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Abstract: With the continuous improvement of surface water environmental quality in China, sedi-
ment has gradually become the focus of research on internal pollution in reservoirs. To investigate
the forms, distribution, and migration patterns of phosphorus in karst canyon reservoir sediments,
we employed an improved sequential graded extraction method to determine phosphorus content
in the sediments of the Wanfeng Reservoir. We studied the spatial distribution characteristics and
release risk of phosphorus form in the sediments. The results showed that the total phosphorus
(TP) content ranged from 79.37 to 438.04 mg·kg−1, while inorganic phosphorus (IP) content ranged
from 77.32 to 424.64 mg·kg−1. Iron–aluminum-bound inorganic phosphorus (Fe/Al-Pi) accounted
for 36.41% and was found to be the dominant form of IP. Organic phosphorus (OP) content ranged
from 1.84 to 13.59 mg·kg−1, with weakly adsorbed organic phosphorus (H2O-Po) being the domi-
nant form of OP. Potentially active inorganic phosphorus (NaHCO3-Pi) showed a highly significant
positive correlation (p < 0.01) with Fe/Al-Pi, residual phosphorus (Res-P), and TP. This indicates that
potentially active phosphorus (NaHCO3-P) is a significant potential source of phosphorus (P) in the
reservoir. Biologically active phosphorus (BAP) content ranged from 66.97 to 201.46 mg·kg−1, with
BAP/TP ratios ranging from 55.6% to 59.6%. The risk of phosphorus release from Wanfeng Reservoir
sediments is high. The release of various forms of phosphorus from sediments is one of the important
factors leading to the deterioration of water quality in the reservoir area in the future. To effectively
manage water ecology in karst canyon reservoirs, it is essential to reduce the risk of endogenous
phosphorus release.

Keywords: sediments; phosphorus forms; bioavailable phosphorus; Wanfeng Reservoir

1. Introduction

Phosphorus plays a critical role as a limiting factor for primary productivity, and is a
significant driver of eutrophication in aquatic ecosystems [1–3]. In reservoirs, phosphorus
can be categorized as exogenous and endogenous phosphorus [4]. Exogenous phosphorus
enters the reservoir through rivers and is either suspended or dissolved in the overlying
water. As it settles in the lake basin, it becomes adsorbed and immobilized by the bottom
sediment, primarily in mineral form. The dynamics of the water environment, including
factors such as dissolved oxygen (DO), pH, hydrodynamics, water temperature, and bio-
turbation, can lead to the release of a fraction of the inorganic phosphorus adsorbed by
the sediment into the overlying water. This released phosphorus then becomes a potential
source of water pollution [5–7]. The bonding and association of phosphorus in sediments
influence its biogeochemical behavior, including release, migration, and transformation
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in the water column. The variations in content and distribution characteristics of dif-
ferent forms of inorganic phosphorus have varying degrees of influence on the release
of phosphorus from sediments [3,8–11]. Therefore, it is crucial to investigate the spatial
distribution and biogeochemical bonding characteristics of different phosphorus forms
in reservoir sediments. This research is essential for a scientific assessment of the risk of
phosphorus release from sediments and effective prevention and control of eutrophication
in reservoirs [12].

Karst canyon reservoirs are characterized by a deep “V”-shaped valley, a narrow
reservoir, large water depth, high levels of dissolved solids, high calcium concentration,
and high alkalinity [13]. The environmental conditions of production and consumption in
the aquatic ecosystem of karst canyon reservoirs differ from those of shallow reservoirs
in the plains, resulting in a unique pattern of nutrient transport and transformation The
water column in a karst canyon reservoir exhibits stratification, and the low temperature
of the bottom water hinders the release of endogenous phosphorus. However, improper
reservoir operation can easily lead to the release of endogenous phosphorus, leading
to the enrichment of nutrients such as nitrogen and phosphorus in the water and the
occurrence of cyanobacterial blooms. Enhancing the anaerobic conditions at the bottom
of the reservoir, such as increasing the frequency and intensity, can promote the release of
bioavailable phosphorus, which may result in the deterioration of water quality. In recent
years, scholars have paid extensive attention to the research on the water ecosystem of
canyon-type reservoirs in karst areas.

