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Featured Application: The underlying system parameters of a biologically inspired robot control
method with an intuitive visualization tool can tune precise parts of a trajectory while maintaining
system stability.

Abstract: Dynamic systems which underlie controlled systems are expected to increase in complexity
as robots, devices, and connected networks become more intelligent. While classical stable systems
converge to a stable point (a sink), another type of stability is to consider a stable path rather than a
single point. Such stable paths can be made of saddle points that draw in trajectories from certain
regions, and then push the trajectory toward the next saddle point. These chains of saddles are called
stable heteroclinic channels (SHCs) and can be used in robotic control to represent time sequences.
While we have previously shown that each saddle is visualizable as a trajectory waypoint in phase
space, how to increase the fidelity of the trajectory was unclear. In this paper, we hypothesized that
the waypoints can be individually modified to locally vary fidelity. Specifically, we expected that
increasing the saddle value (ratio of saddle eigenvalues) causes the trajectory to slow to more closely
approach a particular saddle. Combined with other parameters that control speed and magnitude,
a system expressed with an SHC can be modified locally, point by point, without disrupting the
rest of the path, supporting their use in motion primitives. While some combinations can enable a
trajectory to better reach into corners, other combinations can rotate, distort, and round the trajectory
surrounding the modified saddle. Of the system parameters, the saddle value provides the most
predictable tunability across 3 orders of magnitude.

Keywords: biologically inspired robots; robust control; optimal control; motion planning

1. Introduction

To develop new versatile, robust, learnable control frameworks for robots, we are
seeking ways in which a heteroclinic system can be adjusted after learning while remaining
stable. Most controllers are based around “PID” parameters (Proportional Integrative and
Derivative gains) that describe linearized stability around a single stable point (the goal
state). Heteroclinic systems orbit not just one, but multiple equilibria, which is useful in
controlling periodic motions such as robot locomotion gaits, repetitive motions in manu-
facturing, or more complex trajectories. In complex, high-dimensional spaces, equilbria
can represent holding behaviors, system status patterns, or action sequences. By visualiz-
ing these behaviors in Cartesian space [1], we hope to better understand the underlying
dynamics. The robustness of such systems comes from their proven stability [2–4] and
the ease of use can come from learnability [5–7]. The ability to combine multiple states,
which can be thought of as primitive building blocks, enables an inherent versatility to
combine and recombine different states. Here, our goal is to increase the versatility further
by demonstrating that state-to-state trajectories can be tuned by parameters associated with
each state.
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Creating behaviors as a composite of stable primitive building blocks has been a
powerful tool for controlling robots. For example, Dynamic Movement Primitives (DMPs)
have been effective for over twenty years in providing learnable, smooth kinematic control
policies [8–12]. DMPs have modular components called kernels, which are generated from
stable points that are activated in time sequences. If those stable points are replaced with
saddle points, such that the unstable eigenvector of one saddle points to the next saddle, we
can refer to them as stable heteroclinic channels (SHCs) [7,13,14]. Using SHCs to generate
the kernels results in comparable performance to DMPs, and has the added benefit of
visualization [1] and the potential to enable the timing of the saddle-to-saddle transition to
be embedded in the dynamic system.

Saddle equilibria-based dynamical systems can help engineers better bridge gaps
between neurobiology and biologically inspired artificial intelligence. The spectrum of bio-
logically inspired controllers ranges from high-level, behavior-based controllers like finite
state machines, where a robot’s desired action is encoded into the control software [15,16],
to low-level neuromorphic controllers like neural networks, where neuronal functions
are interconnected at scale [17–19]. SHCs are intermediary. Because the connectivity is
in the mathematically constructed connection matrix, they can be analyzed. Yet, they are
abstract enough that the system dynamics are less prone to the “black-box”, unexplainable
dynamics seen in high-dimension frameworks [20,21]. For this reason, biologists have used
SHCs to model the population behavior of biological neurons because they abstract the
dynamics of the system into tractable components [22,23] and engineers are starting to use
SHC-based movement primitives (SMPs) to control bio-inspired robots [1,14,24].

