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Abstract: This study introduces a reduced-order leg dynamic model to simplify the controller
design and enhance robustness. The proposed multi-loop control scheme tackles tracking control
issues in legged robots, including joint angle and contact-force regulation, disturbance suppression,
measurement delay, and motor saturation avoidance. Firstly, model predictive control (MPC) and
sliding mode control (SMC) schemes are developed using a simplified model, and their stability is
analyzed using the Lyapunov method. Numerical simulations under two disturbances validate the
superior tracking performance of the SMC scheme. Secondly, an Nth-order linear active disturbance
rejection control (LADRC) is designed based on a simplified model and optimization problems. The
second-order LADRC-SMC scheme reduces the contact-force control error in the SMC scheme by
ten times. Finally, a fourth-order LADRC-SMC with a Smith Predictor (LADRC-SMC-SP) scheme is
formulated, employing each loop controller independently. This scheme simplifies the design and
enhances performance. Compared to numerical simulations of the above and existing schemes, the
LADRC-SMC-SP scheme eliminates delay oscillations, shortens convergence time, and demonstrates
fast force-position tracking responses, minimal overshoot, and strong disturbance rejection. The peak
contact-force error in the LADRC-SMC-SP scheme was ten times smaller than that in the LADRC-
SMC scheme. The integral square error (ISE) values for the tracking errors of joint angles θ1 and
θ2, and contact force f , are 1.6636 × 10−28 rad2 · s, 1.7983 × 10−28 rad2 · s, and 1.8062 × 10−30 N2 · s,
respectively. These significant improvements in control performance address the challenges in
single-leg dynamic systems, effectively handling disturbances, delays, and motor saturation.

Keywords: linear active disturbance rejection control; foot force control; joint-angle control; legged
robot; sliding mode control; model predictive control; Smith predictor

1. Introduction

Legged robots face challenges in controlling joint displacement and foot force. Owing
to the broad scope of control involved, this study reviews traditional intelligent control
literature, focusing on the specific issues addressed in the study. Research on single-leg
motion control for legged robots has revealed a robust algorithm [1] based on centroid
momentum that demonstrates superior simulation performance. Reference [2] offers a
simple and effective adaptive control method for regulating the stride length of a single-
legged hydraulic robot that does not require force feedback as indicated by simulation
results. Reference [3] presented a vertical jump trajectory planning method and landing
buffering control for a hydraulically driven single-leg robot to achieve load-bearing takeoff
and stable landing. Liu et al. [4] introduced an online foot position compensator (FPC)
to minimize interference for humanoid robots. In [5], a strategy using a computational
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torque controller (CTC) and second-order sliding mode mitigates the position deviation
and system vibration. In [6], the proposed method for a whole-body control frame-based
biped robot ensured a stable sliding posture by optimizing the contact force, considering
dynamics, friction, and constraints. The literature above highlights the control of leg
movement, posture changes, and jumping in robots, focusing on foot-end force and joint
displacement control. However, there is no good solution to the problem of interference
delay in the tracking process. Alawad et al. [7–9] investigated various control strategies,
including hybrid control, SMC, ADRC, and decoupled ADRC, to enhance the efficiency of
rehabilitation devices. They proposed novel control methods for knee joint rehabilitation to
improve the control effectiveness of exoskeletons. Their research verifies the effectiveness
of the proposed controller through numerical simulation or simulation and proves the
effectiveness of the control method by considering interference.

It is well known that MPC utilizes predictions of the system’s future states to en-
hance control performance. On the other hand, SMC demonstrates robustness when facing
uncertainties and external disturbances, while LADRC effectively suppresses potential os-
cillations in the system under disturbances. These methodologies are succinctly categorized
for a comprehensive analysis and discussion of the disturbance delay and motor saturation
issues pertinent to this study. Additionally, SMC effectively mitigates the nonlinearities
and time-varying characteristics inherent in traditional control methods, offering extensive
applicability and advantages in control engineering. The control approach in a single leg is
similar to that in a multijoint manipulator arm. Studies on controlling contact force and
joint angles through MPC, SMC, and LADRC are summarized below.

The pertinent MPC for improving the dynamic tracking performance of a single-
legged robot system can be summarized as follows: A slope-adaptive MPC algorithm
was introduced in [10], which enables automatic transitions between flat terrain and un-
known slopes. Meanwhile, [11] presented a trajectory-planning module and MPC based
on trajectory-optimization algorithms. Numerical simulations demonstrated the system’s
efficiency in enabling the manipulator arm to capture the orbital debris. Reference [12]
improved the performance of a flexible-joint robotic system against disturbances using an
MPC with rolling time-domain control. It effectively handles Linear Matrix Inequality (LMI)
optimization problems and demonstrates its effectiveness through simulations. In [13],
feedback linearization MPC was used to control a two-link robotic arm, outperforming
linear quadratic control using the same feedback linearization method. In summary, a
single-legged robot using MPC is similar to that of a robotic arm using MPC. Drawing
inspiration from the above MPC, a force-position MPC controller was designed and imple-
mented to address the challenge of tracking the foot force and position in the presence of
interference, and its performance was compared with that of the SMC.

The relevant SMC algorithms are summarized as follows to compare the dynamic track-
ing performance of the different algorithms in a single-legged robot system. Reference [14]
utilized cross-coupling error control and SMC to track the trajectories of synchronous
moving arms and demonstrated their efficacy through simulations and comparisons with
alternative controllers. Reference [15] proposed an adaptive SMC method for an end
gripper that accurately predicts forces at a distance using a transmission model and a force-
control methodology. In [16], an SMC technique was proposed to separate position and
force. The simulation results demonstrate that it can effectively execute force-control tasks
with a three-link manipulator even under unknown uncertainty. Reference [17] proposed a
hybrid SMC impedance control method for precise constant contact-force tracking without
force/torque sensors. The simulation experiments confirmed its effectiveness. In [18], a
new controller design based on fractional-order SMC was proposed. Simulation results
show that the FSMC reduces the fluctuation amplitude in the end section of the multi-loop
robot, leading to improved stability with a fivefold reduction. In light of the insights drawn
from several sliding mode control studies, we devised an SMC tailored to the subject of our
research. Furthermore, a comparative analysis was conducted between the performance of



Appl. Sci. 2024, 14, 2562 3 of 26

the SMC and LADRC-SMC schemes to determine their relative effectiveness in addressing
force-position control.

To achieve outstanding dynamic tracking performance in a single-leg system, the
relevant ADRC algorithms are outlined as follows, even in terms of interference and de-
lays. The literature [19] suggests a LADRC method to achieve trajectory tracking for a
2-DOF manipulator system. In [20], a six-axis serial manipulator control system based
on an ADRC strategy did not require an exact dynamic model. Literature [21] confirms
the excellent performance of ADRC systems. The payload and disturbance controlled the
new 6-DOF parallel robot. Reference [22] proposed an error-based custom ADRC method
that does not require a time derivative of the reference trajectory. The experimental results
validate its effectiveness in trajectory tracking and interference suppression. The theoretical
applications of the ADRC algorithms demonstrate their exceptional trajectory-tracking
performance in the presence of interference. In the research on tracking control under inter-
ference delay, the previous solutions mainly were single MPC, SMC, and LADRC schemes.
The integration of multiple control schemes can give full play to their respective control
advantages. Subsequently, we elaborate on the performance of the combined LADRC-SMC
approach. The literature [23] recommends a linear extended-state observer to estimate
the total disturbance. An ADRC-SMC scheme was proposed to increase the robustness
of the system. In [24], an ADRC-SMC approach was proposed and validated through
simulations for a tiltrotor aircraft during conversion flight. The literature [25] implemented
an ADRC nonsingular terminal SMC to mitigate disturbances in a reconnaissance robot,
and experimental results confirmed its effectiveness. Additionally, Reference [26] intro-
duced an improved ADRC-SM method for tracking uncertain objects, demonstrating its
efficacy in reducing buffeting with minimal overshoot, low steady-state error, and strong
anti-interference capability. The algorithm for our research topic was designed based on the
LADRC-SMC literature mentioned above to enhance the contact control effect. However,
disturbances exist in the application of control systems, and there may also be situations
involving system delays. Reference [27] introduced a nonsingular fast terminal SMC ap-
proach for a closed kinematic chain manipulator (CKCM) with uncertain dynamics. The
method utilizes time-delay estimation (TDE) for synchronized goal attainment, as validated
through simulations on a two-degrees-of-freedom planar CKCM manipulator. In [28], vari-
ous enhanced ADRC methods were introduced for K/(Ts + 1) N-type high-order processes,
focusing on their efficacy in attenuating the input interference and measurement noise. The
experimental findings indicate that Smith-based LADRC and other refined ADRC methods
have similar noise suppression capabilities under consistent parameter settings. Based
on this and considering interference and delay, we propose a LADRC-SMC-SP scheme to
improve the tracking performance.

