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Abstract: Cracks on concrete surfaces are vital factors affecting construction safety. Accurate and
efficient crack detection can prevent safety-related accidents. Using drones to photograph cracks
on a concrete surface and detect them through computer vision technology has the advantages of
accurate target recognition, simple practical operation, and low cost. To solve this problem, an
improved CenterNet concrete crack-detection model is proposed. Firstly, a channel-space attention
mechanism is added to the original model to enhance the ability of the convolution neural network
to pay attention to the image. Secondly, a feature selection module is introduced to scale the feature
map in the downsampling stage to a uniform size and combine it in the channel dimension. In
the upsampling stage, the feature selection module adaptively selects the combined features and
fuses them with the output features of the upsampling. Finally, the target size loss is optimized
from a Smooth L1 Loss to IoU Loss to lessen its inability to adapt to targets of different sizes. The
experimental results show that the improved CenterNet model reduces the FPS by 123.7 Hz, increases
the GPU memory by 62 MB, increases the FLOPs by 3.81 times per second, and increases the AP by
15.4% compared with the original model. The GPU memory occupancy remained stable during the
training process and exhibited good real-time performance and robustness.

Keywords: crack detection; attention mechanism; feature fusion; frameless; CenterNet

1. Introduction

With the rapid development of China’s economy, civil engineering construction
projects are increasing, and as one of the pillar industries of the economy, the construction
industry has played an irreplaceable role in national construction. With the increasing
number of buildings, roads, bridges, tunnels, and other infrastructures, maintaining them
in good working condition is extremely important for public safety. Concrete cracks are
usually caused by internal stress and environmental action, leading to the internal fatigue
of the material and resulting in cracks and fractures on the surface of the concrete [1]. The
occurrence of cracks often represents a change in the structure where the cracks occur. Over
time, further cracking and falling off often occur, and water seepage occurs. Therefore,
crack detection is of great significance for the healthy operation of construction projects [2].
Based on the location of cracks in the material, they can be divided into surface and inter-
nal cracks. The main research object of this study was the surface cracks in construction
engineering concrete.

Surface crack detection methods include eye observation, ultrasonic detection [3], eddy
current detection [4], speckle interference [5], penetration detection [6], laser holography [7],
X-ray detection [8], and computer vision detection [9]. Most of the aforementioned methods
have formed a relatively complete detection system that can perform surface crack detection
well; however, they also have their adaptation scenarios and shortcomings. For example,
although ultrasonic detection is sensitive to planar defects, it is difficult to detect nonplanar
structures owing to acoustic coupling, and the surface crack detection effect of arched
structures facing some projects could be better. Although the detection accuracy is high,
optical detection is significantly affected by ambient light interference and vibrations during
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actual operation. The infrared detection method has a fast detection speed; however, the
detection environment is limited due to the equipment’s large size. Current computer
vision detection technology often obtains the surface image or video of the research object
through a camera and other sensing equipment; then, the obtained image or video is
pre-processed and feature extracted, and different algorithm models are trained and tested
to finally achieve the purpose of target recognition or positioning [10].

