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Abstract: Industrial heat sources (IHSs) are key contributors to anthropogenic heat, air pollution,
and carbon emissions. Accurately and automatically detecting their production areas (IHSPAs) on
a large scale is vital for environmental monitoring and decision making, yet this is challenged by
the lack of high-resolution thermal data. Sustainable Development Science Satellite 1 (SDGSAT-1)
thermal infrared spectrometer (TIS) data with the highest resolution (30 m) in the civilian field and a
three-band advantage were first introduced to detect IHSPAs. In this study, an IHSPA identification
model using multi-features extracted from SDGSAT-1 TIS and Landsat OLI data and support vector
machine (SVM) was proposed. First, three brightness temperatures and four thermal radiation indices
using SDGSAT-1 TIS and Landsat OLI data were designed to enlarge the temperature difference
between IHSPAs and the background. Then, 10 features combined with three indices from Landsat
OLI images with the same spatial resolution (30 m) and stable data were extracted. Second, an
IHSPA identification model based on SVM and multi-feature extraction was constructed to identify
IHSPAs. Finally, the IHS objects were manually delineated and verified using the identified IHSPAs
and Google Earth images. Some conclusions were obtained from different comparisons in Wuhai,
China: (1) IHSPA identification based on SVM using thermal and optical features can detect IHSPAs
and obtain the best results compared with different features and identification models. (2) The
importance of using thermal features from the SDGSAT-1 TIS to detect IHSPAs was demonstrated
by different importance analysis methods. (3) Our proposed method can detect more IHSs, with
greater spatial coverage and smaller areas, compared with the methods of Ma and Liu. This new way
to detect IHSPAs can obtain higher-spatial-resolution emissions of IHSs on a large scale and help
decision makers target environmental monitoring, management, and decision making in industrial
plant processing.

Keywords: industrial heat source production areas; SDGSAT-1 TIS; multi-feature extraction;
target identification

1. Introduction

Industrial heat source production areas (IHSPAs) specifically refer to areas where
waste heat is released from working industrial plants, such as from the smelting and
rolling of nonferrous metals in oil refineries and exploration fields, cement plants, and
chemical processing plants [1]. Industrial heat sources (IHSs) serve as the primary source
of production for numerous economic sectors, providing essential material and technical
foundations for a country’s total energy consumption [2,3]. Heat emissions from IHSs
are the main source of anthropocentric heat emissions [4], regional air pollution, and
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anthropomorphic carbon emissions [5,6]. In 2022, global carbon dioxide (CO2) emissions
originating from energy combustion and industrial processes experienced a growth of
0.9% and reached a new all-time high of 36.8 gigatons (Gt) according to recent data [7].
Long-term air pollution not only harms human health but also impedes the green and
healthy development of nature. What is more, the detection of IHSPAs can also be used to
observe the production statuses of factories [8,9]. Therefore, it has become fairly important
to detect IHSPAs objectively and accurately to support environmental monitoring and
industrial decision making.

Many studies have examined the industrial waste heat potential from the perspectives
of energy efficiency and policy [10,11]. Some have concentrated on national- or regional-
level heat emissions [12,13] via inventory-based methods, energy balance residuals, the
construction of energy models [14], multi-methods [15], and statistical regression meth-
ods [13,16,17]. Estimations of waste heat that can be recovered, used again, and utilized
by various technologies are one of the key goals of these investigations. However, these
methods are limited to exploring the waste heat generated by manufacturing facilities
and do not extend to the detection and monitoring of IHSs on a large scale. Moreover,
inventory-based methods have difficulty mapping or detecting IHSPAs precisely and objec-
tively from regional to larger scales because of the high subjectivity, time consumption, and
data limits [4,17,18].

