural networks (PINN) in 2019. In various physics
and engineering scenarios, priori knowledge in the form of partial differential equations
(PDEs) usually exists between input and output observations (e.g., strain–displacement
equations in elastic mechanics, Navier–Stokes equations in fluid mechanics). The PINN
incorporates the prior knowledge as physical loss terms into the loss function of the neural
network. Guided by physical loss terms, PINN requires fewer or no paired input–output
observations to be trained and provides better generalization. The application of PINN
has expanded to various fields, including fluid mechanics [20], biomedicine [21], materials
science [22], fracture mechanics [23], power systems [24], and scientific machine learning
(SciML) [25]. Therefore, PINN is a highly promising technique for addressing the issue of
displacement reconstruction.

Using PINN to reconstruct structural displacement essentially means solving a so-
lution operator that maps the strain function to the displacement function. The Deep
Operator Network (DeepONet) [26] is a novel operator learning architecture motivated
by Chen’s (1995) universal approximation theorem [27]. The DeepONet significantly re-
duces the computational cost of solving operator regression problems and provides better
generalization and faster convergence compared to traditional fully connected networks.
Drawing inspiration from PINN, physics-informed DeepONet (PI_DeepONet) [28] was
proposed to efficiently learn a solution operator of PDEs. The PI_DeepONet is an extension
of DeepONet and satisfies the underlying PDEs by incorporating them into the loss func-
tion of the DeepONet. The PI_DeepONet has shown good performance in diverse fields,
such as the prediction of crack path [29], solving heat conduction equations [30], and the
prediction of instability waves in hypersonic boundary layers [31].
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In this paper, PI_DeepONet is applied to solve geometric differential equations (GDEs)
of beam and plate structures with various restrictions. According to the Euler–Bernoulli
beam theory and the Kirchhoff plate theory, the strain–displacement relations and boundary
conditions of a structure are represented in the differential form. The strain–displacement
relations, together with the boundary conditions of the structure, are called GDEs in this
paper. Utilizing the automatic differentiation techniques in deep learning [32,33], each
GDEs equation is formulated as a loss term of the PI_DeepONet. The PI_DeepONet used to
regularize the GDEs is trained to be a solution operator of GDEs, and the solution operator
of the beam or plate is utilized to directly map the strain function to the displacement
function under diverse loading conditions. Compared to traditional methods, such as the
finite difference method (FDM) [34] and the finite element method (FEM), PI_DeepONet is
a mesh-free approach and could break the curse of dimensionality [33].

Due to the insufficient understanding of the regular mechanism at present, PINN has
a tendency to converge to an incorrect solution in some scenarios. The loss function of
PINN is a weighted combination of different loss terms, resulting in low training efficiency
if the weights are selected inappropriately. Therefore, many methods have been proposed
to assign a proper weight to each loss term. Bu et al. [35] proposed two approaches, named
annealing and cold start, to tune the weights of the loss terms in the initial or final period.
Remco et al. [36] obtained optimal weights by defining the upper and lower bounds for
different loss terms. However, these non-adaptive methods cannot guarantee that the
assigned weights remain optimal throughout the entire PINN training process. Research
has been implemented to adaptively balance the interplay among loss terms. Kim et al. [37]
utilized the Dynamic Pull Method (DPM) to dynamically manipulate the weights of each
loss term during the training process of PINN. Xiang et al. [38] built Gaussian probabilistic
models for loss terms and adaptively updated the learning weights based on maximum
likelihood estimation. These methods are dedicated to balancing the interplay between loss
terms via the magnitudes of the loss terms, but pay little attention to the backpropagation
gradients of each loss term with respect to the parameters of PINN. However, the gradients
are essential for updating the parameters through the gradient descent method. Wang [39]
highlighted that the gradients of each loss term may become extremely unbalanced during
the training process. In that scenario, the neural network may struggle to fit each loss term
evenly, resulting in incorrect convergence. To maintain the balance in the gradients of loss
terms of the PI_DeepONet during the training process, we propose an algorithm that can
update the weights adaptively, utilizing the back-propagated gradient statistics.

In this paper, the PI_DeepONet is constructed to serve as the solution operator of
GDEs in beam and plate structures, which can efficiently solve the GDEs to reconstruct
the displacement from strain under various loading conditions. This paper is structured
as follows. In Section 2, the GDEs of the beam and plate under various restrictions are
constructed. In Section 3, we provide the framework and implement the PI_DeepONet
for the displacement reconstruction of beam and plate structures. The algorithm used to
update weights adaptively according to the gradient statistics of each individual loss is also
proposed in Section 3. In Section 4, the effectiveness of PI_DeepONet in the application
of displacement reconstruction is validated via FEM. In Section 5, we present the main
conclusions of our research.

2. Problem Description

This paper focuses on reconstructing the displacement of Euler–Bernoulli beams and
Kirchhoff plates. Figure 1 illustrates the Cartesian coordinate system used for the beam
analysis in this study.

In Figure 1, the x -coordinate is taken along the length of the beam; the z -coordinate is
taken along the thickness (the height) of the beam. The β denotes the rotating angle of the
cross-section and w denotes the vertical displacement along the coordinate z. The beam
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has a length of l and a thickness of t. According to Euler–Bernoulli beam theory (EBT), the
normal strain at point P on the cross-section of the beam can be expressed as follows:

εP
x =

−c
ρ

(1)

in which c is the perpendicular distance from the point P to the neutral axis and ρ is the
radius of curvature of the neutral surface of the beam. In the case of small displacements,
the curvature of the neutral surface can be expressed as follows:

1
ρ
= ± w”(

1 + w’2
)3/2 ≈ ±w” =

d2w
dx2 (2)

By aligning Equation (2) with Equation (1), the relationship between strain and dis-
placement at point P can be expressed as follows:

εP
x = −c

d2w(xP)

dx2 (3)

in which xP is the coordinate of point P along the coordinate x. In practice, strain mea-
suring points can only be arranged at the surface of the beam. For beams with regular
cross-sections and uniform thickness, the distance, c, from the strain measuring points
to the neutral axis is half of the thickness, t. Therefore, based on Equation (3), the strain–
displacement relation on the upper surface of the beam can be expressed as follows:

εx(x) = −0.5t
d2w(x)

dx2 , x ∈ [0, l] (4)
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Figure 1. Cartesian coordinate system used for the beam analysis: (a) displacement of the beam and
(b) micro-segment of the beam.

Figure 2 illustrates the Cartesian coordinate system used for the plate analysis, in which
t denotes the thickness and (l, l′) denotes the lengths along the coordinate axes, respectively.
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Figure 2. Cartesian coordinate system used for the plate analysis.