With the continuous deepening of research on the water environment of karst canyon
reservoirs, domestic and foreign scholars have accumulated rich research results. Research
mainly focuses on topics such as aquatic ecology [14–18], the carbon cycle [19–25], microbial
community structure [26–33], and contamination with metals [34–38]. However, there is a
lack of research on the forms of phosphorus and the associated release risks from sediments
in karst canyon reservoirs. Consequently, our understanding of phosphorus pollution in
karst reservoirs resulting from sediment phosphorus release is currently limited, hindering
effective mitigation efforts. To address this research gap, our study investigates the forms
and distribution of sediment phosphorus at the Wanfeng Reservoir, a typical karst canyon
reservoir in China. By providing insights into sediment phosphorus dynamics, this study
serves as a foundation for integrated phosphorus management in karst canyon reservoirs,
with the overarching goal of preserving water quality and ecosystem health.

2. Materials and Methods
2.1. Study Area

Wanfeng Reservoir is located in the middle part of the Nanpan River at the junction of
Guizhou and Guangxi in southwest China (Figure 1). Construction of the Wanfeng Reser-
voir was completed in 1997, resulting in a total reservoir capacity of 10.26 × 108 m3, a regu-
lating reservoir capacity of 5.76 × 108 m3, a water surface area of approximately 176 km2, a
multi-year average flow of 612 m3·s−1, and an average annual runoff of 19.3 × 108 m3 [39].

The study area has a subtropical monsoon climate characterized by hot and rainy
summers, mild and relatively dry winters, and annual average temperatures of 15–18 ◦C.
Precipitation is relatively abundant, with annual sums ranging from 1300–1600 mm. The
water in the reservoir has high nitrogen and phosphorus content [22].

Wanfeng Reservoir is surrounded by karst landforms, with limestone and dolomite
being the dominant geological features in the vicinity. The presence of karst hydrology and
geomorphology in the watershed makes the Wanfeng Reservoir a representative example
of a high-altitude karst canyon reservoir. Therefore, studying the Wanfeng Reservoir can
provide valuable insights and references for the management and conservation of this
reservoir type, with relevance to the characteristics and challenges associated with karst
canyon reservoirs.
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2.2. Sample Collection and Processing

In December 2021, sediment cores were collected from the reservoir using a gravity
sampler. Due to the reservoir’s deep-water nature and its location in a karst area, sampling
sediments presented challenges. To address this, we selected three sampling points (WF1,
WF2, WF3) based on the reservoir’s characteristics and pollution status (Figure 1). The
sediment cores obtained from these points had lengths of 19 cm (WF1), 13 cm (WF2), and
14 cm (WF3). Each sediment core was sliced into 1 cm intervals, resulting in a total of
46 samples.

To ensure sample integrity, the stratified sediment samples were immediately placed in
acid-rinsed polythene plastic bags, with air removed to minimize oxidation, and then sealed
for cryogenic storage. Subsequently, the samples were transported to the laboratory and
subjected to a 48 h drying process using a freeze dryer (LGJ-12). Once dried, the samples
were ground to a particle size below 100 mesh to facilitate subsequent chemical analysis.

2.3. Experimental Methods and Data Analysis

The inorganic phosphorus forms in the sediment samples were extracted using a
modified sequential extraction method [12,40–43]. The concentrations of orthophosphate in
the stepwise supernatant and decoction obtained from each extraction step were determined
as shown in Table 1. The extracted forms included weakly adsorbed phosphorus (H2O-P),
potentially active phosphorus (NaHCO3-P), iron–aluminum-bound phosphorus (Fe/Al-P),
calcium-bound phosphorus (Ca-P) and residual phosphorus (Res-P). The molybdenum blue
method was used to measure the phosphorus content in the extraction solution. The total
phosphorus (TP) and inorganic phosphorus (IP) concentrations in the extraction solutions
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were determined using an ultraviolet spectrophotometer (UV-1801). The content of organic
phosphorus (OP) was calculated as the difference between TP and IP.