Specifically, such bio-inspired controllers make sense in high-dimensional systems
where predictive forward models are unavailable. Examples include compliant robots [25,26]
in complex, dynamic environments [27–29]. The current alternatives for systems like these
are model-based controllers and high-dimensional “black-box” controllers. Model-based
controllers are computationally expensive [26,30,31] and thus not optimal for mobile robots
with limited on-board computation, and “black-box” controllers lack explainability when
the robot’s behavior is scrutinized [32,33]. This article builds on the SMP parametric
transparency that was introduced in [1], especially for the saddle value, ν, within several
orders of magnitude.

This work aims to show that the SMP control framework can locally adapt part of
a learned trajectory without compromising the rest of the system. We hypothesize that
we can perform the following:

• Vary the system parameters to change waveform frequencies, magnitudes, and shapes, which will
• change the produced trajectory’s speed, precision, and/or shape.

More specifically, we predict the following:

• The saddle value, ν, is the optimal modifier to prescribe trajectory precision.

To establish a baseline for readers, we expand on the DMP and SHC frameworks in
Section 2. Section 3 contains the SMP equations, the chosen trajectories, and the quanti-
tative evaluation methods for parameter variation. In Section 4, we describe the effects
of parameter variation both qualitatively and quantitatively. We compare the system’s
state space and produced trajectories across the range of a single parameter, as well as the
state space and produced trajectories across the collective parameter space. Finally, we use
Section 5 to summarize the results and discuss the opportunity costs of each parameter as a
trajectory modulation tool.

2. Relevant Work

DMPs are a robotic control framework that uses a series of underlying kernels—attractor
points or limit cycles—to produce trajectories [10–12,34]. The strength, timing, and growth/decay
of the attractors can be varied to create custom trajectories [35]. Over the years, DMPs have
been adjusted to better learn rhythmic movements [35,36], to learn from multiple non-identical
demonstrations [37], and to learn joint torques along with the kinematic trajectory [38], among
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other expansions [11,39,40]. In an effort to improve the versatility of DMPs in online applications,
Wang et al. introduced the DMP+ framework in 2016 that can partially update the DMP+ kernel
weights to locally adjust a learned trajectory [10]. To update DMP+ kernels, the weights must
be relearned according to the user’s chosen algorithm, whereas SMP kernel updates can be
achieved using the SMP visualization feature [1] and/or the system parameters described in
this article. Both SMP update methods maintain the computational complexity of an update
step, while the DMP+ method may increase in complexity depending on the desired task.

SHCs are a series of saddle equilibria where the unstable manifold of one equilibrium
point leads onto the stable manifold of another; this creates pathways between the saddle
points (see Figure 1) [7,13,14]. SHCs have been used as a model for neural activation
patterns in animals [23,41,42]. They have also been used to produce and investigate
dynamical state systems [5,43], and apply those systems to robotic movement [14,28,44].
In 2015, Horchler et al. described the system parameters alpha α, beta β, and nu ν for
SHCs [7]. In their work, they described alpha as the growth rate of a kernel—how fast the
kernel grows in its respective dimension. Beta was described as the kernel magnitude—the
maximum amplitude of the waveform. Nu was described as the saddle value—a kernel’s
insensitivity to external perturbation (modeled as noise). In the SMP system, these variables
(and noise) are varied synchronously to create kernels that remain connected in state space,
i.e., the connected kernels create a smooth trajectory in the task space. SMPs expand SHCs
into a stable, learnable system with a clear transformation from state space into a robot’s
task space.

Figure 1. Stable heteroclinic channel (SHC) cycle with 3 saddle node points. The cycle is formed by
connecting the unstable eigenvector of a saddle onto the stable eigenvector of another saddle. The
Lotka–Volterra formulation of SHCs requires at least 3 saddles in the cycle.

Mathematical representations of biological systems are commonly used to develop
robot control frameworks [8,18,24,40,45,46]. These frameworks have value in both biologi-
cal and engineering applications, and characterizing their parameters increases ease-of-use
in either application [47–49]. Some biologically inspired, transient dynamic systems, like
neural networks, have gained much popularity in recent years, but at larger scales, system
analysis, parametrization, and explainability become nearly impossible [26,39,50,51]. Like
these other frameworks, SMPs have a biological relevance because of their construction
from biologically relevant SHCs. Unlike these frameworks, SMPs are parameterizable
because their parameters—from DMPs and from SHCs—have already been described
separately in each framework [7,34].
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3. Methods

The goal of this work is to demonstrate how the SMP system variables modify the
system and the trajectory it produces. The trajectory for any variable of interest (e.g.,
end-effector position or join angle) is produced by controlling a second-order system. The
MATLAB 9.14 (version R2023a, computational software by MathWorks Inc.®) code for
this formulation can be found at https://github.com/NatRouse/SMP-Characterization.git
(accessed 17 August 2023).