This study contributes in the following ways: (i) It introduces a novel multi-loop
control scheme (LADRC-SMC-SP) that addresses challenges in foot-trajectory tracking and
leg-compliance control for legged robots, distinguishing it from existing theoretical and
applied research. (ii) Reducing the order of the leg-dynamics model and conducting a
comparative design of multiple controllers: unlike traditional methods and control laws,
this scheme employs a reduction algorithm for the leg-constrained dynamics model and
successfully simplifies it. The LADRC, SMC, and SP were integrated into multiple coupled
control loops for the first time, effectively addressing the control challenges of legged robot
systems. (iii) Enhancing control performance and overcoming limitations in reference con-
trol: compared with traditional single-intelligence control methods, the LADRC-SMC-SP
scheme overcomes the limitations of LADRC-SMC in contact-force tracking, reducing errors
by ten times. It demonstrates outstanding foot force and position-tracking performance.

These contributions offer practical solutions for improving system performance and
addressing control issues. The subsequent structure is as follows: Sections 2 and 3 simplify
the single-leg robot dynamics model to aid the controller design. Section 4 presents the
LADRC-SMC-SP scheme based on a dynamic model and various issues. In Section 5, three
sets of comparative simulations are presented, and the advantages of the multi-loop control
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strategy are demonstrated through performance index analysis. Finally, the sixth part
summarizes the research results and puts forward a future research direction according to
the limitations of this paper.

2. Dynamic Analysis and Modeling of Single Leg

A multilegged robot’s foot contact motion differs significantly from traditional gait
motions. To address uncertainties and external disturbances, it is necessary to reduce the
model order, design a suitable controller, and enhance anti-interference ability by offsetting
model uncertainty. This study used the single-leg system as an example. Figure 1 depicts a
double-joint single leg with horizontal constraints, serving as the basis for analyzing force
and position in a limited movement scenario of a single-leg robot:
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Where θ1 and θ2 are the hip and knee joints, respectively, and where f is the restrictive
contact force. The l1 and l2 are the lengths of leg joints. Based on Figure 1, let y be the foot
position vector. Then, the constraint equation and its Jacobian information are:{
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(θ) = ψ(y) = ψ(g(θ)) = 0
Jψ(θ) =

∂ψ(y)
∂y

∂g(θ)
∂θ

, (1)

Friction and load variation uncertainties were considered for a single-leg system. The
standard dynamic equation for a single leg can be expressed as Equation (2).

M(θ)
..
θ + C(θ,

.
θ)

.
θ + G(θ) = τ

M(θ) =

[
α + 2(εcos(θ2) + ηsin(θ2)) β + εcos(θ2) + ηsin(θ2)

β + εcos(θ2) + ηsin(θ2) β

]
C(θ,

.
θ) =

[
2(−εsin(θ2) + ηcos(θ2))

.
θ2 (−εsin(θ2) + ηcos(θ2))

.
θ2

(εsin(θ2)− ηcos(θ2))
.
θ1 0

]
G(q) =

[
ες2cos(θ1 + θ2) + ης2sin(θ1 + θ2) + (α − β + ς1)ς2cos(θ1)

ες2cos(θ1 + θ2) + ης2sin(θ1 + θ2)

]


α = I1 + m1l2
c1 + I2 + m2l2

c2 + m2l2
1 ; β = I2 + m2l2

c2
ε = m2l1lc2 cos(δ2); η = m2l1lc2 sin(δ2); ς1 = m1l1lc1 − I1 − m1l2

1
ς2 = g/l1, g is the acceleration of gravity

, (2)

This formula is also the general paradigm for a double-joint mechanical leg or arm (see
References [5,9,14] in the Introduction). Where m1 and m2 are the masses of legs l1 and l2;
lc1 and lc2 are half the lengths of legs l1 and l2, respectively. θ =

[
θ1 θ2

]T , τ =
[
τ1 τ2

]T .
α, β, ε, η are functions of the physical parameters, which are listed in Table 1 based on
physical knowledge.

Table 1. Actual physical parameter values.

m1 l1 lcl I1 m2 lc2 I2 δ2 ς1 ς2

1 kg 1 m 0.5 m 0.1 kg 2 kg 0.5 m 0.4 kg 0 −0.6 9.81
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Considering the uncertainty of the friction and load variation in single-legged robots,
we added the constraint term τf = JT

ψ (θ) f . We substituted Equation (1) and Table 1 into
Equation (2) and simplified to obtain Equation (3). Among them, M(θ) is the 2 × 2 order
positive definite inertia matrix; C

(
θ,

.
θ
)

is the 2 × 2 order centrifugal force, Coriolis force;
G(θ) is the 2 × 1 order gravity term; and Y = θ is the output vector. τf represents the
constraint term, and the τ represents the control torque. p = [p1, p2, p3, p4, p5] represents
the parameters of a double-joint single leg:

{
M(θ)

..
θ + C(θ,

.
θ)

.
θ + G(θ) + JT

ψ (θ) f = τ

Y = θ

M(θ) =

[
p1 + p2 + 2p3 cos θ2 p2 + p3 cos θ2
p2 + p3 cos θ2 p2

]
C(θ,

.
θ) =

[
−2p3

.
θ2 sin θ2 −p3

.
θ2 sin θ2

p3
.
θ1 sin θ2 0

]
G(θ) =

[
p4g cos θ1 + p5g cos(θ1 + θ2)
p5g cos(θ1 + θ2)

]
{

p1 = α − β, p2 = β, p3 = ε
p4 = (p1 + ς1)ς2/g, p5 = ες2/g

, (3)

This section analyzes and simplifies the dynamic model of the controlled object.
Next, based on the spatial relationship of the feet (Figure 1) and the constraint relation-
ship in Equation (1), the order reduction in Equation (3) is performed to realize more
concise control.

3. Model Reduction Method and Theoretical Solution for the Contact Force f

As shown in Figure 1, under the contact force between the foot and the ground, the
θ1 can be considered as a variable describing the contact motion under the contact force
between the θ2, the remaining redundant variable, and θ2 can be represented by the θ1 as
Φ(θ1). Then: 

.
θ =

[ .
θ1

.
θ2

]T θ2=Φ(θ1)→
[

1 ∂Φ(θ1)
∂θ1

]T .
θ1 = L(θ1)

.
θ1

..
θ =

.
L(θ1)

.
θ1 + L(θ1)

..
θ1

, (4)

Bringing Equation (4) into Equation (3), multiply LT(θ1) on both sides of the equation
to obtain:

ML(θ1)
..
θ1 + CL

(
θ1,

.
θ1

) .
θ1 + GL(θ1) = LT(θ1)τ

ML(θ1) = LT(θ1)M1(θ1) = LT(θ1)M(θ1)L(θ1)

CL

(
θ1,

.
θ1

)
= LT(θ1)C1

(
θ1,

.
θ1

)
= LT(θ1)

(
M(θ)

.
L(θ1) + C(θ,

.
θ)L(θ1)

)
GL(θ1) = LT(θ1)

(
G(θ) + JT

ψ (θ1)
) , (5)

The reduced-order model (Equation (5)) satisfies the following properties [29]. If
one defines:

ML(θ1) = LT(θ1)M(θ1)L(θ1) > 0, (6)

Property 1. Then
.

ML(θ1)− CL

(
θ1,

.
θ1

)
has oblique symmetry.

Property 2. Then

Jψ(θ1)L(θ1) = LT(θ1)JT
ψ (θ1) = 0. (7)
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Let θd(t) be the ideal angle command, τd
f be the ideal contact force, and let it satisfy

Equation (1). Then, Ψ(θd) = 0, τd
f = JT

ψ (θd) fd, and the control targets are actual θ(t)

tracking θd(t) and actual τf tracking τd
f .