Table 1. Graded extraction method for sediment phosphorus forms.

Phosphorus Forms Methods

H2O-P

0.5 g of dry sediment was taken and mixed with 25 mL of
deionized water. The mixture was then oscillated for 2 h.
Afterward, centrifugation was carried out at a speed of
4500 r/min for 5 min to obtain the supernatant. The phosphorus
content in the extract solution was then determined.

NaHCO3-P

To extract phosphorus from the residue of the previous stage,
25 mL of NaHCO3 (0.5 mol/L) was added. The mixture was then
oscillated for 16 h. Afterward, centrifugation was conducted at a
speed of 4500 r/min for 5 min to obtain the supernatant. The
phosphorus content in the extract solution was then measured.

Fe/Al-P

To extract phosphorus from the residue obtained in the previous
stage, 25 mL of NaOH (0.1 mol/L) was added. The mixture was
then oscillated for 16 h. Afterward, centrifugation was conducted
at a speed of 4500 r/min for 5 min to obtain the supernatant. The
phosphorus content in the extract solution was then measured.

Ca-P

To extract phosphorus from the residue obtained in the previous
stage, 25 mL of HCl (1 mol/L) was added. The mixture was then
oscillated for 16 h. Afterward, centrifugation was conducted at a
speed of 4500 r/min for 5 min to obtain the supernatant. The
phosphorus content in the extract solution was then measured.

Res-P

To determine the residual phosphorus (Res-P), 25 mL of NaOH
(1 mol/L) was added to the residue from the previous stage. The
mixture was then boiled for 2 h. After boiling, centrifugation was
performed at a speed of 4500 r/min for 5 min to obtain the
supernatant. The phosphorus content in the extract solution was
measured to determine the Res-P.

3. Results
3.1. Content and Characteristics of the P in Sediments

The sediment TP content in the Wanfeng Reservoir ranged from 79.37 to 438.04 mg·kg−1,
with an average of 224.55 mg·kg−1. There was a significant spatial heterogeneity in TP
distribution, as depicted in Figure 2. The variation in extreme TP values was as much as
5.5 times, indicating substantial differences across sampling locations. Among the sampling
points, WF3 exhibited the highest TP content in the surface sediments, with an average
of 259.78 mg·kg−1. On the other hand, WF2 had the lowest TP content, averaging at
151.90 mg·kg−1.

The TP content in WF1 and WF2 displayed similar patterns, with a relatively gradual
change in TP content within the 1–13 cm depth range. However, at the WF1 sampling site,
there was an increasing trend in TP content between the 13–19 cm depth range. In contrast,
WF3 showed a top-down decreasing trend in TP distribution. Across all sampling sites,
there was an abrupt trend in the distribution of sediment TP content.

IP content in the sediments of the Wanfeng Reservoir ranged from 60.91 to 337.88 mg·kg−1,
with an average of 174.82 mg·kg−1. IP accounted for 73.26% to 78.84% of the TP content.
There was a strong positive correlation between IP and TP (correlation coefficient r = 0.994,
p < 0.01, n = 47), and a consistent distribution trend between IP and TP.

OP content in the sediments of the Wanfeng Reservoir ranged from 1.84 to 13.59 mg·kg−1,
with an average of 6.55 mg·kg−1. OP accounted for 2.92% of the TP content. In terms of the
surface sediment, WF2 and WF3 exhibited significantly higher OP content compared to
the bottom sediment, resulted has a negative correlation between OP and sediment depth.
WF3, being closer to the urban area and more influenced by human activities, is at the
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confluence of the Mengli and Hongran rivers, which provides favorable conditions for
organic matter accumulation. At the WF1 sampling site, sediment OP showed an increasing
trend with depth, with the highest value recorded at 13.59 mg·kg−1.
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Figure 2. Vertical distribution of total phosphorus (TP) in the three sediment cores (WF1–3).