3.1. System Model

The SMP system model is below. Equation (1) is the governing equation. It produces
the final trajectory for the system’s variable of interest, y, using a forcing function, f, from
the SHC formulation.

τÿ = αy(βy(g − y)− ẏ) + f (1)

The forcing function (2) is summed over the number of kernel functions, K, used in the
system. K is chosen based on the complexity of the system (e.g., actuatable degrees of
freedom), and the desired smoothness of the produced trajectory. SMPs are O(K2t) at their
most complex, where t is the number of timesteps calculated [1]. In this work, the kernels
are color-matched to show which state space waveform corresponds to each region of the
task space trajectory.

f (x) =
K

∑
i=1

xiwi (2)

The canonical state Equation (3) is based on competitive Lotka–Volterra (LV) equations [4].

τdxi = xi

(
αi −

K

∑
j=1

ρijxj

)
dt +

N

∑
j=1

Cijzj (3)

External perturbation is a critical factor in the use of LV kernels; external perturbation
(modeled as Gaussian noise in this work), zj, ensures that the system variable, x, passes close
to the SHC saddle point, but not so close that the system remains in static equilibrium [7].
The effect of noise on SHCs has been explored in other work, and for practical uses, we can
establish a reasonable noise magnitude compared to the rest of the system [13,14,52–55].

All of the variables across the SMP system model are defined in the following table
(Table 1).

Table 1. SMP system variable definitions.

Variable Definition

y relevant system variable
τ time-scaling term
αy system damping
βy system stiffness
g system’s “goal” position
f controller force (applied to system)
K total number of kernel functions
wi kernel function weight
xi canonical state of the system (for a single kernel)

αi, ρi system behavior parameters
N number of sensors
Cij coupling matrix
zj noise

https://github.com/NatRouse/SMP-Characterization.git
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3.2. System Parameters

The variables that control SMP behavior are the noise zj, the kernel weights wi, and the
parameters that make up the connection matrix ρij (seen in (3)). In our previous work [1],
we observed the effect of the kernel weights on the system and optimized the weights to
make the system follow a desired trajectory. The algorithm design methodology outlined
in Figure 2 was used previously and is now used for this article. When the system is at unit
scale (magnitude, β = 1), the kernels can be plotted in the task space using the weights as
locations.

In this work, we focus on the connection matrix, ρij. The connection matrix is a real,
non-symmetric matrix constructed from three saddle characteristics: the growth rate α, the
magnitude β, and the saddle value ν [7]. The matrix is constructed as follows:

ρij =



αi/βi, if i=j
αi − αj/νj

β j
, if i=j-1

αi + αj

β j
, otherwise

(4)

Figure 2. SMP design flowchart.

In the SHC system, αi controls how fast the kernel grows in the ith dimension, βi is
the maximum amplitude of the waveform, xi, and νi defines the stability of the ith saddle
with respect to input noise. When designed together, these variables and the external
perturbation (modeled here as Gaussian noise) create kernels with smooth, connected
pathways [7], which aids in producing a smooth trajectory. In this work, we will observe
how α, β, and ν affect SMPs.

The number of inputs N, the noise values zj, and the coupling matrix Cij collectively
form the final term in (3). These are selected to create a proportionally small input noise
in comparison to the rest of the system. As noted in Section 3.1, this noise is necessary to
produce a trajectory along the kernel pathways.