According to the classical Kirchhoff plate theory (CPT), the shear strains γzx and γzy
of the plate remain zero, which can be written as follows:{

γzx = ∂u
∂z + ∂w

∂x = 0

γzy = ∂v
∂z + ∂w

∂y = 0
(5)

where (u, v) are the displacement components along the (x, y) coordinate directions, re-
spectively, and w is the vertical displacement along coordinate z. Integrating Equation (5)
while taking into account that (u)z=0 = 0 and (v)z=0 = 0 in CPT, the geometric relationship
between u, v and w can be obtained as follows:{

u = −z ∂w
∂x

v = −z ∂w
∂y

(6)

Considering that the strain measuring points can only be located on the surface of the
plate in practice, we take the first derivative on both sides of Equation (6). Therefore, the
strain–displacement relation on the surface of the plate can be expressed as follows: εx(x, y) = −0.5t ∂2w(x,y)

∂x2

εy(x, y) = −0.5t ∂2w(x,y)
∂y2

, (x, y) ∈ [0, l]× [0, l′] (7)

in which (εx,εy ) are the strain components along the (x, y) coordinate directions, respec-
tively. For the line (see Figure 2) at y = A(A ∈ [0, l′]) on a cross-section parallel to the
plane xOz, the strain–displacement relation (7) of the plate degenerates into the same form
as that of the beam. Therefore, we only need the strain along the x coordinate direction to
reconstruct the vertical displacement of the cross-section at y = A.

The boundary restrictions of the beam or plate are categorized as free, simply sup-
ported, clamped, and elastically supported. We neglect the case of elastically supported
boundary restrictions and consider only the geometric boundary conditions specifying w
or dw

dx . The corresponding boundary conditions for each restriction are presented in Table 1.

Table 1. Boundary conditions for different restrictions.

Restriction Boundary Conditions

Free w or dw
dx are not specified

Simply supported w = 0
Clamped w = 0, dw

dx = 0
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The strain–displacement relations, together with the boundary conditions of the
structure, are referred to as GDEs in this paper. In Table 1, the boundary conditions can
be categorized into the Dirichlet boundary condition, specifying w, and the Neumann
boundary condition, specifying dw

dx . To facilitate the training of the network, the Dirichlet
boundary conditions at all boundaries are combined into one equation. As such, the general
form of the GDEs can be expressed as follows:

P(x, ε, w) = 0, x ∈ Ω
Ni(x, ε, w) = 0, x ∈ ∂Ωi, i = 1, . . . , H
D(x, ε, w) = 0, x ∈ ∂Ω1 + ∂Ω2 + . . . + ∂ΩJ

(8)

in which P is the general differential operator that defines the strain–displacement rela-
tion, {Ni}H

i=1 and D denote the Neumann boundary conditions and Dirichlet boundary
conditions, respectively, H and J denote the numbers of Neumann boundary conditions
and Dirichlet boundary conditions, respectively, and Ω ⊂ R and ∂Ω denote the geometric
domain and the boundary region of the structure, respectively.

In summary, solving the GDEs under different loading conditions with the full-field
strain, as described in Equation (8), can reconstruct the structural displacement. How-
ever, the arrangement of strain measuring points is constrained in practice, resulting in
an unknown strain distribution between adjacent measuring points. Therefore, the nu-
merical solution of GDEs is confronted with inherent challenges. Indeed, the process of
reconstructing displacement from strain under different loading conditions essentially
constitutes an operator regression problem. To effectively perform the operator regression
while removing the dependence on full-field strain, a physics-informed DeepONet based
on the GDEs is constructed in this paper.

3. Methodology
3.1. Physics-Informed DeepONet

DeepONet was designed to acquire abstract nonlinear operator mapping functions
between Banach spaces of infinite dimensions [26]. Compared to fully connected neural
networks, DeepONet significantly decreases the generalization error while guaranteeing a
smaller approximation error. By introducing an efficient regular mechanism, PI_DeepONet
biases the output of the DeepONet model to ensure physical consistency. Here, we present
a brief overview of the concept and architecture of the PI_DeepONet.

Let U and W be two separate branch spaces. Our purpose is to learn the solution
operator G that maps strain function ε ∈ U to displacement function w ∈ W , which is
defined as follows:

G(ε) = w (9)

The solution operator G is represented by the DeepONet Gθ , in which θ denotes all
trainable parameters of the DeepONet. The architecture of the DeepONet is shown in
Figure 3. The DeepONet consists of two separate neural networks, called branch net and
trunk net, respectively.

The branch net receives the strain function ε as its input. The strain values at m
locations are used for the expression of the strain function ε as follows:

ε = [ε(x (1)),ε(x (2)), · · · , ε(x (m))] (10)

After the ε is fed into the branch net, a feature embedding
[

b1, b2, . . . , br

]T
∈ Rr is

returned as the output. The trunk net receives the coordinate x as an input, which is

one-dimensional in this paper. The feature embedding
[

t1, t2, . . . , tr

]T
∈ Rr is the output

of the trunk network. It is worth noting that the output layers of both the trunk net and the
branch net consist of the same number of neurons. The number of neurons in the input



Appl. Sci. 2024, 14, 2615 7 of 29

layer of the trunk net and branch net can be determined based on the dimension of the
inputs x, ε. The final output of DeepONet is obtained by computing the inner product of
the feature embeddings of the trunk net and branch net. Thus, after inputting the strain
function ε and the coordinate x, DeepONet returns the displacement prediction at the x
coordinate as follows:

Gθ(ε)(x) =
r

∑
k

bk

(
ε
(

x(1)),ε
(

x(2)), · · · , ε
(

x(m)
) )

tk(x) =
r

∑
k=1

bktk (11)
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Classical networks, such as the fully connected neural network (FNN), convolutional
neural network (CNN), or recurrent neural network (RNN), can be chosen as the trunk
net and brank net according to the input structure. In this paper, an improved fully
connected network architecture, proposed by Wang et al. [39], is employed. In contrast to
the FNN, the improved architecture introduces two transformer networks that map the
input variables to a high-dimensional feature space. The improved architecture explicitly
considers multiplicative interactions among input dimensions and enhances the hidden
states by introducing residual connections. The forward-propagation of the improved
architecture can be expressed as follows:

U = σ
(

XW1 + b1
)

, V = σ
(

XW2 + b2
)

(12)

Z(1) = σ
(

XWz,1 + bz,1
)

(13)

H(k+1) =
(

1 − Z(k)
)
⊙ U + Z(k) ⊙ V, k = 1, . . . , L (14)

Z(k) = σ
(

H(k)Wz,k + bz,k
)

, k = 2, . . . , L (15)

fθ(x) = H(L+1)W + b (16)

In Equations (12)–(16), ⊙ represents the inner product matrix multiplication, σ repre-
sents the activation function, X represents the input to the network, W and b represent the
weights and bias of each layer of the network, and fθ(x) represents the final output of the
network. The new network requires additional training of the weights and biases of the
two transformer networks compared to the FNN. Figure 4 illustrates the architecture of the
new network.
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The training dataset of the DeepONet is a triplet [ε, x, w(x)] which takes the following form:



...
εi

(
x(1)

)
, εi

(
x(2)

)
, · · · , εi

(
x(m)

)
εi

(
x(1)

)
, εi

(
x(2)

)
, · · · , εi

(
x(m)

)
...

