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Abstract: Based on cluster system theory and the Markov process, a performance prediction method
utilizing time-dependent subsystem transfers between family systems is proposed in this paper. The
family system is divided via the mean clustering method, with the key performance parameters of
subsystems utilized as identification parameters. According to the transition quantity of subsystems
in the family systems, the transition probability of subsystems between family systems is described
via the Markov process. The transition matrix between subsystems is established by dividing multiple
intervals of key performance states. The inter-family transfer matrix and the current family system
label of the subsystem are updated in real time. Thus, the transition probability of any subsystem
and the total number of subsystems to be transferred to the failure-state family system can be
judged, and the remaining life can be further determined. Using the real-world monitoring dataset
from the FAST Telescope, the effectiveness and accuracy of the method are verified. Due to the
representativeness of family systems to subsystems and the powerful transfer-describing ability of
Markov processes, the proposed method shows superiority in online prediction and performance
evaluation compared to the fault data-based method, such as improvements in rapidity and accuracy.
In addition, the proposed method can be used to evaluate overall reliability without reference samples,
thus making the prediction method more practical in complex, large systems with small or even zero
sample conditions.

Keywords: cluster system; performance prediction; time-dependent subsystem transfers; family
system; complex system engineering

1. Introduction

Due to economic and technological advancements, researchers have been engaged in
designing and constructing increasingly complex systems. With the growing application
and heightened demands for safety performance and lifespan in complex system engineer-
ing design, methods for predicting the lifespan and analyzing the reliability of complex
systems have emerged as a prominent research direction. Among these approaches, proba-
bility statistics-based reliability analysis and optimization methods have reached a relatively
mature stage and are extensively employed. However, when a complex system comprises
newly designed components without available failure data to establish the probability
distribution of subsystems, conducting reliability engineering becomes challenging.

In the analysis of system reliability, fault tree analysis is a widely utilized method based
on probability distribution. Due to its well-established theoretical foundation, exceptional
flexibility, intuitive graphical representation, high precision, and programmability, fault tree
analysis has found extensive applications across various domains. This approach employs
a fault tree diagram to systematically identify and analyze the causes of system failures in
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a top-down manner [1]. However, when dealing with complex systems, constructing fault
trees becomes exceedingly challenging and model consistency tends to be compromised.
Particularly for systems exhibiting multiple states, signal feedback, and temporal functional
changes, conducting fault tree analysis becomes even more formidable.

The GO method, developed concurrently with the fault tree analysis (FTA) method,
is a more suitable approach for analyzing the reliability of complex systems compared to
FTA. Jin et al. utilized the GO method to quantitatively analyze the reliability of electro-
hydrostatic actuators and obtained consistent results when compared with FTA, thus vali-
dating its feasibility and accuracy in EHA system reliability analysis [2]. Expanding upon
the GO method, Matsuoka and Kobayashi developed the GO-FLOW method to address
challenges in constructing trees and reducing computational complexity. This approach
is particularly applicable to complex systems characterized by temporal dependencies,
phased tasks, and time-varying states [3].

When predicting the lifespan of a system, lifespan testing plays a crucial role as a
reliability experiment and is commonly employed for testing, analyzing, and evaluating
product reliability. However, due to the high costs and lengthy durations associated with
conducting lifespan tests under normal conditions, in light of the rapid advancements in
component technology, accelerated lifespan testing has become widely adopted for the ac-
curate and efficient evaluation of product reliability [4]. In their study on the constant stress
accelerated lifespan testing of hydraulic equipment, Ma et al. addressed accuracy issues
arising from thermal shocks resulting from stress-loading methods and single objective
parameters. They proposed a multi-objective parameter-based constant stress acceler-
ated lifespan test for hydraulic equipment to enhance the precision of hydraulic product
reliability analysis [5].

Although the constant stress accelerated life test method is theoretically mature,
highly accurate, and simple, it faces challenges in providing precise life assessment results
for complex mechanical components due to their operating conditions’ complexity and
enduring variable stress loads’ characteristics. To overcome this limitation, Wang et al.
developed a load spectrum design method using a Markov information matrix for the
accelerated life testing of hydraulic pumps used in aerospace onboard electro-hydraulic
equipment [6]. This approach achieves good acceleration effects without altering the failure
mechanism, while addressing issues such as component testing difficulties under complex
operating conditions and alternating stresses.