To show the effect of each system parameter on the resulting trajectory, we vary each
parameter over a spread of values for a single kernel and for all four kernels. The effect
on the trajectory is measured as an area error from the original trajectory (the square in
Figure 3). Additionally, since SMP kernels are functions of time, we can measure the time
it takes for each kernel to grow and decay. A baseline trial (discussed in Section 3.3) is
compared to trials with individually and collectively varied parameter values, and the
kernel function waveforms (produced by x from (3)) show the effects.
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Figure 3. (a) Saddle point kernels, desired trajectory, and produced trajectory for a square trajectory
plotted in the task space. (b) The canonical state waveforms of the weighted kernels. The degrees of
freedom are the x and y directions in Cartesian space. The initialization waveform of kernel one (the
green waveform at time = 0) contributes to the part of the produced trajectory that deviates from the
square. For the remainder of this work, the initialization and steady state error will be ignored.

3.3. Desired Trajectories
3.3.1. Square

The square trajectory-following task is defined in Figure 3. The trajectory starts at
(−1,−1) and moves counterclockwise around a square. The desired trajectory is the first
input to the system. Next, the kernel weights are chosen [1]. K = 4 corresponds to each
corner of the square. This choice enables each kernel and its associated trajectory region to
be visualized separately (see Figure 3).

The baseline SMP system parameters for the square trajectory are α, β, ν = 1. These
baseline parameters produce the square shown in Figure 3a, which has a runtime of
approximately 40 s; all the further parameter trials are compared against this baseline
square. The variables from the system model that remain the same across all trials are
listed below:

• τ = 1;
• αy = 4;
• N = 4;
• g = (−1,−0.5);
• K = 4;
• βy = 1;
• zj = 10−9.

3.3.2. Number “3” Shape

To explore how the system parameters can be used for trajectory tuning, a number “3”
trajectory is reproduced using eight kernels (K = 8). The original system parameters for
this trajectory are α = 10, β = 1, and ν = 1.2. These are the same parameters used for the
complex trajectories in our previous work [1]. This trajectory starts at (−1,2) and ends at
(−0.8,−0.5).

3.4. Evaluating the Produced Trajectories

Two trial types are used for the square trajectory:

• Collective parameter change: all α or all β or all ν;
• Individual parameter change: a single α, β or ν.
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To evaluate the effects of varying these parameters, we measure the square’s time-to-
completion and the area error of the produced trajectory. Time-to-completion is the time
it takes the system to complete the square trajectory. We determine closure of the square
by identifying the first point at which the trajectory crosses itself. The area error is the
difference in area between the baseline produced trajectory (Figure 3) and the modified
produced trajectory. The area enclosed (in the task space) by the original produced trajectory
and each new produced trajectory is found, and their difference is calculated.

area error = Abaseline − Amodified (5)

For the number “3” shape, the distance error is measured as the sum of the shortest
Euclidean distances between the desired and modified “3” shapes. The desired “3” is
described using 13 waypoints, and this trajectory is used to select the weights of the 8
kernels that are used to run the system. The weight selection process is described in [1].

distance error =
DOF

∑
√

t

∑ (ymodified − ydesired)2 (6)

4. Results

First, each system parameter was halved and doubled from an original value of 1 for all
kernels. The effects on the system are summarized in Table 2 and plotted in Figure 4. Next,
each system parameter was varied across a range for an individual kernel and collectively
for all kernels. The system time and area error were collected for these trials. The results
are shown in Figure 5. The results for each parameter are described below. Finally, with the
accumulated information on how these variables affect the SMP system and its produced
trajectory, we demonstrate that the saddle characteristics can be used to reduce the distance
error of the “3”-shaped trajectory.

Figure 4. State space waveforms of the square trajectory kernels. The canonical state, x, as described
in (3) is plotted against time. An “original” state (b) is set in the middle of the top row. It shows a
four-kernel system (square) that has two full activations: each kernel is activated twice in time. Each
parameter is reduced by half (a,d,f) or doubled (c,e,g). All of the trials are run for the same amount of
time. The effects on the system can be seen in the function waveform frequencies, magnitudes, and
shapes, and are described in Table 2.
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Table 2. The effect on the SMP system (Canonical State Waveform) and the SMP results (Produced
Trajectory) for collective parameter changes—all α, β, and ν values.