εi

(
x(1)

)
, εi

(
x(2)

)
, · · · , εi

(
x(m)

)
...


,



...
x(1)

x(2)
...

x(P)

...


,



...
ωi (x1)
ωi (x2)

...
ωi (xP)

...




(17)

in which {εi}N
i=1 denote N separate strain functions,

{
xj
}P

j=1 denote P coordinates in the

domain of Gθ(εi), and wi
(
xj
)

is the corresponding true displacement observed at xj. The

loss of the DeepONet during training in the form of mean square error can be expressed as
follows:

Ld(θ) =
1

NP

N

∑
i=1

P

∑
j=1

∣∣Gθ(εi)
(
xj
)
− wi

(
xj
)∣∣2 (18)

where Ld(θ) is the loss determined by paired strain–displacement observations, called
data-driven loss.

As a purely data-driven network, the prediction error and generalization error of the
DeepONet heavily depend on the quantity and quality of the training data. To eliminate
the necessity for training data, GDEs can be formulated as the loss terms of the DeepONet
used to construct the PI_DeepONet, as shown in Figure 3.

To construct the PI_DeepONet, let ε, x be the inputs of the branch net and trunk
net of the DeepONet, respectively, and Gθ(ε)(x) be the output of the DeepONet; then,
the physical constraint residuals generated by the lack of satisfaction of the GDEs can be
expressed as follows:

Rp(θ)(x, ε) = |(x, ε(x), Gθ(ε)(x))| (19)

RNi (θ)(x, ε) = |Ni(x, ε(x), Gθ(ε)(x))|, i = 1, . . . , H (20)

RD(θ)(x, ε) = |D(x, ε(x), Gθ(ε)(x))| (21)

in which Rp, RNi , and RD are the residuals generated by the unsatisfaction of the strain–
displacement relation, Neumann boundary conditions, and Dirichlet boundary conditions
defined in GDEs, respectively. Then, the loss function, in the form of the mean square error
computed by physical constraint residuals, can be expressed as follows:

Lp(θ) =
1

Nm

N

∑
i=1

m

∑
j=1

∣∣∣Rp(θ)
(

x(j), εi

)∣∣∣2 (22)

LBi (θ) =
1

NQi

N

∑
k=1

Qi

∑
j=1

∣∣∣∣RNi (θ)

(
x(j)

Bi
, εk

)∣∣∣∣2, i = 1, . . . , H (23)

LBH+1(θ) =
1

NQH+1

N

∑
k=1

QH+1

∑
j=1

∣∣∣∣RD(θ)

(
x(j)

BH+1
, εk

)∣∣∣∣2 (24)
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in which Lp(θ) and
{

LBi (θ)
}H+1

i=1 are the losses of the strain–displacement relation and

boundary conditions,
{

x(j)
}m

j=1
are m locations at which the strain is used for the expression

of the strain function ε, and
{

x(j)
B

}Qi

j=1
are sets of collocation points sampled from the

corresponding boundary region. The Lp(θ) and
{

LBi (θ)
}H+1

i=1 are computed in the complete
absence of paired strain–displacement observations, called physics-driven losses. By adding
physics-driven losses to the data-driven loss of the DeepONet, PI_DeepONet is constructed.
In fact, the solution operator mapping the strain function into the displacement function
can be completely defined by the GDEs. Thus, the PI_DeepONet can converge to the correct
solution operator by minimizing only the physics-driven losses. As such, the aggregate
loss of the PI_DeepONet we constructed can be expressed as follows:

L(θ) = λpLp(θ) +
H+1

∑
i=1

λiLBi (θ) (25)

in which λp and λi are the weights used to equalize the losses. The weights of the losses
can be chosen empirically or adjusted as hyperparameters of the network.

3.2. Implementation of the PI_DeepONet

In this section, we provide a concise overview of the implementation of the PI_DeepONet
described above. The building and training process of all the PI_DeepONet described in this
paper are implemented in the JAX framework.

To reconstruct the displacement in different scenarios, it is imperative to build a
PI_DeepONet with an appropriate architecture. The architecture of the PI_DeepONet
needs to be determined based on the arrangement of the strain measuring points. To
predict the displacement w via strain ε, let the coordinates of surface strain measuring

points be
{

x(i)
}m

i=1
. The numbers of neurons in the input layer of the branch net and

the trunk net are equal to the dimensions of coordinate x(i) and the measured strain ε,
respectively. There is no specific requirement for the hidden layer architectures of the trunk
net and branch net, but they can be adjusted appropriately to improve the fitting ability
of the PI_DeepONet. All the trunk nets and branch nets of the PI_DeepONet built in this
paper have three hidden layers, with 1000 neurons per layer. After the architecture of the
PI_DeepONet is determined, the physics-driven losses are determined based on the GDEs
of the structure.

Training the PI_DeepONet necessitates the construction of a training dataset for each
physics-driven loss. The trained PI_DeepONet serving as the solution operator should
be capable of providing the solution function of the GDEs for arbitrary function inputs.
Therefore, function ε, used for training the PI_DeepONet, is not required to be derived
from simulation or experimentation. Here, we used mean-zero Gaussian random fields
(GRF) to model random strain functions εr to construct the corresponding training datasets
for each physics-driven loss as follows:

εr ∼ G(0, kl(x1, x2)) (26)

with an exponential quadratic covariance kernel kl(x1, x2) = exp
(
−
∣∣∣∣x1 − x2

∣∣∣∣2/2l2) with
a length scale parameter l > 0. The parameter l determines the complexity of the εr, and a
larger l will produce a smoother εr. The εr are represented by discrete values evaluated at
the coordinates of the strain measuring points of the structure. We only need quantities
of strain, instead of paired strain–displacement observations, to construct the training
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datasets. Different physics-driven losses correspond to the different training datasets. For
instance, the training dataset of Lp(θ) takes the following form:



...
εr

i

(
x(1)

)
, εr

i

(
x(2)

)
, · · · , εr

i

(
x(m)

)
εr

i

(
x(1)

)
, εr

i

(
x(2)

)
, · · · , εr

i

(
x(m)

)
...