In the use of deep learning methods to deal with crack detection problems, researchers
generally used image processing algorithms to make predictions. Wang Fan [11] stud-
ied the problem of crack detection using a mathematical morphology and image fusion.
Chambon [12] conducted a study of road crack detection and evaluation using computer
vision. Tongji University studied an MTI-100 tunnel-detection system and achieved crack
detection and location [13]. Soukup [14] used convolutional neural networks to detect
the surface cracks. Using an adaptive iterative method, Peng [15] used an improved Otsu
threshold segmentation algorithm to study crack images. Yang [16] proposed a new image
analysis method for concrete crack detection and conducted a detailed study of a detection
method based on edge cracks. Cao Jianbing [17] completed the study of visual feature maps
and proved that the neural network can effectively distinguish the difference between the
features of split and non-crack images, which led to significant progress. Sun Yunpeng [18]
conducted an analysis of existing deep learning object detection algorithms, obtained the
structure and design method of the crack detection network based on convolutional neural
network, and realized the image crack detection based on DeepLabV3+. Shao Jiang [19]
proposed an automatic crack detection method for concrete Bridges based on machine vi-
sion, which realized the automatic identification and measurement of cracks and improved
the detection efficiency. Fernandez [20] studied a decision-tree heuristic algorithm for crack
detection and achieved satisfactory simulation results. Guan Shijie [21] applied the SegNet
network to surface crack detection and achieved satisfactory results. Zhao Xuefeng [22]
proposed a concrete crack detection model based on artificial intelligence and smart phones
and used a convolutional neural network in artificial intelligence deep learning to identify
and locate cracks in pictures, achieving the purpose of crack detection. Li [23] studied a
concrete surface crack detection method by combining the improved active contour model
with the Canny iterative operator; however, the operation time was relatively long, and
there were certain limitations. Yang Song [24] used the Canny operator to extract the crack
edge and the automatic generation technology to generate the finite element mesh of the
crack structure to realize the analysis of the stress in the crack region.

In the field of combining drone aerial photography technology and computer vision
technology, many scholars have studied it. Pan Xiang [25] conducted ground target detec-
tion using UAV and computer vision technology. Zhang Ruixin [26] proposed a method in
order to obtain more accurate detection boxes, in which the label encoding strategy and
bounding box regression method of CenterNet were optimized, introducing localization
quality loss to improve the localization quality of the detection boxes. With the continuous
development of computer vision technology and UAV aerial photography technology,
the images of concrete cracks are being collected by unmanned aerial vehicles and then
processed as data. Finally, the cracks are identified by computer vision technology. The
method has the advantages of simple principle, convenient operation, strong flexibility,
high precision, low cost, and no contact. This article utilizes computer vision technology to
process images collected by drones and achieves good results, which have been applied in
practical engineering to a certain extent.

2. CenterNet

The CenterNet algorithm is a single-stage model without an anchor frame that was first
proposed in 2019 [27]. The CenterNet algorithm has the characteristics of high precision,
fast training speed, and a simple network structure. The principle of the CenterNet model
is as follows: the center point of the target is used to replace the anchor frame, the peak
value of the thermal map is used as the center point of the detection object, the threshold is
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then set for screening and comparison of the target center point, and, finally, the category
information is obtained via regression using the image features [28]. The training process
of CenterNet does not need to consider the anchor mechanism, nor does it need to set or
postprocess hyperparameters in advance, significantly reducing the computational load on
the entire network [29].

The original CenterNet uses ResNet18, DLA-34, and Hourglass convolutional net-
works for feature extraction and then transfers the feature map to the detection module for
processing. Finally, the target centre point and category, target length and width prediction,
and centre point bias are transferred through the convolution operation. A schematic of the
CenterNet algorithm is shown in Figure 1.
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Figure 1. Schematic diagram of CenterNet algorithm model [30].

The CenterNet algorithm model makes predictions through three convolution blocks:
target centre point and category, target length and width prediction, and centre point bias.
The loss function of the CenterNet algorithm consists of the loss function of the centre point
and classification, loss function of the target frame size, and loss function of the centre point
bias [31].
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The loss function Lk of the centre point and classification is the focal loss function, and
the calculation formula is shown in Equation (1) [32].

Lk = − 1
N ∑

xyc


(1 − Ŷxyc)

αlg (Ŷxyc), Yxyc = 1
(1 − Ŷxyc)

β
(Ŷxyc)

α × lg (g − Ŷxyc),
others

(1)

In the above formula, the subscript k in the centre point and classification loss function
Lk represent the kth input image, N represents the number of keypoints in the image,
subscript xyc represents the positive and negative samples of the image, and Yxyc represents
the label of the true value.

The centre point bias loss function Lo f f set adopts the Lloss function, and the calculation
formula is shown in Equation (2) [33]:

Lo f f set =
1
N ∑

p

∣∣∣Ôp̃ − (
p
R
− P̃)

∣∣∣ (2)

In the above formula, P is the coordinate of the true value of the original image target,
and R is the subsampling multiple.