Recently, high-resolution optical [19] and thermal remote sensing data have been
widely utilized to detect and monitor changes in IHSs in large-scale areas [20–22].
Chen et al. [19] identified key equipment by using high-resolution optical images obtained
from Worldview and then monitored the illegal and irregular construction of steel firms in
Shijiazhuang. However, it is difficult to detect whether firms are working or not, or even to
estimate their heat emissions. As a result of its sensitivity to information regarding surface
thermal radiation, thermal infrared remote sensing is commonly employed to monitor
changes in surface temperatures [20,22–24] using the VIIRS night-fire product (750 m) in
conjunction with spatial and temporal features to detect global heat sources. To detect IHSs
in small areas by using an adaptive K-means algorithm, VIIRS active fire point data (ACF,
375 m) with a greater spatial resolution were introduced [21]. Later, Ma used VIIRS ACF
data to analyze the spatial distribution of heavy IHSs in India based on K-means clustering
and threshold identification models combined with nighttime lighting data [25]. The results
showed that this detection technique is superior to the “clustering-threshold” technique
in terms of accuracy. Lai extracted heat source objects from 2013 data with an accuracy of
97.30% by using VIIRS ACF data combined with DBSCAN clustering and logistic regres-
sion clustering algorithms [26]. However, such methods can detect only the approximate
locations of IHSs. It is difficult to detect IHSPAs and IHSs lower than 500 K and smaller
than 1 × 105 m2 [27]. Zhou [22] and Zhang [24] used the Landsat 8/9 thermal infrared
sensor (TIRS) to construct thermal anomaly indices, such as the heat island intensity index
and the heat island radiation index, to distinguish much smaller IHSs. However, it is still
challenging to identify IHSPAs precisely.

Sustainable Development Science Satellite 1 (SDGSAT-1) launched on 5 November
2021, and its thermal infrared sensor (TIS) with a 30 m spatial resolution is a significant
addition of data for Earth observation because of its highest spatial resolution in the civilian
field and three-band advantage [28]. It has been widely used for target detection and
monitoring, such as ship detection [29,30], sea surface temperature retrieval, monitoring
near nuclear power plants [31], and arctic sea ice lead monitoring [32]. Therefore, nighttime
SDGSAT-1 TIS data were first introduced to identify IHSPAs and improve the recognition
accuracy and granularity of IHSs. To distinguish IHSPAs from the background, SDGSAT-1
TIS and Landsat 8 OLI data were used to extract muti-features that combine temperature
features and optical features. Then, an IHSPA identification model using the multi-features
extracted from SDGSAT-1 TIS and Landsat OLI data and support vector machine (SVM)
was proposed. First, three brightness temperatures and four thermal radiation indices using
SDGSAT-1 TIS and Landsat OLI data were designed to enlarge the temperature difference
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between the IHSPAs and the background in IHS areas. Then, 10 features combined with
three indices from Landsat OLS images with the same spatial resolution (30 m) and stable
data were extracted. Second, an IHSPA identification model based on SVM and multi-
feature extraction was constructed to identify IHSPAs. Our results showed that our new
model can detect IHSPAs and obtain much smaller IHSs. Finally, the IHS objects were
manually delineated and verified using the identified IHSPAs and Google Earth images.
This new way to detect IHSPAs can obtain higher-spatial-resolution emissions of IHSs on a
large scale and help decision makers target environmental monitoring, management, and
decision making in industrial plant processing.

The study area, data sources, and methods are all described in Section 2. The results of
the identification utilizing various feature combinations and approaches are examined and
discussed in Section 3. The results identified in this paper and the existing IHS data are
compared, the study’s limitations are discussed, and prospects for future work are outlined
in Section 4. Finally, a summary is given in Section 5.

2. Materials and Methods
2.1. Study Area

The study area has a total area of 27,754 km2 and includes the cities of Ordos, Yinchuan,
Wuhai, and other nearby areas (as illustrated in Figure 1). The region’s latitude spans from
37◦54′ N to 39◦35′ N, and its longitude is between 105◦39′ and 108◦04′ E. It is located at the
intersection of the Ningxia Hui Autonomous Region and the Inner Mongolia Autonomous
Region. It is a typical industrial heat source area because of the abundance of coal, ores,
and nonferrous metal resources [33].
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and other nearby areas (marked red masks) in North China. It is a typical industrial heat source area
because of the abundance of coal, ores, and nonferrous metal resources.
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2.2. Data Sources
2.2.1. Sustainable Development Goal Satellite 1 Thermal Infrared Imager Product

SDGSAT-1 was successfully launched as the world’s first space science satellite in
support of the Sustainable Development Goals (SDGs) on 5 November 2021 [28]. The
satellite carries a 30 m resolution TIS, a 10 m resolution multi-spectral imager (MII), and a
10/40 m resolution microlight image (GIU) [34]. It has an imaging width of 300 km and
a temporal resolution of 11 days. The TIS image has 3 thermal infrared bands, namely,
Band 1 (8.0~10.5 µm), Band 2 (10.60~11.19 µm), and Band 3 (10.50~12.51 µm). Three ther-
mal bands provide a substantial advantage over two thermal bands in that the three-channel
split-window technique allows for more precision in land surface temperature retrieval
and environmental monitoring [34]. The TIS, combined with MII and GIU data from
SDGSAT-1, can provide valuable information that can be utilized to depict human activities
and urbanization. The data can be utilized to support both the “Belt and Road Initiative”
and programs promoting sustainable development [35].