εr
i

(
x(1)

)
, εr

i

(
x(2)

)
, · · · , εr

i

(
x(m)

)
...


,



...
x(1)

x(2)
...

x(m)

...


,



...
εr

i

(
x(1)

)
εr

i

(
x(2)

)
...

εr
i

(
x(m)

)
...




(27)

in which
{

εr
i
}N

i=1 denotes N separate random strain functions, modeled by GRF.
The PI_DeepONet can be trained once the training datasets have been constructed.

The PI_DeepONet is first initialized using the Glorot normal scheme and then updates
the parameters using a small-batch stochastic gradient descent method [28], expressed
as follows:

θn+1 = θn −
η

Φ

Φ

∑
k=1

(
λp∇θ Lk

p(θn, xk, εk) +
H+1

∑
i=1

λi∇θ Lk
Bi
(θn, xk, εk)

)
(28)

in which Lk
p(θn) =

∣∣Rp(θn)(xk, εk)
∣∣2, Lk

Bi
(θn) =

∣∣RBi (θn)(xk, εk)
∣∣2, Φ denotes the batch

size in the training process and η denotes the learning rate. The Φ is set to be 256 in this
paper. In the training process of the PI_DeepONet, physics-driven losses are computed
using their corresponding training datasets; then, the aggregate loss L(θ) is computed by
a weighted sum of the losses. The L(θ) is minimized using the Adam optimizer with an
initial learning rate of 0.001. We used exponential learning rate decay with a decay rate
of 0.9 every 1000 training iterations. The hyperbolic tangent function (Tanh) was used as
the activation function for the PI_DeepONet. We minimized the loss of PI_DeepONet for
80,000 iterations and recorded the state of the PI_DeepONet every 100 iterations.

3.3. Updating Weights Adaptively for the PI_DeepONet

In contrast to the Dirichlet boundary condition, the Neumann boundary condition
is formed with partial derivative terms. Thus, the loss terms of the PI_DeepONet will
become fairly complex for GDEs with multiple Neumann boundary conditions. Due to
the insufficient understanding of the regular mechanism at present, PI_DeepONet has a
tendency to converge to an incorrect solution when the loss terms of the PI_DeepONet
are complex.

Using gradient descent to update the parameters of the PI_DeepONet, the n-th step
of gradient descent can be expressed as Equation (28). The gradients used to update the
parameters are a weighted sum of the gradients of each individual loss. Thus, in situations
where the gradients of each individual loss exhibit significant imbalance, the gradients
with smaller values are more likely to be underestimated, resulting in poor fitting for the
corresponding physics-driven loss. The imbalance of the gradients of each individual loss
is quite serious when the PI_DeepONet has complex loss terms. As such, it is essential to
employ effective measures to alleviate the imbalance among the gradients of each loss.

In fact, the imbalance can be mitigated by selecting appropriate weights for each loss.
However, the gradient distributions of the losses change constantly throughout the training
process. Therefore, it is not feasible to establish a predetermined set of weights to maintain
balanced gradient distributions during the whole training process. To address that issue,
an algorithm for updating weights adaptively is proposed, as summarized in Algorithm 1.
Algorithm 1 is designed to automatically adjust the weights during model training using
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the back-propagated gradient statistics. The gradient distributions of each loss will remain
balanced after the updated weights are applied.

Algorithm 1: Updating weights adaptively for the PI_DeepONet

Consider a PI_DeepONet Gθ(u)(x) with parameters θ and a loss function

L(θ) = λsLs(θ) +
M

∑
i=1

λi Li(θ) (29)

in which Ls(θ) is the base loss for the updating of weights; {Li(θ)}M
i=1 represents all other

losses; λ represents the weight of each loss. Then, use S steps of a gradient descent algorithm
to update the parameters θ as follows:
for n = 1, · · · , S do

(a) Calculate the transit weights λ̂i as follows:

λ̂i = λs
|∇θt Ls(θn)|+ |∇θb Ls(θn)|
|∇θt Li(θn)|+ |∇θb Li(θn)|

, i = 1, 2, . . . , M (30)

in which |∇θ L(θn)| denotes the average of the absolute values of the gradients of L(θn)
with respect to parameters θ, θt denotes all parameters of the trunk net, and θb denotes all
parameters of the branch net.

(b) Update the weights λi using a weighted average of the following form:

λi = (1 − α)λi + αλ̂i, i = 1, 2, . . . , M (31)

(c) Update the parameters θ using the following gradient descent:

θn+1 = θn − ηλs∇θ Ls(θn)− η
M

∑
i=1

λi∇θ Li(θn) (32)

end
Hyper-parameter α is recommended to be 0.9.

Due to the stochasticity of the gradient descent updates, it is expected that the in-
stantaneous values of the gradients computed above will exhibit high variance. Thus, the
hyper-parameter α is introduced to Algorithm 1, and the actual weights λi are weighted
averages based on their previously calculated values. The updates of the weights in
Equations (30) and (31) can occur at every iteration of the gradient descent loop or at a
user-specified frequency (e.g., every 100 gradient descent steps). When Algorithm 1 is
utilized for the network training in this paper, weights assigned the initial value of 1 are
updated at a frequency of one iteration, and the loss of Dirichlet boundary condition is
selected as the base loss.

4. Results

In this section, we validate the effectiveness of PI_DeepONet in displacement re-
construction. The strain and displacement of the structure under various loading condi-
tions were simulated by FEM. Using the simulated strains in the selected strain measure-
ment points and the coordinates of displacement measurement points as the inputs, the
PI_DeepONet output the reconstructed displacements. The performance of PI_DeepONet
was evaluated by comparing the reconstructed displacement with the FEM calculation.

The finite element method calculates displacements by solving the global stiffness
equation under known loading conditions and boundary conditions. The global stiffness
equation of a structure is expressed as follows:

Kd = R (33)
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in which K denotes the global stiffness matrix; d and R denote the global node displacement
and global node force. After the d is solved, the strain εe in each element can be calculated
as follows:

εe = Bde (34)

in which B denotes the element strain matrix and de denotes the element node displacement.

4.1. Beam

Here, we evaluate the reconstruction performance of PI_DeepONet for rectangular
section beams with various restrictions. The beams with an elastic modulus of 210 Gpa and a
Poisson’s ratio of 0.3 were simulated by the finite element analysis software ANSYS2021R1.