The accurate prediction of equipment health is essential for ensuring optimal system
functionality, minimizing maintenance costs, and enhancing equipment performance. There
are two primary approaches to equipment health prediction, as follows: those based on
physical failure models and those based on data-driven methods [7]. Liao et al. employed
statistical pattern recognition techniques to assess equipment performance and utilized an
autoregressive moving average model for predicting device health status [8]. Zhao et al.
applied LIB-SVM to effectively fit data with limited samples and non-linear conditions,
enabling fault prediction for electronic devices [9].

Based on the theory of conditional probability, Yoon et al. proposed a method for
calculating elasticity that incorporates false alarms and applied it to enhance the accuracy
of health assessment for electro-hydrostatic actuators (EHAs) [10]. They probabilistically
formulated a novel measure of elasticity that considers both the false alarm rate and relia-
bility [11]. In comparison with conventional measures of elasticity, this newly developed
measure enables a more rigorous and accurate estimation of system elasticity [12,13].

The existing theoretical research on the thermal characteristics of electro-hydrostatic
actuators (EHAs) primarily relies on a one-dimensional thermodynamic model established
using the nodal method, which overlooks the comprehensive influence of motor heat gen-
eration on the overall EHA’s characteristics [14,15]. To address this limitation, Wang et al.
developed a simplified thermal characteristic analysis model for electro-hydraulic actua-
tors [16], offering a solution approach for relevant simulation parameters and a theoretical
framework to solve the overall temperature distribution. This model comprehensively con-
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siders the impact of motors on an EHA’s thermal characteristics and enhances its structure
and performance through optimization. A structural optimization scheme was proposed
based on comparisons between simulations and experiments [17,18].

Most of the aforementioned prediction methods are based on conventional machine
learning techniques. However, deep learning, being a data-driven algorithm, combines
low-level features to form more abstract high-level features that can effectively capture the
distributed characteristics of data. HEIMES employs recursive neural network methods for
estimating the remaining useful life of systems [19]. Zhang et al. utilized autoencoders to
monitor signal features and construct a deep neural network model for the time-series pre-
diction of equipment health indicators [20]. Vedova et al. employed a combination neural
network approach to identify the wear state of aircraft electro-hydrostatic actuator nozzle
flapper valves [21,22] in order to achieve health status prediction [23], which represents
an innovative application based on model-based fault detection and identification (FDI)
methods [24], by utilizing artificial neural networks for identifying the actual wear states of
actuators [25,26].

Currently, the majority of data-driven algorithms for life prediction solely focus on
modeling system degradation data. However, with technological advancements, it has
become feasible to acquire both degradation data and a substantial amount of monitoring
data regarding the operating environment of systems in engineering practice. With ample
support from such data, Yu et al. have conducted research on the application and devel-
opment of covariate [27] data derived from system operating environments in reliability
assessment models [28]. They have identified limitations in current research methods and
proposed corresponding solutions.

The aforementioned research methodology requires a substantial amount of data
support. During the data processing phase, it is typically assumed that the multiple datasets
are independent from one another. However, in practical applications, datasets often
exhibit certain correlations, which pose challenges for comprehensive modeling using the
aforementioned research methods and result in biased prediction outcomes. To address this
issue, Sun et al. employed high-dimensional space mapping for Gaussian mixture clustering
to enhance data resolution accuracy when dealing with datasets characterized by significant
feature differences, strong nonlinearity, and large volumes of data [29]. Experimental results
demonstrate that, compared to the K-means algorithm [30] and GMN algorithm [31],
high-dimensional space clustering algorithms can effectively resolve reduced clustering
accuracy caused by multi-class data overlap in the original low-dimensional space while
simultaneously improving clustering accuracy and reducing false positive rates.