SDGSAT-1 flies in a sun-synchronous orbit at a 505 km altitude and an inclination
angle of 97.5◦. It can gather several types of datasets through its synergistic observations
both during the day and at night by operating in the “TIS + MII”, “TIS + GI”, and single-
payload observing modes in orbit. Therefore, TIS images contain data from the day and
night. The daytime surface thermal radiation mainly contains the reflection of shortwave
radiation from the sun and the longwave radiation emitted by the surface object itself, and
it is influenced by the type of surface coverage. The night TIS data were adopted to depict
the thermal radiation emitted from one object. Therefore, cloudless SDGSAT-1 TIS data on
the evening of 15 June 2022 were utilized from http://124.16.184.48:6008/home (accessed
on 27 August 2022).

2.2.2. Landsat-8 OLI Product

Landsat 8 is the eighth satellite in the U.S. Landsat program, launched successfully on
11 February 2013 from Vandenberg, California. It carries the Operational Land Imager (OLI)
with a 30 m resolution and a TIS with 100 m [36]. With a radiometric resolution of 12 bits
and a temporal resolution of 16 days, each Landsat-8 scene covers an extensive area of
185 × 185 km2 [37]. Landsat-8 data can be applied across a range of scientific research fields,
such as agriculture, urban planning, and environmental monitoring, to provide crucial
Earth observation data. Currently, only Collection-2 data are available for distribution.
The Collection-1 product stopped production on 31 December 2022, and the Collection-
2 product started production on 1 January 2022 [38]. Now, only Landsat Collection-2
products will be produced. While Level-2 data can be utilized directly for quantitative
studies, Level-1 data require radiometric calibration for other research purposes, as they
are only geometrically rectified.

Landsat-8 OLI data, with the same spatial resolution as the SDGSAT-1 TIS data and
stable data quality, were used to extract the optical features of IHSPAs. Therefore, Landsat-8
Collection-2 Level-2 data on 16 June 2022 were chosen from the United States Geological
Survey (USGS) website (https://www.usgs.gov, accessed on 26 August 2022) in this study.

2.2.3. Auxiliary Data

For spatial calculation and analysis, the World Geodetic System (WGS) 1984 UTM
Zone 48◦ N coordinate system was used. High-resolution (0.5 m) remote sensing data
acquired from Google Earth were used to validate the reliability of the IHS products. To
verify the validity of our results, Ma’s inventory based on active fire point data [21] and
Liu’s inventory based on night-fire data [3] of IHSs were used. Table 1 displays the details
of the datasets used in this study.

http://124.16.184.48:6008/home
https://www.usgs.gov
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Table 1. The information on the data used in this paper. The CBAS refers to the International Research
Center of Big Data for Sustainable Development Goals.

Dataset Name Producer Period Resolution Website

SDGSAT-1 TIS product CBAS 15 June 2022 30 m http://124.16.184.48:6008 (accessed on
27August 2022)

Landsat-8 OLI product USGS and NASA 16 June 2022 30 m https://www.usgs.gov (accessed on
26 August 2022)

High-resolution optical images DigitalGlobe,
EarthSat, etc. / 0.5 m Google Earth (https://www.google.cn,

(accessed on 22 August 2022))

IHS
datasets

Liu’s datasets Liu’s team 2018 Polygon https://doi.org/10.1016/j.rse.2017.10.019
(accessed on 9 October 2022)

Ma’s datasets Ma’s team 2018 Polygon https://doi.org/10.3390/su10124419
(accessed on 7 September 2022)

Administrative divisions
National Centre for
Basic Geographic

Information
2020 Polygon https://www.webmap.cn (accessed on

18 September 2022)

2.3. Method

To distinguish IHSPAs from the background, SDGSAT-1 TIS data with the highest
resolution (30 m) in the civilian field and a three-band advantage were first introduced
to detect IHSPAs. Then, an IHSPA identification model using SDGSAT-1 TIS and the
combination of multi-feature extraction and SVM was proposed in this study. It mainly
contains four parts: data prepossessing, multi-feature extraction, the IHSPA identification
model based on SVM, and IHSPA identification/validation (as shown in Figure 2).