The Lloss function is used for the target frame size loss function Lsize. The calculation
formulas are shown in Equation (3) [34], where Sk represents the size of the original
target frame.

Lsize =
1
N

N

∑
k=1

∣∣∣Ŝpk − Sk

∣∣∣ (3)

The final loss function was obtained by multiplying the loss function of the centre
point by the classification, the loss function of the target frame size, and the loss function
of the centre point bias by the corresponding coefficients, as shown in Equation (4). Lk
represents the central point loss function, Lsize represents the the size loss function, and
Lo f f represents the offset loss function; the setup is λsize = 0.1 and λo f f = 1.

L = Lk + λsizeLsize + λo f f Lo f f (4)

3. CenterNet Optimization

The improvement of the original CenterNet model includes three aspects: adding a
new channel space attention mechanism, adding a feature selection module, and optimizing
the loss function.

3.1. Addition of Channel Space Attention Mechanism

In the convolutional block attention module (CBAM), the channel attention uses
global average pooling and global maximum pooling to obtain the global statistics for each
channel, and it learns the weight of the channel through two fully connected layers. Each
channel was scaled using a sigmoid function to normalize the weights between 0 and 1.
Finally, the scaled channel features were multiplied by the original features to produce
features with enhanced channel importance [35,36].

The function of the channel attention mechanism was to continuously enhance the
importance of the channel during the training process to improve the training effect on the
network. The attention mechanism diagram of the CenterNet channel used in this study is
shown in Figure 2.
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Figure 2. CenterNet channel attention mechanism diagram.

The spatial attention module in the CBAM uses maximum and average pooling to
obtain the maximum and average values for each spatial position. As more channels
were generated after convolution, the function of the spatial attention mechanism was to
perform maximum pooling and average pooling operations on the channels of each feature
point, obtain two different results, concatenate them, and then learn the weight of each
spatial position through a convolution layer and sigmoid function. Finally, weights were
applied to each spatial position on the feature map to produce features with enhanced
spatial importance.

By introducing an attention module, the spatial attention mechanism enabled the
model to learn the attention weights of different regions adaptively so that it could pay
more attention to important image regions while ignoring unimportant ones [37]. The
spatial attention mechanism of CenterNet added in this study is shown in Figure 3.
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Figure 3. CenterNet schematic diagram of spatial attention mechanism.

In this study, a channel space attention mechanism was added, and a model combining
channel and space attention was constructed to enhance the focus of convolutional neural
networks on images and improve the algorithm’s performance. The original network
joining the CBAM mechanism is illustrated in Figure 4.
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3.2. Addition of Feature Selection Module

After adding the feature selection module, the feature map in the downsampling
stage was scaled to a unified size and combined with the channel dimensions. In the
upsampling stage, the feature selection module adaptively selected the combined features
and then added them to the output features. The structure of the feature selection module
is illustrated in Figure 5.
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When the CenterNet model was proposed, the original network only extracted the
most profound feature map for detection, which led to the poor retention of deep and
shallow semantic information in the entire network during training, ultimately leading to a
decline in the accuracy of the entire network. The feature selection module added in this
study effectively enhanced the network extraction of target features and had a stronger
ability to capture effective features. The details of the feature selection module are shown
in Figure 6.
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3.3. Optimization of the Loss Function

The target size loss changed from Smooth L1 Loss to IoU Loss because Smooth L1
Loss could not adapt to targets of different sizes. The calculation formula is shown in
Equation (5). When calculating the IoU Loss, it was assumed that the centre point is the
same, and the calculation formula is shown in Equation (6):

LIou = 1 − |A ∩ B|
|A ∪ B| (5)

LIOU = ln(IOU(box1, box2)) (6)

The IoU Loss is an indicator used to evaluate the distance between two rectangular
boxes. This indicator has all the distance characteristics, including symmetry, nonnega-
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tivity, identity, and triangular inequality. The advantages of using the IOU Loss include
the following:

1. It can more accurately measure the matching degree between the prediction box and
the real box.

2. It has scale invariance, which means that regardless of the sizes of the prediction box
and the actual box, as long as they are located near each other, their IoU values will
be similar. This helps the model to have a better generalization ability when dealing
with objects of different scales and sizes.