For newly constructed or recently implemented complex systems lacking sufficient
fault probability and cumulative experience, the aforementioned methods face challenges in
providing effective solutions. To address this issue, Feng et al. proposed the establishment
of a continuous-time Markov model for equipment and employed the uniform accelera-
tion technique to solve reliability parameters, thereby achieving a reliable prediction for
large-scale traction power supply equipment. This approach successfully overcomes the
limitations of traditional matrix geometric methods when dealing with problems involving
large quantities, enabling efficient and accurate reliability prediction for similar large-scale
traction power supply equipment [32]. Hao et al., on the other hand, utilized the spectral
SEESCD [33] analysis method to extract feature vectors from test data and combined it with
the continuous hidden Markov model (CHMM) [34] classification method to achieve the
precise prediction of rolling bearing faults. Their work presents a novel approach towards
rolling bearing life diagnosis [35].

However, these studies lack feature recognition and the clustering of data within the
system and they necessitate a substantial amount of high-quality sample data to support
model construction and prediction. Consequently, in the absence of reference samples, it
becomes unfeasible to accomplish model building and prediction, thereby impacting the
accuracy of predictions. Therefore, this paper proposes a method for predicting hydraulic
actuator group system performance, based on time-varying inter-family transitions using
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monitoring data from a specific observation period in FAST. Expanding upon conventional
Markov process research, this approach forecasts changes in performance trends by em-
ploying family system division and transition matrix calculations [36]. The comparison
between predicted results and actual data demonstrates a significant level of concordance
for the proposed method, providing a foundation for the health management of hydraulic
actuator group systems, as well as for similar systems.

The structure of the paper is summarized as follows: In Section 2, the characteristics
of complex systems and the applicability of traditional performance prediction methods
are discussed. Section 3 introduces the concept of cluster and family subsystems, along
with a method for establishing family systems. In Section 4, a transfer matrix between
subsystems in the family system is established using Markov processes in the time domain.
Section 5 presents the transfer matrix and performance prediction method for cluster
systems. To validate the proposed method, an engineering example from the FAST telescope
is calculated in Section 6. Finally, the conclusion section, Section 7, summarizes the process
of performance prediction for cluster systems based on time-varying inter-family transitions
and verifies the accuracy of the predictions. It also suggests that further research can be
conducted on inter-family transition prediction methods based on the proposed method in
this article, providing support for operating and maintaining complex systems.

2. Problem Statement
2.1. Complex Systems Engineering

In practical applications, as one of the main research objects in reliability analysis
engineering, the research and development of complex systems science also significantly
affects the effectiveness and application of reliability analysis. The complexity of complex
systems is mainly caused by factors such as intricate environments, human factors, and
subsystem relationships. Therefore, describing the functioning of complex systems through
establishing mathematical models becomes challenging, especially when dealing with
various unknown parameters.

Research conducted by scholars in the field of complex systems has revealed that
these systems are typically composed of multiple interconnected and interdependent units,
each possessing unique properties or characteristics not found in individual components.
In essence, comprehending the constituent parts of a complex system does not equate to
understanding the overall system, as it is more than just an amalgamation of its elements.
The continuous evolution and enhancement of such systems is driven by their mutual
interactions with various subsystems and their surrounding environment, rather than being
determined solely by any single or pair of influencing factors. These interactions exert a
high level of sensitivity on the system, whereby even minor changes between elements can
result in entirely different outcomes [37].

Therefore, the incorporation of complex systems science is crucial for comprehensively
assessing research progress in reliability engineering. Shalizi’s work distinguishes three
key components based on complex systems science techniques, as follows: data analysis
(including statistical analysis and data mining), model building and understanding, and
measuring complexity itself [38]. Philippe Weber and Lionel Jouffe proposed a formal-
ization method utilizing dynamic object-oriented Bayesian networks to evaluate system
reliability [39]. Additionally, Yuan X et al. combined relationships across time fragments to
classify network segments with similar structures and parameters, thereby constructing a
dynamic object-oriented Bayesian network [40].

Based on current research, the field of complex system engineering encounters several
challenges, as follows:

(1) The design and application of such complex systems primarily remain in the conceptual
and developmental stages, lacking sufficient experiential knowledge to draw upon,
consequently leading to numerous defects during initial testing and production phases.

(2) In-depth investigation is required for data processing and data mining in system operation,
as complex systems impose stringent requirements without readily available samples.
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(3) Complex systems exhibit uncertain states with intricate and often variable oper-
ating environments, rendering disturbances influenced by environmental changes
highly unpredictable.