Given the constraints imposed by limited research resources, we employed a methodol-
ogy integrating theoretical deduction and numerical simulation to substantiate the efficacy
of the proposed control scheme. To facilitate the simulation validation of the controller, it
was imperative to obtain an analytical expression for the contact force f . The theoretical
expression (Equation (8)) for the contact force f was derived using Equation (5):

JT
ψ (θ1) f = τ − M1(θ1)

..
θ1 − C1

(
θ1,

.
θ1

) .
θ1 − G1(θ1), (8)

According to Equation (8), the value of the contact force f is as follows:

(1) When Jψ = 0, f is obtained from the expression of JT
ψ (θ1);

(2) When

Jψ(θ1) = Jψ(a) ̸= 0, fa = 1/Jψ(a)
(

τ(a)− M1(a)
..
θ1 − C1(a)

.
θ1 − G1(a)

)
; (9)

(3) When

Jψ(θ1) = Jψ(b) ̸= 0, fb = 1/Jψ(b)
(

τ(b)− M1(b)
..
θ1 − C1(b)

.
θ1 − G1(b)

)
. (10)

According to Property 2: Jψ(θ1)L(θ1) = LT(θ1)JT
ψ (θ1) = 0, and the two equations

generated by Equation (5) are linearly related, and the correlation coefficients are LT(θ1),
then fa = fb. Then, Equation (1) can be expanded as follows:{
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1

∂
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Based on Reference [30], we designed an MPC for a single-leg robot with restricted 
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decoupled linear systems (Equation (14)) into the state equation form for a single joint as 
follows: 

(θ1)/∂θ1

]
=

[
1
−2

]
, (12)

The above equations show the dynamic model of the joint angles and foot forces
in the restricted motion of the simplified model (Equation (3)), reduced-order model
(Equation (5)), and the theoretical calculation of the contact force (Equations (9) and (10)).
Derivation of the dynamic model and control parameters is a prerequisite for designing the
controller. Next, we focus on developing tracking controllers to achieve position and foot
contact-force control.

4. Control-Law Design

Based on a simplified model (Equation (3)) or the reduced-order model (Equation (5)),
we devised four controllers and conducted three sets of simulations for comparisons.
Drawing insights from the first section of the literature, we formulated MPC and SMC
schemes, constituting the first set of comparative experiments to assess their performance
in joint-angle tracking. Subsequently, we combined the SMC scheme with a designed Nth-
order LADRC algorithm, formulating the second-order LADRC-SMC scheme. This scheme
was then subjected to the second set of comparative experiments against the SMC scheme,
evaluating its joint-angle and contact-force tracking performance. Additionally, during
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the practical implementation of controllers, delays may arise because of the influence of
control and sensor factors, potentially affecting the stability of the controllers. Hence, we
propose a multi-loop control strategy (LADRC-SMC-SP scheme) and conduct the third set
of comparisons against the LADRC-SMC scheme. This strategy maximizes the advantages
of individual sub-loop controllers to enhance the force-position tracking performance of
the single-leg system and mitigate the risk of instability caused by system delays. Next, we
will systematically design these algorithms following this logical sequence.

4.1. Design of Comparison Scheme for the First Group of Controllers
4.1.1. Design of Model Predictive Control

This section focuses on implementing MPC for a 2-DOF single-leg system with con-
strained contact. The feedback linearization method linearizes wholly or partially nonlinear
dynamic systems, making complex system analysis more intuitive and easy to design.
Hence, we linearized the nonlinear system model (Equation (3)) and subsequently utilized
the linear model to design the MPC scheme. Let the second derivative of ‘Y’ be equal to ν.
Hence, we obtain the Laplace transform and feedback linearization control in Equation (13):

vi(s) = Yi(s)s2

= θi(s)s2, i = 1, 2
τ = M(θ)v + C

(
θ,

.
θ
) .

θ + G(θ) + τf

, (13)

Substituting Equation (13) into Equation (3) yields the decoupled linear system
(Equation (14)):

..
θi = vi, i = 1, 2, (14)

Based on Reference [30], we designed an MPC for a single-leg robot with restricted mo-
tion. Considering the similarity between the first and second joints, we rewrite decoupled
linear systems (Equation (14)) into the state equation form for a single joint as follows:

.
x2 =

..
x1 =

..
Y1 = v1, (15)

where
[
x1 x2

]T
=
[
θ1

.
θ1

]T
, and ν1 is the control vector. We assume that ν1(t) = νc

remains constant over the time interval
[
t t + ∆t

]
, and ∆t is the prediction horizon. Using

Equation (15), we obtained the prediction model in Equation (16), where ϖ is the cost
function for the system stability, er1(t + ∆t) = θ1d − θ1(t + ∆t) is the predicted angle error,
and

.
er1(t + ∆t) = 0 −

.
θ1(t + ∆t) is the predicted velocity error. The horizontal time ∆t and

weight factor µ are positive parameters.
.
θ1(t + ∆t) = ν1∆t +

.
θ1(t)

θ1(t + ∆t) = 1/2
(
ν1∆t2)+ .

θ1(t)∆t + θ1(t)
ϖ = e2

r1(t + ∆t) + µ
.
e2

r1(t + ∆t)

, (16)

Minimizing the ϖ concerning ν1, we obtained the MPC controller in Equation (17):
ν1(t) = k3θ1d − k1θ1(t)− k2

.
θ1(t){

k1 = k3 = 2/
(
∆t2 + 4µ

)
k2 =

(
2∆t2 + 4µ

)
/
(
∆t3 + 4µ∆t

) , (17)

The joint-angle variation curve was obtained using Equations (16) and (17), whereas
the information regarding the joint-torque and contact-force variations is derived from
Equations (9), (10) and (13). According to the horizontal time ∆t = 0.36 and weight factor
µ → 0 , the gains of the MPC controller are: k1 = 15.42, k2 = 5.55, k3 = k1. By selecting these
parameters, we obtain better system performance. The MPC scheme undergoes rigorous
mathematical derivation and design and is compared with the subsequently designed
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SMC scheme through simulation to verify their differences in tracking performance for
joint angles.

4.1.2. Design of Sliding Mode Controller

Since θ2(t) is a function of θ1(t), we define them as follows (where ∆ > 0, Kp, K f > 0).

Taking Kp =

[
5 0
0 2

]
, K f = 140, ∆ = 0.3, then:

{
e1 = θd1 − θ1, e f = fd − f
.
θ
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Next, the stability and convergence of the controller are analyzed with the Lyapunov 
function: 

, (21) 

By taking the derivative of Equation (21), we consider Equations (18) and (20) and 
Property 1, so we have: 

=
.
θd1 + ∆e1, r1 =

.
e1 + ∆e1

, (18)

where e1 is the tracking error of the joint angle θ1; e f is the tracking error of the contact
force f ; and we take r1 as the sliding surface. The sliding-mode function is rL1 = L(θ1)r1.
The contact control is f† = fd + K f e f . The SMC scheme is designed to:

τ = M1(θ1)
..
θ
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(
θ1,

.
θ1

) .
θ
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ML(θ1)
.
r1 + CL

(
θ1,

.
θ1

)
r1 + LT(θ1)KprL1 = 0, (20)

Next, the stability and convergence of the controller are analyzed with the
Lyapunov function:

V =
1
2

ML(θ1)r2
1, (21)

By taking the derivative of Equation (21), we consider Equations (18) and (20) and
Property 1, so we have:

.
V = r1

(
−LT(θ1)KprL1

)
= −rT

L1KprL1 ≤ 0, (22)

Since
.

V is semi-negative definite, and Kp is positive definite, then when
.

V ≡ 0,
rL1 ≡ 0,

.
rL1 ≡ 0; then r1 ≡ 0,

.
r1 ≡ 0,

.
e1 ≡ 0, e1 ≡ 0. According to the LaSalle theorem,

when t ⇒ ∞, e1 ⇒ 0,
..
e1 ⇒ 0. From f† − f = e f + K f e f =

(
1 + K f

)
e f = 0, we know that

e f = 0, and according to LaSalle’s theorem, when t ⇒ ∞ , the convergence speed of f ⇒ fd ,

depending on
(

1 + K f

)
.

In the preceding section, we reconstructed the MPC model guided by the recent
literature and considered the specifics of our research. This scheme involves the generation
of control commands by forecasting the future state of the robot. However, we introduced
an SMC tailored to our research subject in this section because of the model inaccuracies
and external disturbances. Illustrated in Figure 2 are the schematics of these two controllers.
Considering the joint angle θ1 tracking performance under two common disturbances (see
Figures 6–8 in Section 5.1), we opted for the SMC scheme.

Effective control of single-leg motion can be achieved by judicious selection of a
suitable sliding-mode function. However, the switching gains required to address mod-
eling uncertainties in SMC may lead to issues of decreased precision. As discussed in
Sections 4.1.1 and 4.1.2, when using a high gain (see Table 2), SMC outperformed the
designed linear MPC in the displacement-tracking effect, while there were still high errors
in contact-force tracking (refer to Figures 6–8 in Section 5.1). The LADRC, characterized by
solid disturbance rejection capabilities and high control accuracy, represents an advanced
control method. Consequently, in the subsequent section, we design the LADRC based on
the SMC scheme to enhance the contact-force tracking effectiveness of the SMC scheme.
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4.2. Design of Active Disturbance Rejection Controller

The fundamental principle of the LADRC involves leveraging the extended-state
observer (ESO) to estimate diverse system states and internal and external disturbances [31].
When designing the LADRC, only the order of the controlled system and the control input
gain are utilized, rendering the LADRC independent of the precise model of the controlled
object. The order of the system changes depends on whether system delay is considered.
Therefore, we first design an N-order LADRC controller.