Parameter
Canonical State Waveform Produced Trajectory

Frequency Magnitude Shape Size

Growth Rate α (0, ∞) Increases No effect Rotation Reduces

Magnitude β (0, ∞) No effect Increases Rotation Increases

Insensitivity to Noise ν [1, ∞) Decreases No effect Increased precision around kernel locations No effect

Figure 5. Plot of time (red) and area error (blue) vs various parameter values: (a) α3, (b) β3, (c) ν3,
(d) αall , (e) βall , and (f) νall . The produced trajectory for various values is pictured below each plot.
Each set of produced trajectories is scaled according to the original (value = 1). The individual
parameter trials (a–c) also have canonical state plots below their produced trajectories. Note that the
x-axis, time, varies across the canonical state plots. This agrees with the change in time across the
individual parameter trials.

4.1. Alpha: Growth Rate
4.1.1. All Alpha

In the state space, varying α varies the frequency of the canonical state waveform
almost proportionally (Figure 4a,c). When α >> 1, there is a rotation introduced into the
produced trajectory and the trajectory decreases in size (Figure 5d). This can be attributed
to the increased frequency of the waveforms. Faster waveforms indicates less time for the
kernels to affect the system. The kernels grow so quickly that the trajectory does not fall
into the saddle points’ neighborhoods in state space. In the task space, this appears as the
trajectory passing farther away from the kernels resulting in reduced precision.

4.1.2. Single Alpha

α3 was varied from 0.1 to 20 (Figure 5a) while αi ̸=3 = 1. According to (3) and (4), the
prior and subsequent kernels are affected when a single α is changed.

When α3 < 1, the third kernel’s pink waveform rises gradually, slowing the kernel
down and creating a wider waveform in state space. The second (prior, blue) kernel’s
waveform decreases slowly—at a rate similar to the third kernel—while the following
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kernel’s entire waveform rises and falls quickly. The fourth kernel (purple) activates at a
smaller magnitude than the others. In the produced trajectory, this presents itself as a curve
away from kernel 4’s corner—the fourth kernel’s trajectory passes farther away from the
kernel than in the unit trial (αall = 1).

When α3 > 1, the pink third kernel waveform rises more sharply than the other
kernels. To maintain the LV construction, the previous blue kernel’s waveform must
decrease sharply. This translates across the entire kernel 3 waveform, which activates at a
smaller magnitude than the other kernels. In the produced trajectory, this means that the
trajectory curves away from the kernel 3 corner.

4.2. Beta: Magnitude
4.2.1. All Beta

In the state space, varying β changes the magnitude of the canonical state waveform
almost proportionally (Figure 4d,e). When β < 1, the proportional magnitude translates to
the size of the produced trajectory, e.g., at a halved β, the square’s sides are halved. When
β > 1, the waveforms are truncated at the system’s maximum—the maximum weight
assigned to any kernel. All the waveforms are wider, slower, and decay more slowly than
the original trial (β = 1). Slower and wider waveforms indicate more time spent in each
kernel’s neighborhood. In the produced trajectory, this translates to a larger, rotated square
(Figure 5e). The rotation is likely the truncated tops of the waveforms forming new edges
in the produced trajectory.

When a kernel remains activated at its maximum, the trajectory is pulled onto that
kernel’s stable eigenvector [1] and remains in the kernel’s neighbourhood for a longer
period of time [7]. In the task space, this presents as a straight line where the corners of the
square used to be—the trajectory stays in the kernel’s neighborhood instead of approaching
and leaving. Each straight line is a new edge in the produced trajectory, thus the entire
square appears to rotate.

4.2.2. Single Beta

β3 was varied from 0.1 to 3 (Figure 5b) while βi ̸=3 = 1.
When β3 < 1, the third kernel’s waveform magnitude is smaller than the other kernels,

but does not affect the others in any other way. In the produced trajectory, the trajectory
skips kernel 3’s pink corner, moving almost directly from the kernel 2 corner to the kernel
4 corner.

When β3 > 1, the third kernel’s waveform is truncated (as in the collective parameter
trial). Similar to the collective parameter trial, the truncated waveform causes the trajectory
to be pulled into the third kernel’s neighborhood faster and longer than the other kernels.
This presents itself as a new edge tangential to the kernel location (recall the new edges
formed when βall = 2 in Figure 4e).