4.1.1. Displacement Reconstruction for Rectangular Section Beam

This section focuses on reconstructing the displacement for the rectangular section
beam with different restrictions. The restrictions of the beam used for the displacement
reconstruction were clamped at one end, simply supported–simply supported, clamped–
simply supported, and clamped–clamped. Figure 5 shows the geometric model of the beam
with one end clamped. The thickness of the beam is 0.03 m. To reconstruct the vertical dis-
placement, 10 strain measuring points were arranged on the surface of the beam, as shown
in Figure 5. The x coordinates of the strain measuring points are {0.02 + 0.1(i − 1)}10

i=1 (m).
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To reconstruct the displacement of the beam, a corresponding PI_DeepONet for
different restrictions was built and trained. Here, we present the specific implementation
of the PI_DeepONet using the beam with one end clamped as the example. Based on the
arrangement of the strain measuring points, the numbers of neurons in the input layer of
the branch net and the trunk net were designed to be 10 and 1, respectively. Both trunk
net and branch net have three hidden layers, with 1000 neurons per layer. Combining the
strain–displacement relation and boundary conditions, the GDEs of the beam with one end
clamped can be expressed as follows:

εx(x) + 0.5t d2w(x)
dx2 = 0

dw(x)
dx = 0, x = 0

w(x) = 0, x = 0

(35)

According to the GDEs of the beam, each individual physics-driven loss and the
aggregate loss of the PI_DeepONet can be defined as follows:

Lp(θ) =
1

Nm

N

∑
i=1

m

∑
j=1

∣∣∣∣∣∣εi

(
x(j)
)
+ 0.5t

d2Gθ(εi)
(

x(j)
)

dx2

∣∣∣∣∣∣
2

(36)

LB1(θ) =
1

NQ1

N

∑
i=1

Q1

∑
j=1

∣∣∣∣∣∣
dGθ

(
εr

i
)(

x(j)
B1

)
dx

− 0

∣∣∣∣∣∣
2

, x(j)
B1

= 0 (37)

LB2(θ) =
1

NQ2

N

∑
i=1

Q2

∑
j=1

∣∣∣Gθ(ε
r
i )
(

x(j)
B2

)
− 0
∣∣∣2, x(j)

B2
= 0 (38)



Appl. Sci. 2024, 14, 2615 13 of 29

L(θ) = λpLp(θ) + λ1LB1(θ) + λ2LB2(θ) (39)

in which
{

x(j)
}m

i=1
are coordinates of the strain measuring points, and

(
λp, λ1, λ2

)
are the

weights of the losses.
To construct the training datasets for each individual loss, 1000 random strain func-

tions εr were modeled using GRF. After the training datasets had been constructed,
80,000 iterations of gradient descent were performed to train the PI_DeepONet. The con-
vergence process of each physics-driven loss is shown in Figure 6. The PI_DeepONet
converged to the solution operator of the GDEs by minimizing each individual physics-
driven loss of GDEs to less than 10−6.
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end clamped.

Similarly, for the beam with other restrictions, a corresponding PI_DeepONet was
built and trained to reconstruct the displacement. For the beam with the restrictions of
clamped–clamped, the Neumann boundary conditions at both ends of the beam need to
be fitted simultaneously by the PI_DeepONet, resulting in complex loss terms. In this
scenario, to mitigate the imbalance between the gradients of each loss throughout the
training process, Algorithm 1 was used to perform gradient descent iterations. Recording
the updated weights every 100 iterations, the convergent evolutions of the weights when
training the PI_DeepONet are summarized in Figure 7.
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Figure 7. Convergent evolution of the weight of the each physics-driven loss when training the PI_DeepONet
for the beam with two ends clamped using Algorithm 1: λp denotes the weight of loss of strain–displacement
relation, λ1 and λ2 denote the weights of the loss of Neumann boundary conditions at point x = 0 m and
x = 1 m, respectively, and λ3 denotes the weight of the loss of Dirichlet boundary conditions.
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For the beam, it is also important to reconstruct rotating angle β of the cross-section
(see Figure 1). In the case of small displacements, rotating angle β can be calculated by
taking the first-order derivative of the displacement with respect to coordinate x. The
displacement is the output of the PI_DeepONet, and coordinate x is one of the inputs. Thus,
after inputting strain function εi and coordinate xj, rotating angle β at coordinate xj can be
calculated via PI_DeepONet as follows:

β =
dGθ(εi)

(
xj
)

dx
(40)

In order to evaluate the performance of the PI_DeepONet, the reconstructed displace-
ment and rotating angle of the beam under three loading conditions were compared to
those simulated by FEM. The magnitude and position of each load applied to the beam
are shown in Table 2, in which TP denotes a point force applied at a certain location, TU
denotes uniform pressure applied to the surface of the structure, and TS denotes two point
forces acting in opposite directions at different locations. The reconstruction results of
the PI_DeepONet are shown in Figures 8–11, in which the x coordinates of displacement
and the rotating angle measurement points are {0.05(i − 1)}21

i=1 (m). The fitting accuracy,
indicating the degree of agreement between the reconstructed terms and the simulated
terms, was used to evaluate the performance of PI_DeepONet. The fitting accuracies of
PI_DeepONet for the beam with different restrictions are shown in Table 3. The results
show that the reconstructed displacement and rotating angle are basically consistent with
the simulated results, and the fitting accuracies are all above 0.99. The results verify the
excellent performance of the PI_DeepONet on the reconstruction of displacement and
rotating angle for beam. Furthermore, no strain measuring points are positioned at the
boundaries (x = 0 m and x = 1 m) of the beam, demonstrating that our method is not
reliant on the full-field strain.

Table 2. Loads applied to the beam.

Loading Conditions Magnitude and Position of Each Load

Point load TP 300 N at x = 0.5 m
Uniform pressure TU 0.01 Mpa on the upper surface of the beam
Staggered load TS 150 N at = 0.25 m; −150 N at x = 0.75 m
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Table 3. Fitting accuracy of the PI_DeepONet for the beam.

Restrictions
Displacement Fitting Accuracy Rotating Angle Fitting Accuracy

TP TU TS TP TU TS

one end clamped 0.9979 0.9984 0.9996 0.9937 0.9965 0.9993
simply supported–simply supported 0.9999 0.9999 0.9996 0.9999 0.9999 0.9993
clamped–simply supported 0.9997 0.9998 0.9979 0.9997 0.9992 0.9959
clamped–clamped 0.9998 0.9999 0.9962 0.9997 0.9995 0.9973
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4.1.2. Displacement Reconstruction for Multi-Span Beam

The performance of PI_DeepONet was also evaluated for the multi-span beam. Figure 12
shows the geometric model of the multi-span beam with the restrictions of clamped–simply
supported–clamped. There are 20 strain measuring points arranged on the surface of
the multi-span beam to reconstruct the displacement and rotating angle. The x coordi-
nates of the strain measuring points are {0.02 + 0.01(i − 1)}20

i=1 (m). We reconstructed
the displacement and rotating angle for the multi-span beam with three boundaries:
clamped–simply supported–clamped, clamped–simply supported–simply supported and
three points simply supported.
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Figure 12. Geometric model of the multi-span beam with the restrictions of clamped–simply
supported–clamped.