4.2.1. N-Order Active Disturbance Rejection Control

Combining the expressions for our research subject in Equations (3), (5) and (20), a
disturbed N-order system and an extended-state variable can be represented as:

z(n) = Γ
(

t, z(t),
.
z(t), . . . , z(n−1)(t)

)
+ b0u{

θ1 = z, θ2 =
.
z, . . . , θn = z(n−1)

θn+1 = Γ
(

t, z(t),
.
z(t), . . . , z(n−1)(t)

) , (23)

where, u, b0, and z(t) are the control input, coefficient, and output, respectively, of the
N-order disturbed system, respectively. The Γ denotes differentiable total disturbance.
The θn+1 is an extended-state variable. The linear ESO equation in the state-space form
(Equation (24)) can be obtained by the state reconstruction of the linear extended-state ob-
server using Equation (23), where θi is the actual value of the state variable. The observer’s
estimated value is θ̂i. The gain matrix of the observer is E. Incorporating the transformation
∼
z =

∼
θ = θ − θ̂ = z − ẑ, we can derive the error equation for the LESO. The error equation

establishes that the LESO operates within a bounded input and output framework, and that
the upper limit of the error is adjustable via βωo (i). By judiciously selecting the appropriate
values for E, the observer’s estimated value θ̂i approximates the actual value of the state
variable θi, where θi ≈ θ̂i:

.
θ̂ =

.
ẑ = Aθ̂ + Bu + E(z − ẑ)

A =


0 1 . . . 0 0
0 0 1 . . . 0

. . . . . . . . . . . . . . .
0 0 0 0 0

, B =


0

. . .
b0
0

, A ∈ R(n+1)×(n+1)

E =
(

βωo (1) βωo (2) . . . βωo (n) βωo (n + 1))T

, (24)

To determine the expanded observer gain coefficient βωo
(i), we set the poles of the

characteristics in Equation (25) (derived from Equation (24)) in the left-half plane. This
method can reduce the adjustment parameters to bandwidth ωo of the LESO. By modulating
the observer’s bandwidth, we gain the flexibility to alter the overshooting behavior of
the system:{

LLESO(s) = sn+1 + βωo (1)s
n + βωo (2)s

n−1 + . . . + βωo (n − 1) = (s + ωo)
n+1

βωo (i) = Ci
n+1ωi

o (i = 1, 2, 3 . . . , n + 1)
, (25)
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Similarly, the controller’s bandwidth ωc and the coefficients are expressed as follows:{
sn + βωc(n)s

(n−1) + . . . + βωc(2)s + βωc(1)s
0 = (s + ωc)

n = 0
βωc(i) = Cn+1−i

n ωn+1−i
c (i = 2, 3 . . . , n + 1)

, (26)

The linear control law (Equation (27)) can be calculated using Equation (26):

uLADRC = − 1
b0

·
(

βωc(1)
(
θ̂1 − θ1d

)
+

n+1

∑
i=2

βωc(i)θ̂i

)
, (27)

According to the above theory, adjusting the observer and controller bandwidths
allows us to modify the overshooting behavior of the system. We modeled the LADRC
controller of the N-order system and designed a linear control law based on this. The
stability of the LADRC is demonstrated; however, the required mathematical knowledge
may be challenging for the reader, and References [32,33] is recommended.

Based on the above theoretical derivations and considerations, the LADRC operates
independently of the precise models. Its control effectiveness depends on the system
order, observer bandwidth, controller bandwidth, control coefficients, and initial state of
the ESO. During the actual parameter-tuning process, we begin by establishing the order
of the system and then determine the constant values for ωo and ωc. Subsequently, we
fine-tuned the b0 and the initial values of the extended-state controller and adjusted them
on a magnitude scale until the system output was aligned with the desired state.

4.2.2. Sliding Mode Control Comparison Group with and without Second-Order Linear
Active Disturbance Rejection Loop

According to the comparative results of the control strategies in Sections 4.1 and 4.2
(refer to Section 5.1), we cascaded the LADRC with an SMC to form a novel scheme
(see Figure 3). By combining Equations (18), (20) and (27), the LADRC-SMC is shown in
Figure 3.
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Figure 3. Switching schematic diagram of SMC comparison scheme with or without second-order
LADRC loop.

Equation (28) elucidates the transition mechanism on the second set of comparative
strategies—namely, the SMC scheme and the LADRC-SMC scheme—as depicted in Figure 3.
It is imperative to underscore that Figure 3 does not serve as a conventional control block
diagram but rather as an illustrative representation of the transition process between
contrasting methodologies. The engagement of the switching mechanism with CD signifies
the execution of the SMC scheme. In Figure 3, C, D and E are the contact points of the switch

respectively.
∗
θ1d represents the optional input to the SMC control loop in the switching

scheme. In comparison, its connection to CE denotes implementing the LADRC-SMC
scheme. The signal u2LADRC from the LADRC loop is the input signal of the SMC loop in
the LADRC-SMC scheme. The output signal θ1 of the SMC loop is the input signal of LESO
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in the LADRC loop. θ̂i is the estimated value of the LESO in the LADRC loop, and θ1d is
the reference input of the two schemes:

∗
θ1d =


θ1d, Switch to CD

u2LADRC = − 1
b0
·
(

βωc(1)
(
θ̂1 − θ1d

)
+

3
∑

i=2
βωc(i)θ̂i

)
, Switch to CE

, (28)

where
∗
θ1d denotes the reference input for the SMC control loop. Switching to CD, which

represents the SMC scheme, then
∗
θ1d equals θ1d. Switching to CE, representing the LADRC-

SMC scheme, then
∗
θ1d equals u2LADRC. System delay was not considered here. Based on

the robotic single-leg dynamic model (Equation (5)), we set order N of the LADRC to 2.
This configuration allows for the optimal utilization of their respective advantages, further
enhancing system performance and stability. Notably, it addressed the challenge in SMC
related to the weak tracking of the single-leg foot-end contact force of the robot (refer to
Figures 10 and 11 in Section 5.2).

4.2.3. Fourth-Order LADRC-SMC Comparison Group with or without SP Loop

Delays, including control and sensor delays, are inevitable in the design of robotic
controllers. When the sensor delays are significant, they can potentially lead to controller
instability (as shown in Figures 12 and 14 in Section 5.3). If we define the total system delay
as D, control delay as Dc, and sensor delay as Ds, then D = Dc + Ds. However, increasing
this assumed delay did not yield satisfactory results after addressing the tracking issues
of the joint angles and contact forces under disturbances using the previously designed
LADRC-SMC. There are various approaches to address this issue, and we choose a simple
and classical solution, SP [34,35], which forms a multi-loop control strategy (see Figure 4).
This strategy decomposes the single-leg control system of a robot into multiple independent
control loops, each of which is responsible for controlling specific variables or subsystems
within the system. Finally, mathematical simulations verified that this strategy could
enhance the system’s control performance, stability, and robustness. It allows for flexible
adaptation to system variations and faults, improving control effectiveness (as shown in
Figures 12–16 in Section 5.3).
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It is imperative to emphasize that Figure 4 is not a conventional control block diagram
but an illustrative representation of the transition process between contrasting methodolo-

gies. In Figure 4, C, D and E are the contact points of the switch respectively.
∗
θ1d represents

the optional input to the SMC control loop in the switching scheme. In the presence of
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interference and delay, the engagement of the switching mechanism with CD signifies the
execution of the LADRC-SMC-SP scheme. In comparison, its connection to CE denotes the
implementation of the LADRC-SMC scheme. Regarding Figure 4, the closed-loop transfer
function G(S) of the LADRC-SMC-SP scheme can be ascertained in accordance with the
SP principle:

G(S) =
Hc(s)S(s)e−DC

1 + Hc(s)S′(s) + Hc(s)
(

S(s)e−DS − S′(s)e−D′S
) , (29)

Here, Hc(s) represents the transfer function of the residual portion in the LADRC-SMC-
SP scheme, which does not include the sensor, whereas S(s) represents the transfer function
of the sensor in the signal feedback loop. DS is the actual delay of the sensor. Pressure
sensors with second-order system dynamics were used for the robot joint-angle and contact-
force control. In the presented theoretical and applied research presented, S′(s)e−D′S

is
the introduced predictive compensation transfer function. The sensor transfer function,
denoted as S(s), represents a second-order system. When there is no model mismatch,
we can get S′(s) = S(s), D′S = DS. The Dc can be eliminated by controller design and
parameter adjustment. G(S) in the LADRC-SMC-SP can be simplified as follows:{