3.2. Distribution Characteristics of Phosphorus Forms in Sediments

The phosphorus content in the sediments of the Wanfeng Reservoir followed the order
of Fe/Al-P > Res-P > Ca-P > H2O-P > NaHCO3 and those trends in phosphorus forms
within the sediment columns at each site were consistent with the trends observed for TP
content (Figure 3).

The distribution of phosphorus forms revealed that the proportion of NaHCO3-P in
Wanfeng Reservoir sediments was the lowest, accounting for 19.52% to 19.49% of TP (mean
18.69%). The proportion of Fe/Al-P was the highest, ranging from 17.34 to 94.39 mg·kg−1

(mean 49.86 mg·kg−1), accounting for 20.4% to 31.38% of the TP (mean 22.41%). In terms of
lateral distribution, the Fe/Al-P content increased in the sequence of WF3 > WF1 > WF2.
The presence of higher Fe/Al-P content in the sediments indicates a heavier contamination
of phosphorus, reflecting the pollution level of the reservoir [44].

The average content of Res-P in the sediments was 44.92 mg·kg−1, accounting for
20.05% of TP. The average content of Ca-P was 44.15 mg·kg−1, accounting for 19.6% of TP.
Res-P and Ca-P are considered relatively stable and inert forms of phosphorus, exhibiting
limited exchange with the overlying water and being less affected by general changes
in environmental conditions. The combined content of H2O-P, NaHCO3-P and Fe/Al-P
accounted for 60.35% of TP, indicating their significant contribution within the sediment
phosphorus pool.
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3.3. Spatial Distribution and Contents of Sediment IP

The IP content in each form showed Fe/Al-Pi > Ca-Pi > NaHCO3-Pi > H2O-Pi
(Figure 4). The H2O-Pi represents an easily mobilizable form of phosphorus mainly de-
rived from interstitial water [45]. It had the smallest proportion within IP, with a content
ranging from 14.43 to 82.13 mg·kg−1 (mean 41.21 mg·kg−1). The Ca-Pi content ranged
from 14.98 to 82.65 mg·kg−1 (mean 42.48 mg·kg−1), while NaHCO3-Pi ranged from 14.64
to 83.3 mg·kg−1 (mean 41.23 mg·kg−1). Fe/Al-Pi had the highest proportion within IP,
with a content ranging from 16.86 to 91.82 mg·kg−1 (mean 48.15 mg·kg−1), accounting for
36.41% of IP in the sediment.
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Figure 4. Distribution of sediment inorganic phosphorus (IP) fractions across the sampling sites
(WF1–3).

In terms of the surface sediments, WF3 exhibited the highest IP content, followed
by WF2 and WF1. The IP content of WF3 was significantly higher than that of WF1 and
WF2. Within the sediment column, the IP content of each form in WF1 and WF2 tended to
increase with depth. However, in WF3, the IP content of each form decreased with depth.
Furthermore, the IP content of each form in the surface sediment was significantly higher
compared to the bottom sediment, showing a negative correlation with sediment depth.

3.4. Spatial Distribution and Contents of Sediment OP

The sediment OP contents of individual fractions followed the order of H2O-Po >
Fe/Al-Po > Ca-Po > NaHCO3-Po (Figure 5). H2O-Po content was similar to H2O-Pi and
represented the most easily transported form of phosphorus. H2O-Po contents range from
0.27 to 8.03 mg·kg−1 (mean 2.21 mg·kg−1), accounting for 33.76% of OP in the sediments.
The contents of Fe/Al-Po ranged from 0.47 to 8.57 mg·kg−1 (mean 1.71 mg·kg−1). Ca-Po
content in the Wanfeng Reservoir ranged from 0.5 to 3.63 mg·kg−1 (1.66 mg·kg−1). HCO3-
Po content was in the range of 0.14 to 2.48 mg·kg−1 (mean 0.97 mg·kg−1), accounting for
only 14.78% of OP.
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4. Discussion
4.1. Potential Relationships between Sediment Phosphorus Forms