Table 4 shows the magnitude and position of the loads applied to the multi-span
beam, in which TT denotes two point forces acting in the same direction but at different
locations. Figures 13–15 show the reconstruction results of the PI_DeepONet evaluated at
x coordinates {0.08(i − 1)}26

i=1 (m). The fitting accuracies are summarized in Table 5. Based
on the reconstruction results, it is evident that the PI_DeepONet can accurately reconstruct
the displacement and rotating angle of the multi-span beam.

Table 4. Loads applied to the multi-span beam.

Loading Conditions Magnitude and Position of Each Load

Two-point loads TT 5 N at x = 0.5 m; 5 N at x = 1.5 m
Staggered load TS 5 N at x = 0.5 m; −5 N at x = 1.5 m
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Figure 15. Reconstruction results of the displacement and rotating angle of the multi-span beam with
the restrictions of three points simply supported.

Table 5. Fitting accuracy of the PI_DeepONet for the multi-span beam.

Restrictions
Displacement Fitting Accuracy Rotating Angle Fitting Accuracy

TT TS TT TS

clamped–simply supported–clamped 0.9983 0.9999 0.9986 0.9994
clamped–simply supported–simply supported 0.9998 0.9998 0.9998 0.9997
three points simply supported 0.9999 0.9999 0.9998 0.9998

4.2. Plate

The reconstruction performance of PI_DeepONet is evaluated in this section using a
rectangular plate with various restrictions and a cantilevered triangle plate with variable
thickness. The plates with an elastic modulus of 210 Gpa and a Poisson’s ratio of 0.3 were
simulated by the finite element analysis software ANSYS2021R1.

4.2.1. Displacement Reconstruction for Rectangular Plate

In this section, a rectangular thin plate is utilized to verify the reconstruction per-
formance of PI_DeepONet. The plate is restricted at two opposite sides and free on the
remaining two sides. The restrictions applied to the plate are one side clamped, simply
supported-simply supported, clamped-simply supported, and clamped-clamped, respec-
tively. Figure 16 shows the geometric model of the plate with one side clamped. There are
30 strain measuring points arranged on the three parallel lines along the x coordinate direc-
tion. The y coordinates of the three parallel lines are (0.02 m, 0.25 m, 0.48 m), respectively.
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The x coordinates of the strain measuring points on each line are {0.02 + 0.01(i − 1)}10
i (m).

All the arranged measuring points modeling FBG-based strain gauges detect the strain in
the x coordinate direction.

Appl. Sci. 2024, 14, 2615 20 of 32 
 

clamped–simply supported–clamped 0.9983 0.9999 0.9986 0.9994 
clamped–simply supported–simply 
supported 0.9998 0.9998 0.9998 0.9997 

three points simply supported 0.9999 0.9999 0.9998 0.9998 

4.2. Plate 
The reconstruction performance of PI_DeepONet is evaluated in this section using a 

rectangular plate with various restrictions and a cantilevered triangle plate with variable 
thickness. The plates with an elastic modulus of 210 Gpa and a Poisson’s ratio of 0.3 were 
simulated by the finite element analysis software ANSYS2021R1. 

4.2.1. Displacement Reconstruction for Rectangular Plate 
In this section, a rectangular thin plate is utilized to verify the reconstruction 

performance of PI_DeepONet. The plate is restricted at two opposite sides and free on the 
remaining two sides. The restrictions applied to the plate are one side clamped, simply 
supported-simply supported, clamped-simply supported, and clamped-clamped, 
respectively. Figure 16 shows the geometric model of the plate with one side clamped. 
There are 30 strain measuring points arranged on the three parallel lines along the  

coordinate direction. The  coordinates of the three parallel lines are (0.02 m, 0.25 m, 

0.48 m), respectively. The  coordinates of the strain measuring points on each line are 

  (m). All the arranged measuring points modeling FBG-based 

strain gauges detect the strain in the  coordinate direction. 

Strain Measurement point

0.02 0.12 0.22 0.32 0.42 0.52 0.62 0.72 0.82 0.92

1m

0.25

0.48

0.02

0.003m

 
Figure 16. The geometric model of the plate with one side clamped. 
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Figure 16. The geometric model of the plate with one side clamped.

The strain–displacement relation and restrictions along three parallel lines share the
GDEs of the unified form. The GDEs along the parallel lines were used for formulating
the physics losses for PI_DeepONet. For plates with different restrictions, a corresponding
PI_DeepONet was built and trained separately to reconstruct the displacement.

The strain and displacement were simulated by FEM under four loading conditions.
The loads applied to the plate are shown in Table 6. Inputting the simulated strain and the
coordinate of displacement measuring point on each line, the reconstructed displacement
at the displacement measuring point can be outputted by the PI_DeepONet. The x coor-
dinates of the displacement measuring points on each line are {0.05(i − 1)}21

i=1 (m). The
reconstructed displacement was compared with the FEM-simulated one and the results are
shown in Figures 17–20. The fitting accuracy of the PI_DeepONet for the plate is shown
in Table 7. The results indicate that the reconstructed displacement generally matches the
FEM-simulated displacement, which demonstrates the broad applicability of PI_DeepONet.

Table 6. Loads applied to the plate.