G(S) = Hc(s)S(s)/(1 + Hc(s)S(s))
S(s) = N(s)/D(s) = c1/

(
c2s2 + c3s + c4

) , (30)

where the parameters
4
∑

i=1
ci = [5, 1, 3, 5] (given randomly, with substitutability) are the

coefficients of the sensor transfer function. In Equation (30), the closed-loop system does
not include a lag term, and the lag component does not affect the characteristic equation
of the system. Compared to systems without the SP, the system compensated by the SP
eliminates the Ds during the control process. The control block diagram of LADRC-SMC-SP
scheme finally proposed is shown in Figure 5.
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Equation (31) elucidates the transition mechanism on the third set of comparative
strategies—namely, the LADRC-SMC and LADRC-SMC-SP schemes—as depicted in
Figure 4. Signal u4LADRC from the LADRC loop is the input signal of the SMC loop
in the LADRC-SMC and LADRC-SMC-SP schemes. The output signal θ1′ of the delay loop
or predictor loop is the input signal of the LESO in the LADRC loop. θ̂i is the estimated
value of the LESO in the LADRC loop, and θ1d is the reference input of the two schemes.
The new switchable scheme (as shown in Figure 4) based on the LADRC-SMC scheme
(as shown in Figure 3) is formed by combining Equations (18), (20), (27) and (31). This

controller used the signal ( u4LADRC) from the LADRC loop as the reference input
(∗

θ1d

)
for the SMC loop. The signal ( u4LADRC) from the LADRC loop can be expressed using
Equation (31):
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∗
θ1d = u4LADRC =


− 1

b0
·
(

βωc(1)
(
θ̂1_Smith − θ1d

)
+

5
∑

i=2
βωc(i)θ̂i_Smith

)
, Switch to CD

− 1
b0
·
(

βωc(1)
(

θ̂1_delay − θ1d

)
+

5
∑

i=2
βωc(i)θ̂i_delay

)
, Switch to CE

, (31)

According to Equation (23), θ̂1_Smith is the observed value of θi_Smith of the LADRC-
SMC-SP scheme, and θ̂i_Smith is the (i − 1) order derivative of the observed value of θ̂1_Smith
of the LADRC-SMC-SP scheme. θ̂1_delay is the observed value of θi_delay in the LADRC-
SMC scheme, and θ̂i_delay is the (i − 1) order derivative of the observed value of θ̂1_delay in
the LADRC-SMC scheme. According to Equations (28) and (30), the system order of the
LADRC-SMC-SP scheme is equivalent to the Fourth order. This multi-loop control strategy
optimizes each control loop, thereby enhancing the system’s performance and stability.
It is worth noting that the LADRC-SMC-SP scheme expands the solution to the sensor
delay problem of the second-order LADRC-SMC single leg. The LADRC-SMC-SP scheme
also realizes the challenges of weak single-foot contact-force tracking, oscillation problems
in joint-angle tracking, and delay elimination (as shown in Figures 12–16 in Section 5.3).
According to Equations (4), (18) and (19), the SMC loop law shown in Figure 4 (joint torque)
can be reformulated, as shown in Equation (32):

τ =


τi_Smith = M1(θ1_Smith)

..
θ
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Next, the stability and convergence of the controller are analyzed with the Lyapunov 
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, (21) 

By taking the derivative of Equation (21), we consider Equations (18) and (20) and 
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_Smith + C1

(
θ1_Smith,

.
θ1_Smith

) .
θ
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By taking the derivative of Equation (21), we consider Equations (18) and (20) and 
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_Smith + G1(θ1_Smith)

+KPrL1 + JT
ϕ (θ1_Smith) f†

τi_delay = M1

(
θ1_delay

) ..
θ
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_delay + G1

(
θ1_delay

)
+KPrL1 + JT

ϕ

(
θ1_delay

)
f†

, i = 1, 2 , (32)

where τ1_delay is the torque of joint 1 in the LADRC-SMC scheme. τ2_Smith is the torque of
joint 2 in the LADRC-SMC-SP scheme (as shown in Figure 14 in Section 5.3). Therefore, this
new scheme, which combines SMC, ADRC, and SP, significantly improves the controllability
of the research subject in terms of the disturbance rejection, stability, and robustness. The
LADRC-SMC-SP scheme addresses the joint-angle and contact-force tracking deficiencies
in the MPC and SMC schemes discussed in this study. In addition, it successfully resolved
the sensor delay encountered in the LADRC-SMC scheme.

An SMC was designed to compare the tracking performance of the joint angles, and
a predictive model control was reconstructed based on the existing literature (refer to the
control-law design in Sections 4.1.1 and 4.1.2 and the simulation analysis in Figures 6–8
in Section 5.1). A LADRC-SMC scheme was devised to address the issue of contact-force
tracking accuracy (refer to the control-law design in Sections 4.1.2, 4.2.1 and 4.2.2 and the
simulation analysis in Figures 9–11 in Section 5.2). Considering the time delay in practical
systems, a LADRC-SMC-SP scheme was constructed (refer to the control-law design in
Sections 4.2.1–4.2.3 and the simulation analysis in Figures 12–16 in Section 5.3). Through the
design of the controllers and relevant theoretical derivations, we completed the theoretical
part of the design and proof. In the subsequent analysis, a series of numerical simulations
were conducted to systematically compare and validate the efficacy of the designed LADRC-
SMC-SP in mitigating external disturbances and alleviating the impact of time delays on the
system. Additionally, a simulation analysis further validates and enhances the theoretical
design outcomes of the three distinct schemes elucidated in Section 4.

5. Numerical Simulation and Validation Analysis

The controlled object is given by Equation (3), taking the related parameters of the
robot leg as p =

[
2.35 0.9 1 1.75 1

]T (this parameter is determined via the com-
putation outlined in Equation (23) and the tabulated data presented in Table 1), and
the initial state of the controlled objects θ1 and

.
θ1 are [1.5, 0]. The position command is

θ = 0.5 + 0.8sint (reference input), and the ideal contact force is f = 50cost (reference
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input). In this algorithm simulation, the disturbance input is a common step or uniform
random number disturbance. In the simulation, the selected parameters were as follows.

In Table 2, the parameters of various controllers were selected based on the control
target of this study, the controllers’ principles, and the tuning experience. The parameter
indexed as 1 was obtained through the synthesis of Equation (17) and the exposition
provided in Section 4.1.1 in tandem with the empirical controller configurations. The
parameter indexed as 2 was derived from the integration of Equation (19), supplemented
by the discussion in Section 4.1.2 along with the empirical controller settings. The parameter
indexed as 3 was acquired using an amalgamation of Equations (25)–(27) and elucidation in
Section 4.2.2, in conjunction with empirical controller adjustments. The parameter indexed
as 4 was obtained using Equations (25)–(27), the discussion in Section 4.2.3, and empirical
controller configurations.

Table 2. Set physical parameters based on actual conditions.

Index Controller Parameters

1. MPC k1 = 15.42, k2 = 5.55, k3 = k1

2. SMC Kp =

[
5 0
0 2

]
, K f = 140, ∆ = 0.3

3. LADR-SMC
[N, ω0, ωc, b0] = [2, 15, 21, 1.04], LESO = [1.5,−6.5,−15];

PaSMC =
[
Kp, K f , ∆

]
=

[[
5 0
0 2

]
, 140, 0.3

]

4. LADR-SMC-SP
[N, ω0, ωc, b0] = [4, 5, 10, 100], LESO = [0, 0, 1, 1, 1];

PaSMC =

[[
5 0
0 2

]
, 140, 0.3

]
;

4
∑

i=1
ci = [5, 1, 3, 5]

Based on the theoretical derivation sequence of the controller described earlier, three
sets of comparative simulations were conducted to validate the effectiveness of the LADRC-
SMC-SP scheme effectiveness further. Table 2 lists the three sets of comparative simulations.
The initial comparison considered schemes in indexes 1 and 2, the second focused on
schemes in indexes 2 and 3, and the third addressed schemes in indexes 3 and 4. The
performance of the control systems is evaluated through comparative analysis, error rates,
and metrics such as ISE. In control engineering, the ISE is commonly employed to assess
the performance of closed-loop control systems, reflecting the extent to which the outputs
of the system deviate from the desired values over the entire period. A smaller ISE value
indicates better control system performance [36].

5.1. Numerical Simulation and Comparative Optimization of MPC and SMC Schemes under the
Step or Random Disturbances

To evaluate the control effectiveness of the multi-loop controller, we conducted the
first set of comparative simulations to evaluate the control effectiveness of the MLC. The
MPC was reconstructed based on the literature mentioned in the introduction, specifically
for the research object of this study. The SMC scheme was designed to address this
research problem and is supported by theoretical proof. Because θ2 can be represented
by θ1 (see Equation (4)), the tracking results for θ1 are emphasized. Through an analysis
of the ISE index, the joint-angle tracking performance under the unit step and random
disturbance inputs are presented separately to assess the tracking performance of the joint
angles (see Figures 6 and 7) and contact forces (see Figure 8) between the two controllers.
Subsequently, a controller demonstrating a superior joint-angle tracking performance
was selected to evaluate its contact-force tracking performance in the presence of diverse
disturbances. According to the contact-force tracking situation, the controller with a strong
position tracking performance was optimized and improved through the second group of
comparison schemes.
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Figure 6. Joint-angle 𝜃ଵ tracking of MPC and SMC schemes under unit step disturbance. 