4. Experiment and Result Analysis
4.1. Experimental Environment

The experimental environment used in this paper was an Ubuntu18.04 64-bit operating
system with 754 GB running memory, a Tesla V100S graphics card with 32 GB graphics
memory, and an Intel(R) Xeon(R) Gold 6240 CPU. The PyTorch deep learning framework
was used to build the model with CUDA version 10.1 and cudnn version 7.6.0.

4.2. Evaluation Index

Generally, current mainstream computer vision algorithm model evaluation indicators
include accuracy and performance [38]. The index used to measure the accuracy of the
target detection algorithm is generally the AP, and the performance index includes the
FLOPs, FPS, and video memory occupations. The evaluation indicators are shown in
Table 1.

Table 1. Evaluation index and meaning interpretation.

Index Implication

FLOPs The number of floating-point operations used to measure the computational
complexity of the model

FPS The number of images the algorithm processes per second—the higher the value, the
faster the algorithm processes

p The size of the video memory occupied by the algorithm in the inference stage—the
smaller the video memory occupation, the fewer resources are required

Average Precision (AP) was obtained by calculating the area of the PR curve. The
calculation formula is shown in Equation (7) [39]:

AP =
∫ 1

0
p(τ)d(τ) (7)

4.3. Data

The experimental dataset in this study consisted of 3000 crack pictures captured via
the UAV, which were divided into training and test sets at a 9:1 ratio.

In the pre-processing stage, part of the training set was augmented to improve the
generalization ability of the algorithm model. The image transformation method adopted
in the dataset enhancement was still close to the tunnel crack image collected after image
processing, including random brightness transformation, random horizontal flipping, and
random vertical flipping. The transformation results after processing are shown in Figure 7.

The image was scaled and standardized before being input into the network. The
widths and heights of the scaled images were 512. The mean values of the standardized
RGB three-channel were 123.675, 116.28, and 103.53, and the standard deviation was 58.395,
57.12, 57.375.

CenterNet determines the target’s location by predicting the target centre point, target
centre point bias, and target size. Therefore, the corresponding labels of the image include
the target centre-point Gaussian heat map, target centre-point bias, and target size, which
are represented by a tensor of the same size as the network output.



Appl. Sci. 2024, 14, 2527 8 of 15Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 15 
 

  
(a) Master drawing (b) Luminance transformation 

  
(c) Horizontal flip (d) Vertical flip 

Figure 7. Random transformation used in training. 

The image was scaled and standardized before being input into the network. The 

widths and heights of the scaled images were 512. The mean values of the standardized 

RGB three-channel were 123.675, 116.28, and 103.53, and the standard deviation was 

58.395, 57.12, 57.375. 

CenterNet determines the target’s location by predicting the target centre point, tar-

get centre point bias, and target size. Therefore, the corresponding labels of the image 

include the target centre-point Gaussian heat map, target centre-point bias, and target 

size, which are represented by a tensor of the same size as the network output. 

4.4. Training Process and Experimental Results 

To ensure the real and effective results of the comparative experiments, the training 

parameters used in all the experiments involved in this study were completely consistent. 

The initial learning rate of the training was 0.0001. The cosine annealing learning rate ad-

justment method was adopted, and the minimum learning rate was 0.00001. The batch 

size was set to eight during the training process. A total of 300 epochs were trained using 

the SGD optimization algorithm. 

The training experiments were conducted in five groups: original CenterNet with the 

backbone network of ResNet18, CenterNet with the channel space attention mechanism, 

CenterNet with the feature selection module, CenterNet with target size loss improve-

ment, and CenterNet with the above three improvements. Table 2 compares the perfor-

mance of CenterNet with the addition of CBAM and feature-selection modules, including 

FLOPS, FPS, and video memory. 

  

Figure 7. Random transformation used in training.