Currently, the advancement of information technology has led to the integration of
numerous sensors in new complex systems, thereby establishing a robust data foundation
for performance prediction.

2.2. Traditional Performance Prediction

Common traditional methods for reliability analysis include statistical approaches
such as fault trees, Bayesian networks [41,42], evidence theory, accelerated degradation rate
models [43], and the utilization of Weibull and exponential distributions [44]. These method-
ologies have been extensively employed in assessing the reliability of diverse projects.

Fang et al. proposed an enhanced methodology for reliability analysis based on
Bayesian networks with fuzzy multi-states, which is employed to evaluate the reliability
and growth of complex redundant systems [45]. A Bayesian network, represented as a
directed acyclic graph, serves as a graphical model that utilizes probability reasoning. Each
node variable represents an information element, while the directed edges between nodes
depict causal relationships among these elements. Conditional probability is utilized to
quantify the degree of influence between each information element. Nodes and directed
edges constitute the fundamental framework of a Bayesian network [46].

The performance of evidence theory in reliability analysis was summarized by Helton
and Oberkampf using a simple algebraic function [47]. Alyanak et al. developed a novel
program for projecting the reliability gradient through the plausibility measure and belief
measure in evidence theory, without necessitating any additional information [48].

Elmahdy and Aboutahoun introduced an expectation-maximization algorithm for
modeling the failure data of systems with different failure models using limited Weibull mix-
ture distributions, even in cases where the probability function is not explicitly known [49].
The mixed Weibull distribution model comprises weighted combinations of single Weibull
distributions, offering a strong applicability and providing accurate fitting effects for vari-
ous complex probability density curves. Different combinations of model parameters can
capture diverse features of the fitted curve shape [50]. The Weibull distribution is widely
employed as a life distribution model in reliability engineering, effectively describing
changes throughout the entire lifecycle of mechanical and electronic devices [51].

Chen et al. conducted an analysis on the impact mechanism of coating thickness on
the storage reliability of electrical connector contacts and investigated the storage stress as
well as the corresponding contact failure mechanism under a specific storage profile. They
established a degradation model for electrical connector contact performance, considering
coating thickness under temperature stress, based on the Wiener process, which effectively
quantifies the degree of influence that the coating thickness has on contact performance
degradation [52]. In their study, Liao and Elsayed developed a novel extended accelerated
degradation testing (ADT) model that incorporates stress to prevent significant prediction
errors in contrast to constant-stress normal experiments [53].

However, these methods are predominantly reliant on statistical data obtained from
samples, necessitating extensive long-term reliability testing and the accumulation of a
substantial amount of fault data. This can be challenging to achieve for complex systems.

3. Cluster, Family, and Subsystems
3.1. Basic Concepts of Each Level System

Based on the research and analysis of complex systems in Section 2, it is evident
that the establishment of mathematical models and parameterization for complex systems
poses significant challenges. Complex systems exhibit inherent uncertainty in their states,
operate within intricate and dynamic environments, and are susceptible to unpredictable
environmental disturbances. Traditional performance prediction methods rely on statistical
data with limited samples and necessitate the accumulation of a substantial amount of
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fault data. To address these concerns, this study introduces the concepts of cluster systems,
family systems, and subsystems.

A cluster system is defined as a system composed of three or more identical or similar
subsystems that perform the same task, represented by the symbol C.

If the number of subsystems is n, then

C = {s1, s2, · · ·, si, . . . , sn} (1)

where n ∈ Z, n ≥ 3, and i ∈ [1, n].
Applying cluster system theory to complex systems can simplify them into several

simple subsystems, enabling the analysis of the working principle, composition structure,
and performance trends. In a cluster system, subsystems do not necessarily have to be
identical; as long as they are similar in composition, structure, principle, or function, they
can be considered alike. This facilitates the simplification of complex systems.

In a cluster system, the response of each subsystem to factors such as load and envi-
ronment exhibits a certain distribution pattern. To address the issue of insufficient reference
samples in reliability engineering research on complex systems, subsystems with similar
performance or state results can be classified into the same family of classes and used as
reference samples. Aggregating similar subsystems is highly significant for identifying
influencing factors and mechanisms in cluster system analysis and research.