2.3.1. Data Prepossessing

Radiometric calibration is a critical step in remote sensing data processing that in-
volves converting raw radiation values received by sensors into precise and comparable
measures of the surface reflectance or radiant brightness [39]. This transformation is essen-
tial for ensuring data accuracy and consistency across different acquisitions [40]. Because
the unprocessed SDGSAT-1 TIS data contain only digital numbers (DNs), radiometric
calibration is needed. In this paper, post-launch calibration based on parameters taken
from the data file was used to transform the SDGSAT-1 TIS data. The spectral radiance was
calculated by the following formula:

Li = DNi × GAINi + BIASi (1)

where DNi is the pixel value of the ith band, and i (set in {1,2,3}), as shown in Table 1,
represents the band identification number of the SDGSAT-1 TIS. GAINi and BIASi are the
calibration gain and offset values, respectively. They can be obtained from the correspond-
ing “*.calib.xml” file. In this context, the values of the radiation calibration parameters can
be seen in Table 2. Li is the spectral radiance value.

Table 2. Values of radiation calibration parameters on SDGSAT-1 TIS. The spectral radiance value of
each TIS band can be calculated by the GAIN and BIAS values based on Equation (1).

Band (Band Center (µm)) GAIN BIAS

Band 1 (9.35) 0.003784 0.163435
Band 2 (10.73) 0.003901 0.125908
Band 3 (11.72) 0.005159 0.205793

http://124.16.184.48:6008
https://www.usgs.gov
https://www.google.cn
https://doi.org/10.1016/j.rse.2017.10.019
https://doi.org/10.3390/su10124419
https://www.webmap.cn
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Figure 2. Flow chart of the IHSPA identification model using the SDGSAT-1 TIS and the combination
of multi-feature extraction and SVM. It can be divided into four parts: (1) Radiometric calibration of
SDGSAT-1 TIS and Landsat-8 data was performed in data prepossessing. (2) Four thermal radiation
indices based on three brightness temperatures of SDGSAT-1 TIS data were designed to enlarge the
temperature difference between the IHSPAs and background in IHS areas. Then, 10 multi-features,
which combined thermal features and optical features, were produced and extracted using SDGSAT-1
TIS and Landsat-8 data. (3) An IHSPA identification model based on SVM with a “small sample
advantage” was designed to identify IHSPAs. (4) IHSPAs were detected and validated based on the
detection model constructed in part 3.

Landsat-8 Level-2 products are generated by applying additional corrections to Level-1
products to remove spatially, temporally, and especially variable atmospheric effects. In the
absence of atmospheric scattering or absorption effects, the Level-2 data provide estimates
of the target surface reflectance as determined in situ [41]. To obtain the actual value of
Landsat-8 Collection-2 Level-2 data, the reflectance data need to be multiplied by a scaling
factor of 0.0000275 and added to a constant of −0.2 [42].

2.3.2. Multi-Feature Extraction

Temperature features that consider heat emissions are the most evident characteristics
for detecting IHSPAs. However, it is difficult to clearly distinguish IHSPAs from non-IHSs
based on only temperature features, especially on water and road land covers. Optical
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features, including color, texture, and spectral features that use the visible and near-infrared
spectral range properties of an object or region, can distinguish industrial plants from other
land covers [43]. Therefore, thermal features and optical features (as shown in Table 3)
were combined to identify IHSPAs precisely.

Table 3. The description of multi-features based on thermal features and optical features. Ten features
were obtained by our method from SDGSAT-1 TIS and Landsat-8 OLI data. They include 3 brightness
temperature features T1, T2, and T3), 4 thermal radiation index features (RI1, RI2, RI3 and RI4), and
3 optical features (NDVI, NDBI, and NDWI).

Number Feature Type Name Notes Original data

1

Thermal features

T1 Satellite brightness temperature of Band 1 SDGSAT-1 TIS data
2 T2 Satellite brightness temperature of Band 2 SDGSAT-1 TIS data
3 T3 Satellite brightness temperature of Band 3 SDGSAT-1 TIS data

4 RI1
Thermal radiation indices

RI1 = T2−T1
T2+T1

SDGSAT-1 TIS data

5 RI2
Thermal radiation indices

RI2 = T3−T1
T3+T1

SDGSAT-1 TIS data

6 RI3
Thermal radiation indices

RI3 = T2−T1
ρNIR

SDGSAT-1 TIS data and
Landsat-8 OLI data

7 RI4
Thermal radiation indices

RI4 = T3−T1
ρNIR

SDGSAT-1 TIS data and
Landsat-8 OLI data

8
Optical features

NDVI
Normalized difference vegetation index

NDVI = ρNIR−ρR
ρNIR+ρR

Landsat-8 OLI data

9 NDBI Normalized difference built-up index
NDBI = ρSWIR – ρNIR

ρSWIR+ρNIR

Landsat-8 OLI data

10 NDWI Normalized difference water index
NDWI = ρG– ρNIR

ρG+ ρNIR

Landsat-8 OLI data

Notes: ρNIR is the reflection value in the NIR band, ρR is the reflection value in the red band, ρSWIR is the reflection
value in the mid-wave IR, and ρG is the reflection value in the green band.