4.3. Nu: Insensitivity to Noise
4.3.1. All Nu

Decreasing ν below 1 showed no change in either the state space or the produced
trajectory. When ν > 1, the waveforms become more square; they are not truncated,
but they remain near their maximum for an extended period of time before decaying
(Figure 4f,g). Unlike the modified β waveform activation at maximum, the modified ν
kernels do not remain at their maximum value. Additionally, the rate of both their rise and
decay is comparable to the original value (ν = 1). In the produced trajectory, this change
presents itself as an increased sharpness in the corners of the square (Figure 5f).

4.3.2. Single Nu

ν3 was varied from 1 to 100 (Figure 5c) while νi ̸=3 = 1. When ν3 < 1, there was no
change in the state space or the produced trajectory.



Appl. Sci. 2024, 14, 2523 10 of 15

When ν3 > 1, the third waveform increases in width, does not remain at its maximum
value, and decays quickly. To maintain LV construction, the following kernel’s waveform
must rise at a similar rate; kernel 4’s waveforms rises and decays quickly, resulting in
a smaller waveform. In the produced trajectory, these waveform characteristics present
themselves as an increased precision in the kernel 3 corner, a curve along the top edge, and
a decreased precision in the kernel 4 corner.

4.4. Complex Trajectory Tuning

With the knowledge of how these parameters affect both the system’s canonical state
and the produced trajectory, we can now use them to modify the path precision of a
trajectory at key points. In Figure 6, we define the trajectory as a number “3” using thirteen
waypoints. We initialize our system with eight kernel weights sampled from the trajectory
and α = 10, β = 1, and ν = 1.2. These variables originate from our previous work [1], but
they could be derived via the process outlined in [7]. With this initialization, we achieve
a trajectory that mimics a number three, but could represent the desired shape (Figure 6,
top row) by being more precise in the inner point of the shape. The initial distance error
(according to Equation (6)) is 7.588.

According to the previous Section 4.3, we can use ν to change the time that the
trajectory spends in a kernel’s neighborhood, thus affecting the precision of that portion of
the trajectory. We can also use α to produce a similar effect by reducing it below one, but
from the trials in Section 4.1 and Figure 5, this can produce some unexpected warping of the
trajectory after the modified kernel. Because of this, we will use ν as our modification tool.

For a new, tuned trajectory, we want to match the curves closest to the inner point
of the number “3”. Initially, we increase just kernel four’s ν value to ν = 2. This is the
kernel that corresponds to the inner point. This improves the trajectory according to the
distance error (lowering it from 7.588 to 6.439), but we can see in Figure 6 (middle row) that
the produced trajectory can better fit the original desired trajectory. With this in mind, we
increase the saddle values for kernels three and five, which are the kernels that surround
kernel four—the inner point. Now the trajectory more tightly follows the inner point of the
shape (Figure 6, bottom row), reducing the distance error to 5.149. The modifications and
error changes are shown in Table 3.

Table 3. Saddle value modifications and the resulting distance error values (with percentage decrease
from baseline produced trajectory) for the complex number “3” trajectory.

Modification Error

Baseline 7.588
ν4 = 2 6.439 (15% decrease from baseline )

ν3,4,5 = 2 5.149 (32% decrease from baseline)
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Figure 6. “Number three” trajectory. Left column: the produced trajectory, desired trajectory and
kernels in the task space. The desired trajectory starts at (−1,2) (dotted black line). The kernel weights
inform their location in the task space (colored dots, gray lines), and the marker sizes indicate their
saddle values. The produced trajectory (colored line) is unmodified in the top row, and modified
according to the labeled saddle values in the middle and bottom rows. The distance error for the new
iteration of produced trajectory is listed under each modification. The produced trajectory from each
previous trial is shown in gray to show the progression from an unmodified system to a more tuned
system. Right column: the kernel waveforms in state space. With each modification, the system time
becomes longer and the distance error decreases.
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5. Discussion

In this work, we characterized the effect of the SMP system parameters α, β, and ν on
both the system and its produced trajectory. Additionally, we used these parameters to tune
a localized part of a more complex trajectory without disrupting the rest of the trajectory.

Alpha is a frequency (speed) modifier. As α increases, the kernel takes less time to
grow and decay. This decreases the effect of that kernel on the trajectory, causing lower
precision in the trajectory areas where a kernel’s α value has been increased. In the task
space, increasing α increases the trajectory’s speed for that kernel’s activation.