Loading Conditions Magnitude and Position of Each Load

Point load TP 200 N at (x = 0.5 m, y = 0.25 m)
Uniform pressure TU 150 Pa on the upper surface
Staggered loads TS 50 N at (x = 0.75 m, y = 0 m); −50 N at (x = 0.25 m, y = 0.5 m)
Two-points loads TT 50 N at (x = 0.75 m, y = 0 m); 50 N at (x = 0.25 m, y = 0.5 m)
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Figure 17. Reconstruction results of the displacement for the plate with one side clamped under
different loading conditions: (a) reconstruction results under loading condition TP, (b) reconstruction
results under loading condition TU , (c) reconstruction results under loading condition TS, and
(d) reconstruction results under loading condition TT .
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Figure 18. Reconstruction results of the displacement for the plate with two sides simply supported 
under different loading conditions: (a) reconstruction results under loading condition  , (b) 
reconstruction results under loading condition  , (c) reconstruction results under loading 
condition , and (d) reconstruction results under loading condition . 
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Figure 18. Reconstruction results of the displacement for the plate with two sides simply supported
under different loading conditions: (a) reconstruction results under loading condition TP, (b) recon-
struction results under loading condition TU , (c) reconstruction results under loading condition TS,
and (d) reconstruction results under loading condition TT .
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Figure 19. Reconstruction results of the displacement for the plate with one side clamped and one 
side simply supported under different loading conditions: (a) reconstruction results under loading 
condition  , (b) reconstruction results under loading condition  , (c) reconstruction results 
under loading condition , and (d) reconstruction results under loading condition . 
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Figure 20. Reconstruction results of the displacement for the plate with two sides clamped under 
different loading conditions: (a) reconstruction results under loading condition  , (b) 
reconstruction results under loading condition  , (c) reconstruction results under loading 
condition , and (d) reconstruction results under loading condition . 

Figure 19. Reconstruction results of the displacement for the plate with one side clamped and one
side simply supported under different loading conditions: (a) reconstruction results under loading
condition TP, (b) reconstruction results under loading condition TU , (c) reconstruction results under
loading condition TS, and (d) reconstruction results under loading condition TT .
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Figure 20. Reconstruction results of the displacement for the plate with two sides clamped under
different loading conditions: (a) reconstruction results under loading condition TP, (b) reconstruction
results under loading condition TU , (c) reconstruction results under loading condition TS, and (d)
reconstruction results under loading condition TT .

Table 7. Fitting accuracy of the PI_DeepONet for the plate.

Restrictions
Displacement Fitting Accuracy

TP TU TS TT

one side clamped 0.9995 0.9996 0.9996 0.9997
simply supported–simply supported 0.9991 0.9995 0.9991 0.9989
clamped–simply supported 0.9999 0.9996 0.9997 0.9994
clamped–clamped 0.9995 0.9993 0.9984 0.9966

4.2.2. Displacement Reconstruction for Triangle Plate with Variable Thickness

In this section, the displacement of a cantilevered triangle plate with variable thickness
is reconstructed by PI_DeepONet. The geometric model of the triangle plate is shown
in Figure 21. The thickness of the triangular plate varies linearly in the x direction. We
arranged 10 strain measuring points on the centerline of the upper surface to reconstruct
the corresponding displacement. The x coordinates of the strain measuring points are
{0.02 + 0.01(i − 1)}10

i=1 (m).
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Since the thickness of the plate is variable, the strain–displacement relation described
in Equation (7) should be updated as follows εx(x, y) = −0.5t(x) ∂2w(x,y)

∂x2

εy(x, y) = −0.5t(x) ∂2w(x,y)
∂y2

(41)

in which t(x) = −0.007x + 0.01 (m) for the triangle plate shown in Figure 21.
Using the GDEs of the cantilevered triangle plate as the loss terms, the PI_DeepONet

was built and trained. We reconstructed the centerline displacement of the triangle plate
under four loading conditions via PI_DeepONet. The loads applied to the triangle plate
are shown in Table 8. The x coordinates of the location where the displacements were
reconstructed are {0.05(i − 1)}21

i=1 (m). Figure 22 shows the curves of the reconstructed
displacements and the simulated ones. The fitting accuracies of the PI_DeepONet for
the cantilevered triangle plate are summarized in Table 9. The fitting accuracies under
four loading conditions are all above 0.99, indicating the excellent agreement between the
reconstructed displacements and the FEM-simulated results.

Table 8. Loads applied to the triangle plate with variable thickness.

Loading Conditions Magnitude and Position of Each Load

Point load TP 100 N at (= 0.5 m, y = 0 m)
Uniform pressure TU 150 Pa on the upper surface
Staggered loads TS 50 N at (x = 0.75 m, y = −0.0625 m); −50 N at (x = 0.25 m, y = 0.1875 m)
Two-point loads TT 50 N at (x = 0.75 m, y = −0.0625 m); 50 N at (x = 0.25 m, y = 0.1875 m)
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Table 9. Fitting accuracy of the PI_DeepONet for the triangle plate with variable thickness.

Loading Conditions Displacement Fitting Accuracy

Point load TP 0.9999
Uniform load TU 0.9997
Staggered load TS 0.9998
Two points TT 0.9997
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4.3. Discussion
4.3.1. Sensitivity Analysis for Strain Measurement Points

The performance of the strain-based displacement reconstruction methods is signif-
icantly affected by the arrangement of strain measurement points. In this section, the
sensitivity of the reconstruction accuracy of the PI_DeepONet to the locations and number
of strain measurement points is analyzed.

In the numerical examples we presented in Sections 4.1 and 4.2, the strain measurement
points are uniformly distributed and the distance between adjacent strain measurement
points is constant. To investigate whether PI_DeepONet relies on uniformly arranged
measurement points, we performed the same reconstruction task for the beam via randomly
arranged strain measurement points. The relative errors at the maximum response are
compared in Table 10. The results show that the reconstructed accuracies for the randomly
and uniformly arranged points are essentially consistent, indicating the low sensitivity of
PI_DeepONet to the locations of strain measurement points.

Table 10. Relative errors in the maximum response calculated by the PI_DeepONet via uniformly
arranged measurement points and randomly arranged measurement points for the beam with
different restrictions.

Restrictions
Relative Errors

Uniformly Arranged Strain
Measurement Points

Randomly Arranged Strain
Measurement Points

TP TU TS TP TU TS

one end clamped 2.5% 2.2% 1.0% 2.7% 1.4% 0.055%

simply supported–simply supported 0.32% 0.29% 2.9% 0.78% 0.013% 1.1%

clamped–simply supported 0.78% 0.013% 1.7% 1.1% 0.024% 1.3%

clamped–clamped 1.0% 0.088% 0.74% 0.30% 0.44% 1.1%

The sensitivity of the reconstruction accuracy of PI_DeepONet to the number of
strain measurement points was analyzed utilizing the beam with two ends clamped. The
reconstruction accuracy of the PI_DeepONet was evaluated for the number of strain
measurement points ranging from 2 to 18. The evolution of the relative error at the
maximum response with the number of measurement points is shown in Figure 23. The
results show that the relative error decreases as the number of measurement points increases.
However, the relative error remains stable after the number of measurement points exceeds
a certain threshold. The threshold of the number of strain measurement points for the
complex load is higher than that for the simple load. Therefore, an adequate number of
strain measurement points is essential to perform the reconstruction task via PI_DeepONet.
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4.3.2. Ablation Test for Weight-Updating Algorithm

While training the PI_DeepONet for the beam with two ends clamped, the multi-span
beam with the restrictions of clamped–simply supported–clamped, and the plate with two
sides clamped, as described above, Algorithm 1 was used to perform gradient descent
iterations. To demonstrate the superiority of Algorithm 1, ablation tests are performed in
this section.