(1) Thermal features

Thermal features include satellite brightness temperatures and thermal radiation
indices of the SDGSAT-1 TIS. Satellite brightness temperatures contain three radiation
brightness temperatures of each band of the SDGSAT-1 TIS. They can be calculated by
Planck’s Law as shown in Formula (2):

Ti =
hc

λi × k × ln
(

1 + 2hc2

Li×u5

) (2)

where Ti is the satellite brightness temperature of Band i of the SDGSAT-1 TIS in Kelvin. k
is the Boltzmann’s constant (1.38 × 10−23 J/S). h is the Planck’s constant (6.626 × 10−34 J·S).
c is the velocity constant of light in a vacuum (2.998 × 108 m/s). λi represents the central
wavelength of the emitted radiation band (i) (µm).

To describe the temperature difference between IHSPAs and the background, four thermal
radiation indices that use brightness temperature values of two different bands of the
SDGSAT-1 TIS were designed. They can be calculated by the following formulas:

RI1 =
T2 − T1

T2 + T1
(3)

RI2 =
T3 − T1

T3 + T1
(4)

RI3 =
T2 − T1

ρNIR
(5)
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RI4 =
T3 − T1

ρNIR
(6)

where T1, T2, and T3 are the satellite brightness temperatures of SDGSAT-1 TIS Band 1,
Band 2, and Band 3. ρNIR represents the reflectance value on the near-infrared band of the
Landsat-8 OIL data.

(2) Optical features

Optical features are extracted from optical remote sensing images by sensors that
detect electromagnetic radiation in the visible, near-infrared, and sometimes shortwave
infrared regions of the electromagnetic spectrum [44]. They provide valuable information
about the Earth’s surface, especially land cover information [45]. They are essential in
various remote sensing applications, including land cover classification, vegetation health
monitoring, and the detection of land use and land cover changes [46–48]. The normalized
difference vegetation index (NDVI) [49], building index (NDBI) [18], and water index
(NDWI) [50] are three important and widely applied optical feature indices used to analyze
and monitor different aspects of the Earth’s surface. Therefore, the above three indices
were introduced to distinguish IHSPAs from other land covers in this study.

Considering the absence of the medium infrared band of the SDGSAT-1-MII data,
which is essential to extract the NDBI, Landsat-8 OLI data with stable data quality and the
same spatial resolution as the SDGSAT-1 TIS data were used to extract the NDVI, NDBI,
and NDWI. These optical indices were calculated from Landsat-8 OLI data by using the
corresponding spectral bands [51].

The data preprocessing and multi-feature extraction processes in this study, including
calculations of the radiance, brightness temperature, thermal radiation indices, and optical
indices, were implemented using code written in Python.

2.3.3. Industrial Heat Source Production Area Identification Model Based on SVM

Due to SVM’s “small sample advantage” [52], it was introduced to construct an IHSPA
identification model. First, sample points (IHSPA samples and non-IHSPA samples) based
on Google Earth images and SDGSAT-1 satellite brightness temperature data were con-
structed. The IHSPA samples were labeled as positive, indicating areas within factory
boundaries exhibiting significantly higher thermal radiation anomalies. Non-IHSPA sam-
ples, marked as negative, refer to locations that might resemble factory structures but do
not show elevated thermal radiation anomalies or areas with high thermal radiation and
that, upon inspection via Google Earth imagery, are not factories, potentially misleading
the model identification. Then, the multi-features described in Section 2.3.2 of the sample
points were extracted.

Second, an IHSPA identification model based on SVM was constructed using sample
data. This stage was divided into the following steps. Initially, samples characterized by
multi-features were input, followed by their random division into training and testing
samples at a ratio of 8:2, with both sets maintained strictly independent from one another.
Test sample points were used to assess the reliability and quality of the IHSPA identification
model. Subsequently, the built-in SVM model on MATLAB was employed for training.
The adjustment of the RBF kernel’s cost and gamma parameters was necessary when
utilizing SVM. The GridSearch method, widely applied and suitable for optimizing multiple
parameters simultaneously, was utilized in this study. The tuning of the cost and gamma
was facilitated by setting step sizes, enabling the systematic optimization of the parameters
within specified ranges. The values of the cost were 2costmin , 2costmin+cstep , . . ., 2costmax , and
the values of the gamma were 2gammamin , 2costmin+gstep , . . ., 2gammamax . In this study, cstep = 1
and gstep = 1 were set as the step values, with costmin and gammamin established at −3,
and costmax and gammamax established at 8. The approach ensured the identification of
the optimal parameters. Finally, the best parameters and training samples were utilized to
train an SVM model for the identification of IHSPAs. Then, IHSPAs in the study area were
identified based on the IHSPA identification model. Muti-feature data within the study
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area were inputted, and the model output a binary raster map, with 0 indicating an IHSPA
and 1 denoting a non-IHSPA.