Beta is a magnitude (scale) modifier. As β increases, the magnitude of the kernel’s
waveform increases until it would exceed the system’s maximum. At that point, the
waveform is truncated and the produced trajectory’s shape around that kernel is changed.
In the task space, β can be used to under- or over-direct the trajectory past a kernel by
decreasing or increasing it, respectively.

Nu is a precision modifier. As ν increases, the kernel takes more time to grow and
decay. This increases the “power” of that kernel on the trajectory, causing a higher precision
in those areas in the task space.

The amount of time the system takes to grow/decay towards a kernel determines
how closely its associated trajectory will be attracted to that kernel’s saddle point. With
more time, the trajectory can be executed more closely, e.g., sharper corners for the square
trajectory and a more defined inner point for the number “3” trajectory. With less time, the
trajectory will be executed more loosely, potentially skipping a kernel’s associated portion
of the trajectory.

We hypothesized that the kernels can be individually modified to vary the trajectory’s
fidelity in that location. Specifically, increasing the saddle value ν would increase the
trajectory’s precision around that saddle. This was achieved in tuning a number “3” shape.
We were able to produce a 32% decrease in the trajectory error by increasing the ν values of
the saddles in the inner point of the shape.

In a limited parameter space, the system variables can be used separately or in tan-
dem to modify the produced trajectory at key points without significantly affecting the
surrounding trajectory areas. For example, if a specific kernel becomes higher priority than
others, we can increase the activation time for that kernel by increasing its β or ν value, or
decreasing its α value. If a kernel becomes lower priority or needs to be avoided, we can
decrease its activation time by increasing its α value or decreasing its β value. The variable
β shows a unique feature when it is reduced below 1 for all kernels; it acts as a scaling
factor for the whole trajectory.

For practical applications there are three main considerations: speed, precision, and
scale. There is a trade off between speed and precision in adjusting α and ν, especially
when their values are greater than 1. Due to the visualization feature of SMPs, the scale of
a trajectory path can be easily adjusted using β, and a new path can be initialized quickly.
Since the SMP system is stable and robust for this parameter space, all of the system
parameters can be learned via a user’s chosen optimization algorithm according to the
desired task specifications.

In addition to predictable changes at small parameter changes, we observed unex-
pected changes to the produced trajectories at large parameter changes, such as rotations,
distortions, and roundness in corners and sharp turns. Changes in the task space are
implied when we look at the state space representations of these trajectories. The state
space plots indicate that each kernel waveform is interdependent on its neighbors and that
interdependence uniquely affects their activation.

Special consideration should be given to the saddle value ν, which produces the most
predictable changes in the produced trajectory over the largest range of values. We were
able to vary ν over 3 orders of magnitude in both the single variable trials and the collective
variable trials, and we did not observe any unpredicted changes to the produced trajectory.
This points to ν as the ideal parameter for trajectory tuning (via trajectory precision) for
this system.
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Several opportunities arise from this work. First, a full characterization of SMP state
space may explain the unexpected trajectory changes illustrated in this paper. Additionally,
we have not characterized the effect of noise on the SMP system. The SMP framework
depends on perturbation to be functional, so an extended mathematical framework could
leverage noise as an input to directly introduce sensory information to the system. In
this work, we use SMPs to produce a kinematic trajectory plan. As with other modular
activation frameworks, SMPs can be used to encode motor activation for different degrees of
freedom on a robot instead. Finally, the spatial definition of SMPs enables more complicated
network topologies. Each pathway, cycle, or network could encode behaviors—either
desired behaviors for a robotic platform or observed behaviors from other, less explainable
(less visualizable) control frameworks.

6. Conclusions

The conclusions for this article are as follows:

• We tuned state-to-state trajectories of a saddle point-based control system by vary-
ing the parameters associated with each state, without jeopardizing the stability of
the system at large.

• We reduced the distance error of a complex trajectory (number “3” shape) by 32% by
locally tuning the trajectory after it was initialized.

• We identified that the saddle value ν may be the ideal tool for SMP trajectory tuning
because it produces predictable results when it is varied over 3 orders of magnitude.
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