The positional command was given by 𝜃 = 0.5 + 0.8sin𝑡 . MPC and SMC are two 
widely employed, advanced robotic control strategies. A comparative analysis of the joint 

Figure 6. Joint-angle θ1 tracking of MPC and SMC schemes under unit step disturbance.

The positional command was given by θ = 0.5 + 0.8sint. MPC and SMC are two
widely employed, advanced robotic control strategies. A comparative analysis of the
joint angle-tracking performance of these control schemes was conducted to discern their
respective efficacies in the investigated scenarios. As illustrated in Figure 6, under identical
unit step disturbance conditions, the tracking trends of joint angle θ1 are similar for both
controllers. Nevertheless, the angle tracking of θ1_MPC exhibits markedly inferior tracking
performance regarding response speed, tracking amplitude, and synchronization compared
to θ1_SMC. In Figure 6, the tracking trajectory of θ1_SMC aligns with the reference signal
trajectory θ1d, deviating only within the initial 1 s interval. The relative merits of the SMC
scheme are distinctly discernible based on the contrasting magnitudes of the ISE metric
between the two schemes. Compared to the MPC scheme, the ISE for SMC at the angle θ1 is
1.1044 × 10−28 rad2 · s and 1.50147 × 10−2 rad2 · s for MPC, which indicates that the angle
θ1 trajectory for SMC is more accurate than that for MPC. Consequently, SMC surpasses
MPC in performance in unit step disturbance scenarios. Subsequently, we scrutinized the
system performance under a uniform random disturbance (see Figure 7).
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Figure 7 illustrates that under the same uniform random disturbance, the overall
tracking trends of the joint angle θ1 for both controllers are similar. However, during the
initial 0.5 s, the tracking trend of the MPC scheme opposes the reference trajectory, and
only the SMC scheme comprehensively tracks the reference trajectory after 7.5 s. The
angle θ1 trajectory for SMC is more accurate than that for MPC, as evidenced by the ISE
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values of 9.0265 × 10−29 rad2 · s for SMC and 0.0142464 rad2 · s for MPC. Because joint
angle θ2 can be expressed in terms of joint angle θ1, the SMC also surpasses the MPC in the
studied scenarios with a uniform random disturbance. Consequently, this study opts for
an SMC scheme for further analysis and optimization by comparing these disturbances.
Subsequently, we investigated the performance of the SMC scheme in tracking the contact
force under these two disturbances (Figure 8).

The ideal contact force is represented by f = 50cost. In Figure 8, at time t = 22.3 s, the
maximum tracking error of the contact force under unit step disturbance is 0.82167 N. By
calculation, the contact force at this time is 46.26048 N, with an error peak ratio of 1.776%.
At time t = 24.5 s, the maximum tracking error of the contact force under a uniform random
disturbance was 8.34877 N. By calculation, the contact force at this time was 45.49806 N,
and the error peak ratio was 18.350%. In the first group of winning SMC schemes, the ISE
value of the contact-force tracking error under random disturbance is smaller than that
under step disturbance, as evidenced by the ISE values of 2.2205 × 10−28 N2 · s for random
disturbance and 8.0582 × 10−30 N2 · s for step disturbance. Consequently, the contact-force
error of the SMC exhibits significant differences between the two types of disturbances.
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Figures 6–8: In the first set of comparisons, the results indicate that while the SMC
scheme outperforms the MPC scheme (compare References [13,14] in the introduction),
there is room for improvement in reducing response time for joint-angle tracking and error
rate for contact-force tracking under uniform random disturbance. To address this issue, we
have combined the robust control capability of LADRC in suppressing external disturbances
and model uncertainties with the ability of SMC to suppress parameter variations and
unmodeled errors. The integration of LADRC and SMC enables each method to leverage
its strengths, enhancing overall disturbance rejection performance and improving control
effectiveness. For specific details and effects analysis, please refer to Equation (28) and
Section 5.2 for comparative simulation results.

5.2. Simulation Verification and Comparative Analysis of LADRC-SMC and SMC Schemes under
Uniform Random Disturbance

To implement the LADRC-SMC-SP scheme designed for the research problem, a
comparative simulation of the second scheme was conducted based on the conclusions
drawn from the comparative verification of the first scheme in Sections 4.1, 4.2, and 5.1.
A second-order LADR-SMC scheme is proposed in the theoretical section to improve the
poor contact-force tracking performance of the SMC scheme. The joint angle tracking
performance is shown in Figure 9.
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Figure 9. Joint angle 𝜃ଵ  tracking of LADRC-SMC and SMC schemes under uniform random 
disturbance. 
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Figure 9. Joint angle θ1 tracking of LADRC-SMC and SMC schemes under uniform
random disturbance.

The joint-angle tracking performance, contact-force tracking ability (see Figure 10), and
force tracking error (see Figure 11) in the second scheme were comprehensively analyzed
by comparing the performances of the joint θ1 tracking and contact-force tracking under the
influence of a uniform random disturbance. The effectiveness of the upgraded second-order
LADR-SMC scheme was evaluated, and new challenges were discussed.

The position command is θ = 0.5 + 0.8sint. To ensure the effective tracking of joint
angle θ1, the two schemes were compared, and their corresponding joint-angle θ1 tracking
results are presented in Figure 9. To ensure comparability of the second group of schemes,
the values of the parameters Kp, K f , and ∆ in the LADRC-SMC scheme were consistent
with those in the SMC scheme (refer to Table 2 in Section 5). Under the same uniform
random disturbances, both controllers exhibited similar overall trends in tracking joint angle
θ1. Regarding the response speed and convergence rate, the SMC scheme demonstrated
significantly poorer tracking performance than LADRC-SMC. Although the tracking trend
of the LADRC-SMC initially deviated from the reference trajectory for the first 0.5 s, it
achieved comprehensive tracking of the reference trajectory around 1 s, while the SMC
scheme only caught up with the reference trajectory after 7.5 s. Under the same uniform
random disturbances, the angle θ1 trajectory for LADRC-SMC is more accurate than that
for SMC, as evidenced by the ISE values of 7.4355 × 10−29 rad2 · s for LADRC-SMC and
9.0265× 10−29 rad2 · s for SMC. By comparing the joint angle θ1 under these two disturbance
scenarios, we can infer a similar situation for joint angle θ2, thus indicating the superiority
of the LADRC-SMC method in joint-angle tracking. Next, we analyze the performance
differences between the contact-force tracking schemes.

The ideal contact force is represented by f = 50cost. This study assumes that the
contact force at the foot end of a lightweight-legged robot ranges from −50 N to 50 N. The
tracking of the contact and ideal contact forces is illustrated in Figure 10 for both schemes.
Although both algorithms exhibit similar overall trends in tracking the ideal contact force,
local fluctuations are observed. By zooming in on the highlighted fluctuation points in
the figure, we can clearly observe the characteristics and trends of these fluctuations.
Specifically, the LADRC-SMC algorithm exhibited the maximum fluctuation amplitude at
time t = 24.5 s, whereas the SMC algorithm showed the maximum fluctuation amplitude
at time t = 29.1 s. The specific differences are shown in Figure 11.