Finally, the IHS objects were manually delineated and verified using the identified
IHSPAs and Google Earth images. Pixels with three consecutive values of 1 were consid-
ered as an IHS object, and Google imagery was overlaid as a base map to construct the
boundaries of the IHS. The constructed IHS objects were then manually verified to confirm
their authenticity as real IHSs.

3. Results
3.1. Comparative Performance of Different Features and Identification Models on IHSPA Detection

In this study, we tested different feature combinations for identifying IHSPAs to
demonstrate the effectiveness of combining thermal and optical features. Five tests were
conducted using Landsat-8 optical features (LOFs), Landsat-8 temperature features (LTFs),
SDGSAT-1 thermal features (S-1TIFs), Landsat-8 optical and temperature features (LOFs
& TFs), and Landsat-8 optical and SDGSAT-1 thermal infrared features (LOFs & S-1TIFs)
within the unified framework. The Landsat-8 optical features consisted of the NDVI, NDWI,
and NDBI. Landsat-8 temperature features were derived from the temperature of Landsat-8
Band 10. The specific combination of features is shown in Table 4.

Table 4. Different combination methods of features. Five combination models were created using
SDGSAT-1 TIS data and Landsat-8 OLI data to demonstrate the effectiveness of our multi-features.
LOFs (Landsat-8 optical features), LTFs (Landsat-8 temperature features), and S-1TIFs (SDGSAT-1
thermal features) represent the use of only one type of feature (optical features or thermal features)
and one remote sensing dataset (SDGSAT-1 TIS data or Landsat-8 OLI data). LOF & TF (Landsat-8
optical and temperature features) combined optical and temperature features and used Landsat-8
OLI data. LOFs & S-1TIFs (Landsat-8 optical features and SDGSAT-1 thermal features) are the
multi-features produced in this paper.

Abbreviation Full Name Number of Features Features Feature Source Data

LOFs Landsat-8
optical features 3 NDVI, NDBI, NDWI Landsat-8 OLI data

LTFs Landsat-8
temperature features 1 TLandsat-8 Landsat-8 OLI data

S-1TIFs SDGSAT-1
thermal features 7 T1, T2, T3, RI1, RI2, RI3, RI4 SDGSAT-1 TIS data

LOFs & TFs Landsat-8 optical and
temperature features 4 NDVI, NDBI, NDWI, TLandsat-8 Landsat-8 OLI data

LOFs & S-1TIFs
Landsat-8 optical

features and SDGSAT-1
thermal features

10 NDVI, NDBI, NDWI, T1, T2,
T3, RI1, RI2, RI3, RI4

SDGSAT-1 TIS data and
Landsat-8 OLI data

To verify the effectiveness of identifying IHSPAs based on SVM, three comparison
machine learning classifiers, decision tree (DT) [53], k-nearest neighbor (KNN) [54], and
naive Bayes (NB) [55], were selected in this study. These accuracies were obtained for
each classifier under the conditions of the corresponding attributes of the samples, optimal
classifier parameters, and ten times tenfold cross-validation.

Table 5 and Figure 3 show the accuracy and visual results obtained from different
features and identification models for IHSPA detection. According to the results in Table 5,
LOFs & S-1TIFs had the highest identification accuracy compared to the other features.
SDGSAT-1 thermal infrared features (S-1TIFs) also achieved high accuracy compared with
the LOFs, LOFs & TFs, and LTFs. LOFs & S-1TIFs and S-1TIFs can distinguish IHSPAs from
the background much more clearly (as shown in Figure 3). Additionally, four classifiers
were assessed, and the IHSPA identification based on SVM produced the most accurate



Appl. Sci. 2024, 14, 2450 10 of 16

results in all four classifiers. In summary, the IHSPA identification based on SVM using
thermal and optical features from SDGSAT-1 thermal infrared data and Landsat-8 data
obtained the best IHSPA results.