A family system refers to the subsystems within a cluster system that share the closest
key performance parameters. These subsystems can be grouped together based on their
common characteristics, thus forming a distinct population. As subsystems within a family
system demonstrate similar performance or state outcomes within the same cluster of
systems, each subsystem can serve as a reference sample for other subsystems within the
same family system. Therefore, the concept of family systems holds great significance in
analyzing and researching cluster systems. The family system is represented by the symbol
F, the number of family systems is k, and the intermediate value is represented by l:

F = {Fl |l = 1, 2, . . . , k} (2)

where k ∈ [1, n] and l ∈ [1, k].
The definitions of subsystems and cluster systems are cross-referenced within the

definition of cluster systems, adhering to the hierarchical relationship between these terms.
A cluster system encompasses a subsystem when one system encapsulates another, while
the enclosed system is denoted as a subsystem. Subsystems can serve as integral functional
components within a cluster system or operate independently to fulfill specific functions
and actions.

Here, we introduce the concept of subsystems based on cluster system theory, wherein
multiple subsystems serve as reference samples for each other. In a cluster system, the pres-
ence of three or more identical or similar entities is essential to define them as subsystems.
The symbol of the subsystem is s and the number of feature elements is m:

si = si1, si2, . . . , sim (3)

where m ∈ Z and m ≥ 1.

3.2. Construction of Family System

The establishment and division of the family system plays a pivotal role in predicting
the lifespan of a cluster system. The division of the family system is contingent upon
inter-subsystem relationships, while the contribution of each subsystem to the load is
determined by both the overall load of the cluster system and the number of subsystems.

The fundamental concept in the process of partitioning family systems, as per the
definition of family systems, is to categorize them based on key performance parameters.
This approach is necessitated by the intricate and interconnected subjective and objective
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environments involved in cluster system operations, which are characterized by parameter
variations and uncertainties that render it challenging to ascertain the laws and mechanisms
governing specific environmental factors’ impact on system functioning. The characteri-
zation of subsystems’ key performance arises from the complex interplay among diverse
environmental factors. Therefore, employing key performance parameters as a basis for
classification not only simplifies computations but also enhances credibility.

Based on the definition and classification of family systems, it is evident that subsys-
tems within the same family system demonstrate the closest critical performance. In other
words, in terms of critical performance, each subsystem within a given family system can
serve as a reference for other subsystems in the family. This fundamental theory of cluster
systems addresses complex system design and applications, most of which are still in their
developmental stages. The ideas aim to tackle challenging problems with limited prior
experience to draw from.

In summary, the division of family systems plays a crucial role in the reliability
analysis of cluster systems. This section introduces the k-means clustering method, which
employs subsystems’ key performance as an identification parameter for partitioning the
family system.

The cluster system description is C = {s1, s2, . . . . . . , sn}; this means that there are
n subsystems in the cluster system. Meanwhile, each subsystem has m key features,
recorded as an m-dimensional feature vector si = (si1, si2, . . . . . . , sim). Using clustering
algorithms, cluster system C is divided into k disjointed family systems, written separately
as {Fl |l = 1, 2, . . . . . . , k}, where Fl′∩l′ ̸=l Fl = ∅ and C = ∪k

l=1Cl , and λj ∈ {1, 2, . . . . . . , k} is
used as the family system label representing subsystem sj, meaning sj ∈ Fλj . Therefore, the
k-means clustering results of family system partitioning can be described by n-dimensional
vectors with family system labels, meaning λ = (λ1, λ2, . . . . . . , λn).

In simple terms, the k-means algorithm minimizes the square difference of the parti-
tioning results of the family system.

E = ∑k
i=1 ∑s∈Fi

∥s − µi∥2
2 (4)

where µi = 1
|Fi | ∑s∈Fi

s is the average vector of Fi. Equation (4) intuitively reflects the
compactness of the subsystems and mean vectors in the family system. The smaller the E,
the higher the similarity of the subsystems in the family system.

In summary, the process of using the k-means clustering method to partition family
systems under the theory of cluster systems can be divided into five steps, as shown in
Figure 1.