4.4. Training Process and Experimental Results

To ensure the real and effective results of the comparative experiments, the training
parameters used in all the experiments involved in this study were completely consistent.
The initial learning rate of the training was 0.0001. The cosine annealing learning rate
adjustment method was adopted, and the minimum learning rate was 0.00001. The batch
size was set to eight during the training process. A total of 300 epochs were trained using
the SGD optimization algorithm.

The training experiments were conducted in five groups: original CenterNet with the
backbone network of ResNet18, CenterNet with the channel space attention mechanism,
CenterNet with the feature selection module, CenterNet with target size loss improvement,
and CenterNet with the above three improvements. Table 2 compares the performance of
CenterNet with the addition of CBAM and feature-selection modules, including FLOPS,
FPS, and video memory.

Table 2. Comparison of network performance before and after CenterNet optimization.

Network FLOPs Memory
Footprint/MB FPS Video

Memory/MB

CenterNet 13.06 50.3 296.5 1347
CenterNet-CBAM 13.06 51.7 189.9 1349
CenterNet-FS 16.35 51.1 250.2 1405

In the data training process, owing to the different difficulties involved in data feature
extraction, there are overlaps and omissions in some data, as shown in Figure 8. Given this
situation, the optimized model used in this study adopts the method of strengthening the
feature extraction. This situation changed significantly after adding the feature extraction
module, and the data processing accuracy was effectively improved.
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When the test environment of the controlled experiment was the same as that of
the training environment, the batch size of the experiment was set to one. The ablation
experiments are summarized in Table 3. From the ablation experiment, the following results
were obtained:

Table 3. CenterNet optimized process ablation experiment.

Serial
Number CenterNet CBAM FS Iou

Memory
Foot-

print/MB
FPS

Video
Mem-

ory/MB
FLOPs AP

1
√

× × × 50.3 296.5 1347 13.06 0.751
2

√ √
× × 51.7 189.9 1349 13.06 0.823

3
√

×
√

× 51.1 250.2 1405 16.35 0.852
4

√
× ×

√
50.8 172.8 1378 15.26 0.772

5
√ √ √

× 52.3 237.1 1382 15.43 0.864
6

√ √
×

√
51.8 196.8 1375 16.49 0.872

7
√

×
√ √

51.9 253.7 1401 16.02 0.869
8

√ √ √ √
52.4 270.9 1409 16.87 0.905

After the CBAM module was added, the model size increased by 1.4 MB, FPS decreased
by 106.6, video memory increased by 2 MB, FLOPs remained unchanged, and AP increased
by 0.072 compared with the original model.

After adding the feature selection module, the model size increased by 0.8 MB, FPS
decreased by 46.3, video memory increased by 58 MB, FLOPs increased by 3.29, and AP
increased by 0.101 compared with the original model.

After IOU optimization in the original model, the size increased by 0.5 MB, FPS
decreased by 123.7, video memory increased by 31 MB, FLOPs increased by 2.2, and AP
increased by 0.021 compared with the original model.
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After the addition of the feature selection module, the optimized model decreased the
target size loss faster than the original CenterNet because the feature selection module could
adaptively select the underlying features (such as the target texture and edge information)
in the downsampling process and add them to the feature map in the upsampling process.
Thus, the target size could be learned more quickly.

The change curve for the CenterNet target size loss after the original CenterNet and
the addition of the feature selection module are shown in Figure 9.
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The feature selection module can adapt to underlying features, which is also evident in
the actual detection effect. As shown in Figure 10, after adding the feature selection module,
the optimized model can predict the crack size more accurately due to the inclusion of
information such as the crack edge.
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The CBAM and feature selection modules, particularly the CBAM module, signifi-
cantly impact the reasoning speed of the network. This is because, after the CBAM module
is added to each ResBlock, the FPS of the network decreases overall, whereas the feature



Appl. Sci. 2024, 14, 2527 11 of 15

selection module reduces the FPS. Regarding video memory usage, the impact of the two
additional modules was relatively small.