Under uniform random perturbations, Figure 11 shows that at t = 24.5 s, the max-
imum tracking error of the contact force for the SMC scheme was 8.34877 N. Thus, the
contact force at this time was 45.49806 N, resulting in an error peak ratio of 18.350%. At
t = 29.1 s, the LADRC-SMC scheme exhibited a maximum tracking error of 0.69991 N. The
calculations indicate that the contact force was 43.68861 N, resulting in an error peak ratio
of 1.602%. In the second comparison scheme, the contact-force tracking error ISE values
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were 2.2205× 10−28 N2 · s and 1.7293× 10−29 N2 · s, close to 0. In Figure 9, the ISE metric of
the LADRC-SMC scheme is also smaller than that of the SMC, indicating a higher control
accuracy and a minor cumulative error for the LADRC-SMC scheme. Consequently, it can
be concluded that the LADRC-SMC scheme addresses the high peak contact-force error
rate observed in the winning SMC scheme of the first group, while ensuring the superiority
of the ISE metric. Furthermore, under uniform random disturbances, the LADRC-SMC
scheme reduces the peak contact-force error rate by more than tenfold while ensuring
effective tracking of the joint angles.
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Figure 10. Contact-force tracking of LADRC-SMC and SMC schemes under random disturbance.
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Ensuring consistency between the parameters and interference conditions of the com-
parison scheme is a prerequisite for analyzing the comparison conclusion. The experimental
results of the LADRC-SMC scheme demonstrate that innovative research combining differ-
ent control methods is beneficial for exploring the advantages of their combination. The
LADR-SMC ensures system stability, robustness, and disturbance rejection while achieving
system tracking. Compared with the SMC, the LADR-SMC effectively addresses the issue
of poor contact-force tracking under uniform random disturbances and guarantees joint-
angle tracking (Compare References [16,19] in the introduction). However, performance
degradation may occur in the LADR-SMC in practical scenarios owing to system delays.
To investigate and address this issue, we conduct a simulation comparison of the third set
of schemes in Section 5.3.
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5.3. Simulation and Verification of LADR-SMC with Smith Predictor

To address the issue of poor tracking performance in the joint angle and contact force
under interference delay, we developed a multi-loop control scheme called LADR-SMC-
SP. This scheme is based on the LADR-SMC approach, demonstrating superior tracking
performance discussed in Sections 4.1.2, 4.2.2, and 5.2. We proposed a fourth-order LADR-
SMC-SP scheme in the theoretical part of Section 4.2.3 to tackle the challenges related
to force-position tracking and system delay. To further evaluate the effectiveness of the
LADR-SMC-SP scheme, we conducted simulations to compare and discuss the tracking
performance (see Figures 12 and 13), joint torque (control law) (see Figure 14), force-
tracking performance (see Figures 15 and 16), and force-tracking errors of joints θ1 and
θ2 under a uniform random disturbance. Subsequently, we evaluated the performance of
the finalized multi-loop controller scheme and summarized its theoretical contributions
to the application scenarios. In addition, we determined the significance and practical
implications of the proposed scheme.

The position command was given by θ = 0.5 + 0.8sint. Figure 12 shows the tracking
results of the joint angle θ1 for the LADRC-SMC scheme with a uniform random distur-
bance and considering the system delay. To ensure the comparability of the three schemes,
the parameters Kp, K f , and ∆ in the three schemes were consistent (refer to Table 2 in
Section 5). θ1_delay represents the tracking result of the joint angle θ1 for the LADRC-SMC
scheme without SP, whereas θ1_Smith represents the tracking result of the joint angle θ1
for the LADRC-SMC-SP scheme. Ideal θ1d represents the ideal tracking result of joint
angle θ1. A system comparison with and without the predictor was performed using MAT-
LAB/Simulink(Version information of simulation software: MATLAB R2023b) (Figure 4).
The control delay was set to zero, and the sensor delay was set to 2 s.

The simulation results are shown in Figure 12. It can be observed that the control
system without the Smith predictor (θ1_delay) exhibited a lag of 2 s and began to diverge
after 10 s, whereas the control system with the Smith predictor (θ1_Smith) exhibited a stable
response, and the delay was effectively alleviated. The LADRC-SMC scheme diverges
because the sensor time delay leads to a phase change in the feedback signal and a frequency
response distortion (Equations (29) and (30) in Section 4.2.3). Under random disturbance
and delay, the angle θ1 trajectory for LADRC-SMC-SP is more accurate than that for
LADRC-SMC, as evidenced by the ISE values of 1.6636× 10−28 rad2 · s for LADRC-SMC-SP
and 2.4734 × 10−25 rad2 · s for LADRC-SMC. Therefore, the LADRC-SMC-SP scheme is
superior to the LADRC-SMC scheme when considering the system delay under a uniform
random disturbance.
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Figure 12. Tracking of joint angle 𝜃ଵ in the LADRC-SMC scheme with or without the SP under 
random disturbance. 
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Next, we checked the tracking results for the joint angle θ2 (see Figure 13). Because
joint angle θ2 can be expressed in terms of joint angle θ1 (see Equation (4)), the tracking
behavior of joint angle θ2 under the same conditions as those in Figure 11 is similar to
that of joint angle θ1. Figure 13 shows the tracking results of the joint angle θ2 for the
LADRC-SMC scheme with a uniform random disturbance and considering the system
delay. θ2_delay represents the tracking result of the joint angle θ2 for the LADRC-SMC
scheme without the SP, whereas θ2_Smith represents the tracking result of the joint angle θ2
for the LADRC-SMC-SP scheme. The ideal dθ1d represents the ideal tracking result of the
joint angle θ1. Compared with the tracking behavior of joint angle θ1, the LADRC-SMC
scheme without SP exhibits overall instability and irregular oscillations in the tracking of
joint angle θ2. This phenomenon was more pronounced in the control law, as shown in
Figure 14.
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Figure 14. Joint-torque tracking of LADRC-SMC scheme with or without SP under random 
disturbance. 
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Figure 13. Tracking of joint angle θ2 in the LADRC-SMC scheme with or without the SP under
random disturbance.

The LADRC-SMC-SP scheme shows the tracking behavior of joint angle θ2, which
closely follows the trend of the ideal angle. Compared to LADRC-SMC, the ISE for LADRC-
SMC-SP to the θ2_Smith is 1.7983 × 10−28 rad2 · s and is 9.686 × 10−26 rad2 · s for LADRC-
SMC to the θ2_delay, which indicates that the θ2_Smith trajectory for LADRC-SMC-SP is more
accurate than LADRC-SMC. In conclusion, based on the tracking behavior of the joint
angles in Figures 12 and 13, it is evident that the LADRC-SMC-SP scheme outperforms
the LADRC-SMC scheme under a uniform random disturbance and considers the system
delay. Next, we examine the variation trajectory of the joint torque, that is, the change in the
control parameter τ (see Figure 14), to further analyze the feasibility of the LADRC-SMC
scheme with the SP.

In this experiment, the position command was represented by the equation
θ = 0.5 + 0.8sint, whereas the ideal contact force was expressed as f = 50cost. Un-
der the same experimental conditions as those shown in Figures 12 and 13, the joint torque
was simulated using the SMC law (Equation (32) in Section 4.2.3). In Figure 14, τ1_delay and
τ2_delay illustrate the torque variation curves of joints 1 and 2, respectively, in the LADRC-
SMC scheme. τ1__Smith and τ2_Smith curves represent the torque variations of joints 1 and
2 in the LADRC-SMC-SP scheme. Notably, the lengths of the joints in the single-legged
robot designed in this study were one meter each, which does not fall within the category
of small-legged robots. Therefore, we take the example of an electric servo drive of a
mechanical arm called “ABB IRB 6700-150/2.85: maximum torque of 285 N ·m.” This series
of mechanical arms is equipped with different motor models, resulting in variations in their
maximum torque. Considering factors related to the robot’s materials and structure, such as
safety, stability, and reliability, we cautiously set the technical parameters of the joint drive
motor in this study as follows: a saturation threshold torque of ±200 N · m. The maximum
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output limit for the joint torque shown in Figure 14 is denoted as L+ = 200 N · m, whereas
the minimum output limit is denoted as L− = −200 N · m.
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Figure 14. Joint-torque tracking of LADRC-SMC scheme with or without SP under random 
disturbance. 
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random disturbance.

After the analysis, we can draw the following conclusions: considering the system
sensor delay, the fourth-order LADRC-SMC-SP scheme is more stable and reliable than
the scheme without Smith’s compensation. The experimental results demonstrated that
after 20 s of system operation, τ1_delay and τ2_delay in the control system without Smith
compensation exhibited oscillatory instabilities. In particular, the τ2_delay exhibited oscilla-
tions at approximately 29 s and exceeded the servomotor saturation threshold of 200 N · m.
However, the joint torques in the control system with Smith compensation exhibited stable
periodic variations without oscillations or exceeding the motor threshold. By considering
the joint-angle tracking results in Figures 12 and 13, as well as the joint-torque variations in
Figure 14, it is evident that under uniform random disturbances and considering the system
delay and motor threshold, the LADRC-SMC-SP scheme outperforms the scheme without
the SP and demonstrates better feasibility. By compensating for the delay in advance, the
LADR-SMC-SP mitigates the impact of the system delay on the control performance. The
controller can accurately estimate and counteract system disturbances and improve the
system’s robustness and control precision. In the next step, we will analyze the contact-force
tracking results to validate the effectiveness of the LADRC-SMC-SP scheme.
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The ideal contact force is represented by f = 50cost. This study assumes that the
contact force at the foot end of a lightweight-legged robot ranges from −50 N to 50 N.
The tracking of the contact force and ideal contact force is illustrated in Figure 15 for both
schemes with and without SP. Although both algorithms exhibit similar overall trends
in tracking the ideal contact force, local fluctuations are observed. By zooming in on the
highlighted fluctuation points in the figure, we can clearly observe the characteristics
and trends of these fluctuations. Specifically, the fSmith of the LADRC-SMC-SP scheme
exhibited the maximum fluctuation amplitude at time t = 15.8 s, whereas the fdelay of the
LADRC-SMC scheme exhibited the maximum fluctuation amplitude at time t = 26.34 s.
The specific differences are shown in Figure 16.
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Under uniform random disturbances and considering the system delay, as shown in
Figure 16, it can be observed that at t = 15.8 s, the maximum tracking error of the contact
force for the LADRC-SMC-SP scheme is 0.343534 N. By calculation, the maximum contact
force at this time is 48.11088996 N, resulting in an error rate of 0.687%. At t = 26.34 s,
the maximum tracking error for the LADRC-SMC scheme is 3.30296 N. According to
calculations, the top contact force at this time is 44.808845 N, resulting in an error rate of
7.371%. Figure 16 clearly illustrates that the LADRC-SMC-SP scheme significantly reduces
the peak contact-force error rate by more than tenfold compared to the LADRC-SMC
scheme. In the third comparison scheme, the ISE values of the contact-force tracking error
are respectively 1.8062 × 10−30 N2 · s and 4.6799 × 10−29 N2 · s, which are close to 0. In
Figures 12 and 13, the ISE metric of the LADRC-SMC-SP scheme is also smaller than that of
the LADRC-SMC, indicating a higher control accuracy and more minor cumulative error for
the LADRC-SMC-SP scheme. In conjunction with the analysis presented in Figures 12–15,
this finding demonstrates that the LADRC-SMC-SP scheme outperforms the LADRC-SMC
scheme regarding joint angle, contact-force tracking, and control-law output amplitude.