The correlation analysis (Figure 6) revealed highly significant correlations (p < 0.01)
between sediment Ca-Pi in the Wanfeng Reservoir and Ca-Po, H2O-Pi, H2O-Po, NaHCO3-
Pi, NaHCO3-Po, Fe/Al-Pi, Res-P, and TP. It was also significantly correlated (p < 0.05)
with Fe/Al-Po. These results highlight the importance of Ca-P as a crucial component of
phosphorus in reservoir sediments.
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The correlation coefficients of sediment H2O-Pi with Ca-Pi, NaHCO3-Pi, Fe/Al-Pi, Res-
P, and TP were 0.965, 0.985, 0.859, 0.956, and 0.954, respectively. However, the correlation
coefficients with each form of OP were 0.692, 0.509, 0.399, and 0.503, respectively. These
results indicate that other forms of phosphorus also influence the sediment–water interface
H2O-Pi. It also suggests that controlling eutrophication in the water may not be sufficient
in the presence of attenuated exogenous contamination, as endogenous release can become
a new source of contamination.

Fe/Al-Pi exhibited highly significant positive correlations (p < 0.01) with Res-P and
TP, with correlation coefficients of 0.838 and 0.901, respectively. Fe/Al-P is considered a
relatively active form of phosphorus in water and is primarily influenced by factors such
as pH and redox potential. Sources of Fe/Al-P typically include domestic sewage and
industrial wastewater, an essential indicator of the eutrophication status of the water [46]. It
is an essential indicator of the eutrophication status of the water. Under alkaline conditions,
the sorption capacity of oxidizable metals such as Fe/Mn for phosphate is reduced, leading
to enhanced phosphate release [47].

Sediment Ca-Pi in the Wanfeng Reservoir was highly significantly correlated (p < 0.01)
with H2O-P, NaHCO3-P, Fe/Al-P, Res-P, and TP. These findings emphasize the importance
of Ca-P as a crucial component of phosphorus in reservoir sediments. Ca-Pi mainly consists
of detritus phosphorus and apatite, which are generally not rapidly released by sediments.
Only when the water’s pH drops will a portion of Ca-Pi be released into the water [48]. Due
to the unique geographical characteristics of karst canyon reservoirs, which have weakly
alkaline water, the release of Ca-P is highly unlikely, resulting in its minimal contribution
to water eutrophication.

The correlation coefficients between reservoir sediment H2O-Pi and Ca-Pi, NaHCO3-Pi,
Fe/Al-Pi, Res-P, and TP were 0.965, 0.985, 0.859, 0.956, and 0.954, respectively. However, the
correlation coefficients with each form of OP were 0.692, 0.509, 0.399, and 0.503, respectively.
These results indicate that other forms of phosphorus also influence the sediment–water
interface H2O-Pi. It suggests that controlling eutrophication in water may not be sufficient,
and endogenous phosphorus release can become a new source of contamination.

NaHCO3-Pi exhibited highly significant positive correlations (p < 0.01) with Fe/Al-Pi,
Res-P and TP, with correlation coefficients of 0.855, 0.963 and 0.950, respectively. This
highlights the significant potential of NaHCO3-P as a phosphorus in the reservoir.

Furthermore, Fe/Al-Pi had highly significant positive correlations (p < 0.01) with
Res-P and TP, with correlation coefficients of 0.838 and 0.901, respectively. Res-P, as the
most stable form of phosphate in the sediment, is not easily involved in the phosphorus
cycle in water.

These findings highlight the significance of NaHCO3-P as a potential phosphorus
source in karst canyon reservoirs and the role of Fe/Al-Pi in phosphorus dynamics.
NaHCO3-P and Fe/Al-Pi play a crucial role in the overall phosphorus load and cycling
within the karst canyon reservoirs ecosystem.