The feature information of the entire network is compressed by the subsampling
module, which reduces the workload of subsequent network training and increases the
reasoning speed of the entire network. The input information in the upper layer of the
network is enhanced after the feature extraction module, and the upsampling stage uses
fewer convolutional layers to improve the running speed of the network. The information
about each input and output layer of the overall network optimized in this study is shown
in Table 4.

Table 4. CenterNet improved network layer input and output.

Net Input Size Input Channel Output Size Output Channel

Convolution 1 512 × 512 3 128 × 128 64
Res-Block1 128 × 128 64 128 × 128 64
CBAM1 128 × 128 64 128 × 128 64
Res-Block2 128 × 128 64 64 × 64 128
CBAM2 64 × 64 128 64 × 64 128
Res-Block3 64 × 64 128 32 × 32 256
CBAM3 32 × 32 256 32 × 32 256
Res-Block4 32 × 32 256 16 × 16 512
CBAM4 16 × 16 512 16 × 16 512
Upper sampling layer 1 16 × 16 512 32 × 32 256
Upper sampling layer 2 32 × 32 256 64 × 64 128
Upper sampling layer 3 64 × 64 128 128 × 128 64
Target center point 128 × 128 64 128 × 128 1
The target center is biased 128 × 128 64 128 × 128 2
Target size 128 × 128 64 128 × 128 2

To demonstrate the improvement in the performance of the model before and after
optimization more intuitively, five groups of training processes were randomly selected for
comparison, as shown in Figure 11. Dark blue represents the data processing accuracy of
the original CenterNet model, and yellow represents the improvement in accuracy brought
about by the optimized CenterNet-CBAM-FS-IOU model.
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After optimization, the overall processing accuracy of CenterNet improved to a certain
extent, and it could effectively identify cracks in construction concrete with a shorter
training time. The actual detection effect is shown in Figure 12, where the red box represents
the detection crack prompts, and the number represents the detection number.
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Figure 12. Actual detection.

As a classic anchor-free model in the field of computer vision, the CenterNet model
has a wide range of applications and optimization in various disciplines. Table 5 shows the
comparison between the AP, recall, and F1 score after optimizing the CenterNet model. It
is not difficult to find the improvement in the detection effect of the optimization scheme
proposed in this paper through comparison.

Table 5. Comparison before and after optimization.

Network AP/% R/% F1

CenterNet 75.1 50.4 53.9
CenterNet-IOU 77.2 51.7 57.6
CenterNet-CBAM 82.3 56.2 67.2
CenterNet-FS 85.2 53.1 60.9
CenterNet-CBAM-FS-IOU 90.5 82.8 81.5

In order to demonstrate the effectiveness of the proposed method more clearly, it
was compared with common crack detection algorithms under the same experimental
conditions. The processing results of different crack detection algorithms are shown in
Table 6, and the actual detection process is shown in Figure 13. The experimental results
show that the method proposed in this paper is superior to other methods, the processing
effect of Mask-RCNN has the smallest gap with the method proposed in this paper, and
the data processing results are basically close. Through comparison, it can be seen that the
method proposed in this article outperforms other detection algorithms in terms of AP,
recall, and F1.
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Table 6. Comparison of different algorithms.

Network AP/% R/% F1

YoloV3 42.1 41.8 36.2
YoloV5 46.8 42.5 38.4
YoloV7 63.2 51.6 63.1
Mask-RCNN 87.9 74.3 79.8
CenterNet-CBAM-FS-IOU 90.5 82.8 81.5
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5. Conclusions

Based on the original network of CenterNet, a detailed algorithm model optimization
experiment was carried out for the problem of concrete crack detection in construction
engineering using pictures of concrete cracks taken by drones, including the addition of a
double-attention mechanism, introduction of a feature selection module, and optimization
of the loss function.

The experimental results show that the FPS of the improved CenterNet model is
reduced by 123.7, the memory is increased by 62 MB, FLOPs are increased by 3.81, and
AP is increased by 0.154. The proposed method for detecting cracks in construction
projects based on the improved CenterNet network has good robustness and accuracy
for the processed datasets and has the potential to be applied for target detection and in
recognition methods in relevant practical scenarios.
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