Step 1: Enter the cluster system dataset C = {s1, s2, . . . . . . , sn}; then, randomly select
k subsystems as the initial average vector, with a mean of {µ1, µ2, . . . . . . , µk}.

Step 2: Calculate the distance between sj and µi using Equation (5) based on Eu-
clidean distance.

dji =
∥∥sj − µi

∥∥
2 =

√
∑n

u=1

∣∣sju − µiu
∣∣2 (5)

Step 3: Divide the subsystem s into corresponding family systems based on the nearest
average vector.

Step 4: Calculate the new average vector µ′
i, if µ′

i ̸= µi; make µ′
i = µi and repeat the

second step.
Step 5: If µ′

i = µi, output the results of the family system partition. To avoid excessive
iteration time, set a maximum number of cycles. If the program reaches this maximum
number of cycles, it will terminate and output the result.
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The focus of this study does not lie in the method for calculating the distance between
the subsystem and the average vector. Therefore, as long as the distance testing method
satisfies the four conditions outlined in Equations (6)–(9), various distance measurement
methods commonly employed in machine learning can be flexibly utilized during the
second step.

distance
(

xi, xj
)
≥ 0 (6)

distance
(

xi, xj
)
= 0 iff xi = xj (7)

distance
(
xi, xj

)
= distance

(
xj, xi

)
(8)

distance
(
xi, xj

)
≤ distance(xi, xk) + distance

(
xj, xk

)
(9)

The determination of the k value is a crucial operation in the process of partitioning
a family system. In theory, k can take any integer value between 1 and n. When k = 1, it



Appl. Sci. 2024, 14, 2448 9 of 22

signifies that all subsystems within the cluster system are grouped into a single family
system, exhibiting similarity. Conversely, when k = n, each subsystem is assigned to an
individual family system with varying performance.

Meanwhile, the computational complexity of the family system partitioning process
will also be influenced by variations in the value of k. Therefore, when determining
the optimal value for k, it is imperative to consider factors such as subsystem similarity,
program computation requirements, and the number of reference samples necessary for
subsequent reliability analysis processes. It should be noted that the number of subsystems
within each family system may not necessarily be equal; rather, they tend to differ based
on performance similarities among cluster system subsystems.

4. Time-Dependent Subsystem Transfers between Family Systems

By using the key performance of subsystems as identification parameters, the family
system is divided and a sample collection of subsystems is established. By combining
the Markov process’ property of no aftereffect, multiple intervals of key performance
are determined, enabling the establishment of a time-related inter-family transfer matrix
for subsystems.

The division of family systems involves selecting the key performance indicators for
subsystems. Based on factors such as expert experience, design requirements, and compu-
tational complexity, appropriate hierarchical divisions can be carried out by considering
the interval between optimal performance and failure state values. The performance values
during division can exhibit either equal or unequal differences. This example takes the
division of five family systems as an example, from the best-state family system to the
failure-state family system, which are STt

1, STt
2, STt

3, STt
4, and STt

5.
Establish the transition matrix:
At the initial time t0, the number of subsystems belonging to the five family systems is

STt0
1 , STt0

2 , STt0
3 , STt0

4 , and STt0
5 .

At the next time t1, the number of subsystems belonging to the five family systems is
STt1

1 , STt1
2 , STt1

3 , STt1
4 , and STt1

5 .
The quantity transferred from family system STt

1 to the five family systems STt
1, STt

2,
STt

3, STt
4, and STt

5 is 1STt1
1 , 1STt1

2 , 1STt1
3 , 1STt1

4 , and 1STt1
5 , respectively; the number of

family systems transferred from family system STt
2 to STt

1, STt
2, STt

3, STt
4, and STt

5 is 2STt1
1 ,

2STt1
2 , 2STt1

3 , 2STt1
4 , and 2STt1

5 , respectively; similarly, the number of family systems STt
3,

STt
4, and STt

5 transferred to STt
1, STt

2, STt
3, STt

4, and STt
5 can be obtained.