4.2. Sediment Bioavailability and Risk of Phosphorus Release

Sediment TP contents below 600 mg·kg−1 are considered environmentally safe, while
TP content between 600 mg·kg−1 and 2000 mg·kg−1 reflects moderate pollution, and
TP content higher than 2000 mg·kg−1 indicates severe pollution [49]. In this study, the
maximum sediment TP content observed was 438.04 mg·kg−1, and the mean values of
WF1–3 were lower than 600 mg·kg−1, indicating that the overall sediment TP content in the
Wanfeng Reservoir is at a safe level. However, solely measuring phosphorus contamination
by comparing sediment TP levels and standard values may not accurately assess the risk of
sediment phosphorus release. To better evaluate the status of sediment phosphorus release
risk in the Wanfeng Reservoir, this study used the ratio of biologically active phosphorus
(BAP) to TP as an indicator [11].

BAP represents the amount of bioavailable phosphorus released as dissolved phos-
phate that can be utilized by aquatic organisms, thus serving as an indicator to evaluate
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the potential for sediment phosphorus release [50]. The H2O-Pi and NaHCO3-Pi forms of
phosphorus are easily released into the water, while Fe/Al-Pi is susceptible to migration
and transformation under changes in pH and redox potential. Therefore, this study consid-
ers the sum of H2O-P, Fe/Al-P and NaHCO3-P as the potential BAP. The BAP content and
the proportion of BAP in TP were calculated from the measured results as the phosphorus
contamination index of the sediment.

The BAP content in the sediments of the Wanfeng Reservoir ranged from 66.97 to
201.46 mg·kg−1, with an average content of 130.59 mg·kg−1. The phosphorus pollution
index ranged from 55.6% to 59.6%. The spatial distribution of sediment BAP content in the
reservoir area exhibits significant heterogeneity, with the highest pollution index observed
at WF3 (Figure 7). The phosphorus contamination index of surface sediments ranged
from 57.5% to 57.9%, indicating relatively similar contamination levels among the sites.
The spatial distribution pattern is characterized as WF3 > WF1 > WF2, consistent with
the spatial differentiation of TP. The pollution index of WF3 is higher than that of WF1
and WF2 due to its proximity to areas of human activities, which has a more pronounced
impact on the sedimentary environment. Additionally, WF3 is located at the confluence
of Mengli River and Hongran River, where the water level is relatively low and the water
environment is unstable. These conditions can lead to alternating redox reactions in the
sediments, causing the diffusion of inorganic phosphorus and resulting in significantly
higher levels of surface active phosphorus compared to WF1 and WF2.

The research results show that the risk of phosphorus release from sediment in the
Wanfeng Reservoir is high. Sediment phosphorus has a significant impact on the trophic
state of the water, and the release of various phosphorus forms may become a potential
risk for water quality deterioration in the reservoir in the future. On one hand, the areas
surrounding the reservoir are heavily influenced by human activities, resulting in a higher
exogenous contamination load, with phosphorus in the sediment primarily present in
easily degradable forms. Additionally, Wanfeng Reservoir is a typical karst canyon reser-
voir with alkaline water conditions. Under alkaline conditions, the sorption capacity of
oxidizable metals such as Fe/Mn for phosphate is reduced, leading to enhanced phosphate
release [49]. Therefore, future water ecology management in karst canyon reservoirs should
focus on regulating human production activities and reducing the risk of endogenous
phosphorus release.
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5. Conclusions

The overall TP content in the sediments of Wanfeng Reservoir falls within a safe range.
Among the different forms of sediment phosphorus, IP is the predominant form. Within
the IP fraction, Fe/Al-Pi is the primary occurrence form, while OP is primarily present as
H2O-Po. Additionally, NaHCO3-P serves as a significant potential phosphorus source in
reservoirs. Human activities related to production have a substantial on sediment nutrient
levels. Although there is only a slight spatial variation in BAP across the sediment, the risk
of phosphorus release from sediments is high, significantly affecting the nutritional status
of the water bodies. This phosphorus release poses a potential risk to the water quality of
the karst canyon reservoir. To effectively manage water ecology in karst canyon reservoirs,
it is essential to reduce the risk of endogenous phosphorus release. These measures will
help mitigate the potential impacts of phosphorus on water quality in such reservoirs.
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