Table 5. Comparison of different features and identification models for IHSPA detection: accu-
racy. Five feature combination models and four detection methods were compared to verify the
effectiveness of identifying IHSPAs based on multi-features and SVM in this paper.

Experiment

Classifier
DT KNN NB SVM

LOFs 86.94% 89.63% 75.79% 90.05%
LTFs 81.05% 81.99% 81.08% 83.51%

S-1TIFs 89.83% 89.42% 89.29% 91.24%
LOFs & TFs 89.07% 81.71% 77.35% 90.66%

LOFs & S-1TIFs 90.87% 90.41% 91.74% 92.39%
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Figure 3. Visualization of identified IHSPAs (marked red masks) using different features and classi-
fiers. IHSPAs combined with S-1TIFs or LOFs & S-1TIFs and DT or NB and SVM can be distinguished
more accurately. Some buildings in residential areas based on S-1TIFs or LOFs & S-1TIFs and DT
areas were easily misidentified as IHSPAs. Some sandy shores based on S-1TIFs or LOFs & S-1TIFs
and NB areas were also easily misidentified. Only IHSPA detection results combined with LOFs &
S-1TIFs and SVM obtained the best results.



Appl. Sci. 2024, 14, 2450 11 of 16

3.2. Importance Analysis of Different Features to Identify IHSPAs

To estimate the relative importance weights of different features in identifying IHSPAs,
the built-in functions of the SVM and neighborhood component analysis (NCA) [56] were
used. First, the importance weights of the feature factors of the radial kernel function (RBF)
SVM model were ranked using SVM built-in functions. The weights were listed in order
from highest to lowest: NDBI, T1, NDWI, T3, NDVI, T2, RI2, RI3 , RI4, and RI1.

NCA is supervised learning based on stochastic KNN, which uses the leave-one-out
method to measure the similarity of nearest neighbors with the help of metric learning and
cross-validation. It can effectively use objective optimization to reduce the conditionality
of the input data and can be used to calculate the feature weights. The importance results
based on NCA are listed in Table 6. They show that T1 had the largest weight, followed by
the NDBI, RI2, RI3, NDWI and T2. The importance of thermal features in model training
was demonstrated by both evaluation methodologies.

Table 6. Feature importance weights based on NCA. NCA methods were used to evaluate the
importance weights of 10 different features to identify IHSPAs. The importance results were ranked
in descending order of weight values. Higher weight values indicate greater importance.

Feature T1 NDBI RI2 RI3 NDWI T2 NDVI T3 RI4 RI1

Weight 2.22 2.09 2.00 1.61 1.51 1.16 0.89 0.27 0.43 0.14

4. Discussion
4.1. Comparison with Existing IHS Data

To generate industrial heat source objects from IHSPAs, a manual industrial heat
source object identification method using high-resolution remote sensing images was
adopted. Then, SDGSAT-1 TIS and the combination of multi-feature extraction and SVM
were used to identify 371 IHS objects from the IHSPA results. The 339 objects were verified
as real IHSs via multiple manual validations that used Google Earth images (0.5 m). The
identification accuracy was 91.37% (339/371).

To compare and analyze the effectiveness of our new model, our results were compared
with Ma’s inventory based on active fire point data [21] and Liu’s inventory based on night
fires [3]. A total of 66 and 44 IHSs were obtained from Ma (2018) and Liu (2018), respectively.
In addition, 65 (98.48%) and 43 (97.73%) objects, respectively, were verified as real IHSs via
multiple manual validations. Although the recognition accuracy of our results was lower
than those of the Ma and Liu inventories, our results identified many more industrial heat
source objects. Our method is the only method that can detect IHSPAs precisely.

The average area, minimum area, maximum area, and total area of industrial heat
source objects were statistically analyzed from our results and Ma’s and Liu’s inventories.
The final statistical results are shown in Table 7. Figure 4 shows the spatial distributions
of our results and those of Ma’s and Liu’s inventories. From Table 7 and Figure 4, some
conclusions can be obtained:

(1) The number of our results was 5.22 times greater than the number of Ma’s inventory
and 7.88 times greater than that of Liu’s inventory. This suggests that our method,
due to improvements in the thermal infrared data resolution and sensitivity to low-
temperature objects, may identify a greater number of factories with smaller scales
and lower levels of thermal radiation;

(2) The total area of IHSs identified by our study was 666.89 km2, which was 332.08% and
286.99% more than the areas identified by Ma and Liu (200.82 km2/232.37 km2),
respectively. At the same time, the minimum identification area of our results was
0.03 km2, rather than the 0.16 km2 and 0.26 km2 of Ma’s and Liu’s inventories, respec-
tively. This means that the IHSs based on our method were granular with greater
precision. It improved the phenomenon of “one industrial heat source object covering
multiple factories and mines”;
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(3) The spatial coverages of our results for Ma’s and Liu’s inventories were 93.85% (61/65)
and 79.55% (35/44), respectively, which were higher than the spatial coverages of
Ma’s and Liu’s inventories for our results (74.67% and 62.14%, respectively).