Therefore, the transfer matrix is as follows:

Tt0→t1 =



1ST
t1
1

ST
t0
1

1ST
t1
2

ST
t0
1

1ST
t1
3

ST
t0
1

1ST
t1
4

ST
t0
1

1ST
t1
5

ST
t0
1

2ST
t1
1

ST
t0
2

2ST
t1
2

ST
t0
2

2ST
t1
3

ST
t0
2

2ST
t1
4

ST
t0
2

2ST
t1
5

ST
t0
2

3ST
t1
1

ST
t0
3

3ST
t1
2

ST
t0
3

3ST
t1
3

ST
t0
3

3ST
t1
4

ST
t0
3

3ST
t1
5

ST
t0
3

4ST
t1
1

ST
t0
4

4ST
t1
2

ST
t0
4

4ST
t1
3

ST
t0
4

4ST
t1
4

ST
t0
4

4ST
t1
5

ST
t0
4

5ST
t1
1

ST
t0
5

5ST
t1
2

ST
t0
5

5ST
t1
3

ST
t0
5

5ST
t1
4

ST
t0
5

5ST
t1
5

ST
t0
5



(10)

The elements in row a and column b of matrix Tt0→t1 represent the probability of a
subsystem belonging to family system a transitioning to family system b from time t0 to
time t1. The probability range is [0, 1]. The possibility of having zero subsystems in a family
system at a certain time implies that the number of each family system will inevitably be
zero in the next transition. At this point, the probability is not calculated through division,
but is directly marked as 0.
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5. Performance Prediction for Cluster Systems

The subsystem inter-family transfer matrix and the current affiliation of each sub-
system to its respective system are continuously updated in real time within this section.
This facilitates the determination of transition probabilities for any given subsystem, as
well as the prediction of impending transitions to a failed state within the family sys-
tem. Consequently, it enables the accurate estimation of the remaining lifespan of the
group system.

5.1. Establishing a Time-Varying Inter-Family Transition Matrix

According to the definition of Markov processes, for objects that adhere to the prin-
ciples of Markov processes, the transition from the current state to the next state is solely
determined by its present state and remains unaffected by any previous instances in time.
Therefore, as time progresses, the state transition matrix of the cluster system should be
updated in real time; that is, at the i-th moment, there are:

Tti−1→ti =
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(11)

5.2. Predicting Changes in Family Systems

By continuously updating the inter-family transition matrix in real time and taking
into account the current family system dynamics of the subsystem, it becomes feasible
to ascertain the probability of any alterations in ownership within the family system of
said subsystem. Moreover, this facilitates prognostication regarding the total number
of subsystems that are likely to undergo a transition towards a failed state within their
respective family systems, thereby enabling anticipation of the remaining lifespan of the
cluster system. When the current time is ti, the number of subsystems belonging to the five
family systems is STti

1 , STti
2 , STti

3 , STti
4 , and STti

5 , and the transition matrix between family
systems is Tti−1→ti . Therefore, at time ti+1, the number of subsystems belonging to family
system STti+1

1 is calculated using the following process.

STti+1
1 = STti

1 ×
1ST

ti
1

ST
ti−1
1

+ STti
2 ×

1ST
ti
2

ST
ti−1
1

+STti
3 ×

1ST
ti
3

ST
ti−1
1

+ STti
4 ×

1ST
ti
4

ST
ti−1
1

+STti
5 ×

1ST
ti
5

ST
ti−1
1

(12)

STti+1
2 , STti+1

2 , STti+1
2 , and STti+1

2 can be obtained similarly. This calculation process is
recorded as:

Sti ⊗ Tti−1→ti (13)

where Sti =
[
STti

1 , STti
2 , STti

3 , STti
4 , STti

5

]
.
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5.3. Remaining Life Prediction

The ultimate failure of a cluster system lies in its inability to accomplish a specified
goal, which is achieved by the subsystems comprising the cluster system. Therefore, the
final failure state of the cluster system can be attributed to either an insufficient number or a
malfunctioning structure of subsystems required for task completion. Hence, the remaining
lifespan of the cluster system is equal to the current number of subsystems that have not
failed multiplied by the probability of the inter-family transition matrix, until the result is
less than the sum of the time required for the number of subsystems that have not failed
nmin required by the cluster system. The unit time interval for each transfer is ∆t. When
the number of subsystems that have not failed is less than nmin after N + 1 transfers, the
formula for the remaining life of the cluster system in this example is:

L̃i = N × ∆t (14)

where Sti ⊗ T ti−1 → ti
N − STti+N

5 ≥ nmin and Sti ⊗ Tti−1→ti
N+1 − STti+N+1

5 < nmin.