The simulation results in Section 5.3 validate the superior performance of the LADRC-
SMC-SP scheme compared to the LADRC-SMC scheme. This multi-loop controller aims to
address the force-position tracking and system delay in legged robots under disturbances.
The LADRC-SMC-SP system exhibited a stable response and effective delay suppression,
whereas the LADRC-SMC system demonstrated instability and lag. The results of the
analysis regarding the tracking behavior of joint angles θ1 and θ2 consistently support the
superiority of the LADRC-SMC-SP scheme over the LADRC-SMC scheme. Analysis of
the joint-torque variations revealed that the LADRC-SMC-SP scheme maintained stable
periodic changes within the limits of the motor, whereas the LADRC-SMC scheme ex-
hibited oscillatory instability and exceeded the motor saturation threshold. The tracking
effectiveness of the contact force and the error analyses further validated the efficacy of the
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LADR-SMC-SP scheme. In conclusion, introducing SP in the LADR-SMC scheme enhances
the control accuracy, improves system robustness, and is valuable for applying single-leg
force-position tracking under interference delay and limited motor amplitude.

The LADRC-SMC-SP scheme effectively addresses the challenges associated with
joint-angle and contact-force tracking control in a single-legged, multijoint robot. This
LADRC-SMC-SP scheme overcomes the problems of disturbances, system delays, and
motor limitations (Compare References [7–9] in the introduction). Through a comprehen-
sive analysis of three different sets of controller designs and corresponding experimental
simulations, the following conclusions can be drawn regarding our research topic:

• The LADRC-SMC-SP scheme improves the controller capabilities of each loop in a
multi-loop system. LADRC addresses the challenges of external perturbations and
model uncertainties in single-legged systems, SMC handles parameter variations and
unmodelled errors, and SP resolves sensor delays. The multi-loop controller enhances
the system’s robustness, stability, and convergence;

• The first set of comparison experiments demonstrated that the SMC scheme performed
better in joint-angle tracking than the MPC scheme under step or uniform random
interference. This implies that the robustness (Equations (18) and (19)), the response
speed (Equations (17) and (19)), and the system structure (Equations (16) and (20)) of
the designed SMC scheme are superior to those of the MPC scheme. However, the
shortcomings of contact-force tracking also reveal the limitations and challenges of the
SMC scheme, including the accuracy of contact-force modeling (Equations (8)–(10)),
ability to handle nonlinear contact forces (refer to f† in Section 4.1.2), and the empirical
nature of parameter adjustment (Table 2);

• The conclusion drawn from the second experiment is that the devised LADRC-SMC
scheme not only guarantees accurate joint-angle tracking (see Equation (28) and
Figure 9) but also significantly enhances the contact-force tracking performance (see
Equations (25)–(27) and Figure 11). The LADRC-SMC scheme enhances the per-
formance of single-legged systems by mitigating the two types of interference and
achieving precise force-position tracking. Nevertheless, single-legged systems com-
monly encounter two types of delays (see Section 4.2.3), and the LADRC-SMC scheme
is ineffective in addressing these delays (see Figures 12–16);

• The findings of the third comparative experiment suggested that MPC, LADR-SMC,
and LADR-SMC-SP exhibit progressive levels of optimality. The LADR-SMC-SP
scheme effectively resolves multiple challenges in single-legged systems such as dual
interference (refer to Figures 12–16 and Equations (27) and (32)), dual delay (refer to
Figures 12 and 13 and Equations (29) and (30)), and motor limitations (Figure 14). In a
single-legged system model, the LADR-SMC-SP scheme is well suited for contact-force
control and position control of multijoint objects experiencing interference delay and
limited motor amplitude;

• The design of this scheme has a strong portability. Regarding model design, the deriva-
tion of the reduced-order model is based on actual and reasonable physical scenarios.
The derivation process is rigorous and can reflect the actual physical situation. In
terms of parameter selection, the parameters in Table 1 were selected according to
the physical knowledge and application scenarios with certain randomness. The pa-
rameters in Table 2 were manually adjusted according to the controller design theory
and corresponding parameter design laws. The algorithm design and ISE index of
the tracking error performance verify that the model design is reasonable and can
adapt to various controllers. The LADRC-SMC-SP scheme stands out from the three
groups of control schemes based on the literature in the introduction. Under the
requirements of anti-interference, delay elimination, and motor saturation prevention
in Sections 5.1–5.3, a better force-position tracking performance than other schemes is
realized. This has a better effect on these problems than solutions in the literature [7–9]
and creates a new reference for the control strategy of this type of model. In similar
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application scenarios, the scheme will have strong portability if the appropriate control
parameters are selected according to the design principle of the scheme;

• There are limitations of theory and constraints of practice. The theory proposed in
this paper is limited by tuning experience and does not employ intelligent parameter
optimization methods. Therefore, this issue can be considered a direction for future
research. Moreover, although the LADRC-SMC-SP scheme has strong portability, it
is necessary to pay attention to various constraints during the foot-ground contact
process of legged robots in practical applications. Therefore, the analysis of constraints
is crucial to the design of control laws.

6. Conclusions

This study investigated the contact motion of a single-leg robot and proposed a series
of improved control strategies, including MPC, SMC, LADRC-SMC, and LADRC-SMC-SP.
This study aimed to explore the control performance of these strategies in a single-leg
dynamic system, including disturbance rejection, measurement delay suppression, and
avoidance of motor saturation. By comparing simulation experiments, the LADRC-SMC-SP
strategy demonstrates the ability to simultaneously address the problems of disturbance
delay and motor saturation, achieving satisfactory tracking control performance for joint
angles and contact force. The main contributions of this study are as follows. First, a
reduced-order dynamic model was successfully derived based on the model reduction
theory and the parameter substitution method, which has the potential for various con-
troller designs. Second, compared with existing theoretical and applied research, the
LADRC-SMC-SP strategy combines the accurate position-tracking performance of the SMC
strategy, the low contact-force tracking error of the LADRC-SMC strategy, and the ability to
eliminate the oscillation divergence caused by the sensor delay of the SP strategy, effectively
addressing the control challenges of the legged robot system. The contact-force peak error
of the LADRC-SMC-SP scheme is ten times smaller than that of the LADRC-SMC scheme,
which is far higher than that of other schemes. The ISE values for the tracking errors of joint
angles θ1 and θ2 and contact force f are 1.6636 × 10−28 rad2 · s, 1.7983 × 10−28 rad2 · s, and
1.8062 × 10−30 N2 · s, respectively, which are close to 0, indicating excellent tracking control
accuracy. Third, LADRC-SMC-SP overcomes the limitation of a single intelligent control
method and provides a new idea for force-position control of legged robots. Finally, given
the limitations of this study, a future optimization direction can be intelligent optimization
of parameters to further expand the universality of the algorithm.
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Abbreviations

Abbreviations Explanations
MPC Model Predictive Control
SMC Sliding Mode Control
LADRC Linear Active Disturbance Rejection Control
ESO Extended-State Observer
DOF Degree Of Freedom
ISE Integral Square Error
SP Smith Predictor
LADRC-SMC Linear Active Disturbance Rejection—Sliding Mode Control
LADRC-SMC-SP Linear Active Disturbance Rejection—Sliding Mode—Smith Predictor
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