Table 7. Comparison of our results with Ma’s and Liu’s inventories. A total of 371 IHSs were
identified from the IHSPA results by a manual identification method using high-resolution remote
sensing images. A total of 371 IHS objects were compared with Ma’s inventory based on active fire
point data [21] and Liu’s inventory based on night fires [3]. The accuracy and some area information
of the IHSs were calculated.

True False Total Number Accuracy Average Area
(km2)

Minimum Area
(km2)

Maximum Area
(km2)

Total Area
(km2)

Our result 339 32 371 91.37% 1.80 0.03 68.95 666.89
Ma’s data 65 1 66 98.48% 3.04 0.16 52.52 200.82
Liu’s data 43 1 44 97.73% 5.28 0.26 28.37 232.37
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Figure 4. Comparison of our results with IHSs detected by Liu et al. [3] and Ma et al. [21]. The blue,
green, and red polygon-labeled areas represent IHS objects detected by Ma, Liu, and our results,
respectively. There are many more of our IHS objects (red polygons) and they cover a broader spatial
layout, while the IHS objects in the other two datasets have high spatial overlap.
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4.2. Limitations and Prospects for Future Work

In this research, SDGSAT-1 TIS data with the highest resolution (30 m) in the civilian
field and a three-band advantage were first introduced to detect IHSPAs. Our results on the
study area estimated that the proposed method can improve the granularity and accuracy
of IHS detection. To ensure the consistency of IHSPA products, new features based on
land surface temperature (LST) data of the SDGSAT-1 TIS will be constructed to detect
IHSPAs easily and depict the difference between different IHSs clearly. Additionally, a new
automatically constructed IHS model using IHSPAs will be built and used in this study, as
opposed to the manual method.

It is worth noting that SDGSAT-1 TIS data, especially nighttime TIS data, are inevitably
impacted by cloud contamination. Future studies should also focus on removing clouds
from nighttime SDGSAT-1 TIS data or on finding more cloudless SDGSAT-1 TIS data
to detect IHSPAs on a large scale in different seasons with complex topography using
SDGSAT-1 TIS and Landsat-8 OLI data. We also intend to research the connection between
IHSPAs or IHSs and economic development and to keep working to determine more about
the relationship between climate change and carbon neutrality. These are also important
issues in the Paris Agreement [57,58].

5. Conclusions

Large-scale heat and pollution emissions from IHSs can have serious impacts on en-
vironmental quality and human health and cause climate change and natural disasters.
However, the existing methods are unable to accurately identify IHSPAs, and the granular-
ity of the IHS identification is low. Therefore, SDGSAT-1 TIS data, which have the highest
resolution (30 m) in the civilian field and a three-band advantage, were first introduced to
detect IHSPAs and improve the granularity and accuracy of IHS detection. Then, an IHSPA
identification model using SDGSAT-1 (TIS) and the combination of multi-feature extraction
and SVM was proposed in this research. Some conclusions were obtained from different
comparisons in Wuhai, China:

(1) IHSPA identification based on SVM using thermal and optical features from SDGSAT-1
TIS and Landsat-8 data can detect IHSPAs and obtain the best IHSPA results compared
with different features and identification models;

(2) The importance of thermal features in model training was demonstrated by dif-
ferent importance analysis methods. T1 from the SDGSAT-1 TIS had the largest
importance weight;

(3) Our proposed method can detect more IHSs with greater spatial coverage and smaller
areas than the methods of Ma [21] and Liu [3]. The number of IHSs from our results
was 5.22 times greater than the number from Ma’s inventory and 7.88 times greater
than the number from Liu’s inventory. At the same time, the minimum identification
area of our results was 0.03 km2, rather than the 0.16 km2 and 0.26 km2 of Ma’s and
Liu’s inventories, respectively.

The results suggest that our method, due to improvements in the thermal infrared
data resolution and sensitivity to low-temperature objects, may identify a greater number
of factories with smaller scales and lower levels of thermal radiation. And industrial
plants and mines can be monitored and evaluated more precisely by utilizing our IHSPA
identification model employing SDGSAT-1 TIS data. This method could be useful to
industry regulations and policymakers.
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