The histograms of the back-propagated gradients of each physics-driven loss with
respect to the parameters of the PI_DeepONet at the first layer of the trunk net are shown
in Figures 24–26. They were monitored after 40,000 iterations. The results indicate that the
gradients of LB2(θ) have significantly higher overall values than the gradients of other losses
when the updated weights are not applied. This makes it challenging for the PI_DeepONet
to evenly fit each loss. Using the weights calculated in Algorithm 1 as the multipliers of
each loss, the imbalance in the gradients of each loss is alleviated.
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For comparison purposes, a PI_DeepONet trained using conventional gradient descent
iterations was constructed for each structure with more than one Neumann boundary
condition. Additionally, a PI_DeepONet trained using the adaptive weighting method
based on Gaussian probabilistic models [38] was also constructed, with the loss function
expressed as follows:

L(θ) =
1

2β2
p

Lp(θ) +
H+1

∑
i=1

1
2β2

Bi

LBi (θ) + log

(
βp

H+1

∏
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(42)

where the βp and
{

βBi

}H+1
i=1 describe the adaptive weights of the loss terms and are tuned

via the Adam optimizer before updating the parameters of the network in each gradient de-
scent iteration. The relative errors in the maximum response calculated by the PI_DeepONet
trained using the three methods are summarized in Tables 11–13. The results show that
the algorithm based on Gaussian probabilistic models can improve the reconstruction
accuracy of single-span and multi-span beams, but leads to the incorrect convergence of the
plate. In contrast, Algorithm 1 has broader applicability and can significantly reduce the
relative errors by an order of magnitude. The variables used to update the parameters of
the network via gradient descent are gradients of loss terms rather than magnitudes. The
gradients and magnitudes of loss terms tend to exhibit completely different distributions.
Therefore, it is more logical to balance the interplay among loss terms from the perspective
of gradients. This is why our proposed algorithm demonstrates superiority.

Table 11. Relative errors at the maximum response calculated by the PI_DeepONet for the beam with
the restrictions of clamped–clamped.

Method
Relative Errors

TP TU TS

Algorithm 1 1.6% 0.64% 3.7%

Gaussian probabilistic models 1.0% 3.4% 33%
Normal gradient descent iterations 31% 40% 55%
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Table 12. Relative errors at the maximum response calculated by the PI_DeepONet for the multi-span
beam with the restrictions of clamped–simply supported–clamped.

Method
Relative Errors

TT TS

Algorithm 1 1.9% 0.35%

Gaussian probabilistic models 2.8% 2.5%
Normal gradient descent iterations 6.1% 3.9%

Table 13. Relative errors at the maximum response calculated by the PI_DeepONet for the plate with
the restrictions of clamped–clamped.

Method
Relative Errors

TP TU TS TT

Algorithm 1 1.3% 0.026% 2.0% 3.2%

Gaussian probabilistic models 27% 26% 64% 57%
Normal gradient descent iterations 9.2% 6.7% 4.2% 21%

4.3.3. Comparison between the PI_DeepONet and Ko Method

The Ko method also reconstructs the displacement by solving the GDEs of the structure.
However, the Ko method solves the GDEs by directly integrating the strain function twice,
which necessitates a full-field strain. Therefore, the Ko method is not applicable in situations
where no strain measuring points are arranged at the boundary, as we demonstrated in
Sections 4.1 and 4.2. In addition, to reconstruct the full-field strain, the Ko method assumes
that the strain values between the adjacent strain measurement points are linearly varied,
which can lead to a significant reconstruction error in certain scenarios.

Using the beam with the restrictions of clamped–clamped as the example, the recon-
struction performance of the two methods was evaluated. The x coordinates of the strain
measuring points were set as {0.1(i − 1)}11

i=1 (m). After determining the arrangement of
the strain measuring points, PI_DeepONet was built and trained for the displacement
reconstruction. The strain and displacement under three loading conditions were simulated
by FEM, and the displacement was reconstructed by the two methods, using simulated
strain as the input. Table 14 summarizes the relative errors of the two methods at the
maximum response. For point load TP, both methods have a high reconstruction accuracy.
However, for uniform load TU and staggered load TS, the reconstruction accuracy of the
PI_DeepONet is much higher than that of the Ko method. This is because the Ko method
assumes that the strain is linearly varied between neighboring strain measuring points.
When the structure is subjected to point load, the strain is linearly distributed, so the Ko
method achieves high accuracy in this case. However, the assumption of linearly varied
strain is not valid when the structure is subjected to complex loads, such as uniform load
and staggered load. Thus, the Ko method results in poor reconstruction accuracy in these
scenarios. In contrast to the Ko method, PI_DeepONet can extract information about the
full-field strain from discrete strains with the assistance of the powerful nonlinear fitting
capability of the neural network. Therefore, PI_DeepONet has high reconstruction accu-
racy, even under complex loading conditions. Furthermore, our proposed method can
directly reconstruct the full-field displacement of the beam, which is not achievable via the
Ko method.
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Table 14. Relative errors at the maximum response calculated by the PI_DeepONet and Ko method
for the beam with the restrictions of clamped–clamped.

Method
Relative Errors

TP TU TS

PI_DeepONet 0.9% 1.0% 3.7%
Ko method 0.9% 5.6% 13%

5. Conclusions

In this paper, a physics-informed DeepONet based method for reconstructing struc-
tural displacement from measured strain is proposed. The method demonstrates excellent
performance in displacement reconstruction for both Euler–Bernoulli beams and Kirchhoff
plates with various restrictions. The following conclusions can be drawn:

(1) Using each equation in the GDEs of the beam or plate as the loss term, PI_DeepONet
can converge to the solution operator of GDEs. The trained PI_DeepONet demon-
strates the ability to accurately map the strain function to the displacement function
under diverse loading conditions.

(2) With the guidance of GDEs, the PI_DeepONet does not require paired input–output
observations for the training process. The training datasets of the PI_DeepONet
are constructed using the random strain function modeled by mean-zero Gaussian
random fields (GRF), which eliminates the necessity of expensive simulations or costly
physical experiments.

(3) The imbalance between the back-propagated gradients of loss terms can be mitigated by
adaptively updating the weight of each loss term. For the GDEs with more than one Neu-
mann boundary condition, mitigating the imbalance helps the PI_DeepONet converge
correctly and achieve an improved fitting accuracy for displacement reconstruction.
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