6. Examples of Verification

In this section, an engineering example will be provided using the FAST radio telescope
to verify the performance of the proposed method in the cluster system theory-based
reliability estimation.

6.1. FAST Performance Prediction

The 500 m Aperture Spherical Radio Telescope (FAST) project is a major national
scientific foundation project. It is a large spherical coronal radio telescope with an active
reflecting surface and an aperture of 500 m. The FAST active reflecting surface system
functions as a co-driving parallel mechanism, comprising a main cable network, 2225 sets
of driving branches, and 4450 reflecting surface units. Each driving branch consists of
nodes, lower cables, and hydraulic actuators [54]. Consequently, the FAST active reflector
system exhibits intricate motion coupling relationships. In the event of failure in one or
multiple driving branches, it will have adverse implications on the structural strength and
reflector accuracy of adjacent areas, thereby affecting the scientific observation capabilities
of the telescope [55].

The hydraulic actuator cluster system serves as the driving unit for actively adjust-
ing the surface shape accuracy of FAST’s active reflection surfaces, making it a crucial
component for normal telescope operation. Moreover, it represents a rare and typical
local large-scale electromechanical and hydraulic integrated equipment cluster system in
the world. Predicting its lifespan and economically maintaining this equipment cluster
system present significant challenges to the engineering and technical community. Figure 2
illustrates the on-site distribution of the FAST hydraulic actuator cluster system.
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In order to ensure the scientific accuracy of observations, reliable operation, and
cost-effective maintenance of the FAST radio telescope, a health monitoring system was
implemented at the outset of its design [56]. Table 1 displays the observation data content
captured by the actuator.

Table 1. Partial data of actuator monitoring data at a certain time.

DEVICE ID CONTROL
THEORY

CONTROL
ACTUAL

CONTROL
TEMPERATURE

CONTROL
PRESSURE

1 1,070,000 1,070,000 26.17 2777
2 961,943 962,634 25.48 2293
3 1,000,000 1,000,000 25.98 2383

. . . . . . . . . . . . . . .
2223 445,522 445,620 26.05 3700
2224 389,577 389,675 26.2 5125
2225 395,675 395,731 25.14 4397

In Table 1, DEVICE ID is the number representing the actuators. CONTROL THEORY
is the theoretical control position of the actuators, while CONTROL ACTUAL is the actual
position of actuators detected by the position sensor in the health system of FAST. CON-
TROL TEMPERATURE and CONTROL PRESSURE are the temperature and pressure of
hydraulic oil in the tank of the actuators’ hydraulic system.

According to the structure and observation control of the FAST telescope, each hy-
draulic actuator operates independently from other hydraulic actuators in both temporal
and spatial dimensions. In other words, the failure of one actuator will not impact the nor-
mal functioning of the other actuators. Consequently, a parallel reliability logic relationship
exists among subsystems within the hydraulic actuator cluster system. The failure of any
individual actuator will not directly lead to failures in other actuators or hinder scientific
observations; however, it may result in signal loss and affect observation accuracy.

The precision of actuator control directly impacts the shape of the target reflection
surface in the FAST hydraulic actuator cluster system, thereby significantly influencing
scientific observation. Each actuator is assigned a theoretical position based on the obser-
vation requirements for achieving the desired reflection surface shape. Simultaneously, a
real-time monitoring system continuously tracks and monitors the actual positions of each
actuator. Therefore, both the theoretical and actual positions of the actuators are critical
parameters for optimizing performance in the actuator cluster system. To facilitate analysis,
absolute error is employed as a discriminant parameter to classify family systems prior to
conducting life prediction. The calculation formula for absolute error is as follows:

∆d = |da − dt| (15)

Here, ∆d is the absolute error, da represents the actual position, and dt is the theoretical
position.

According to the prediction process shown in Figure 3, based on expert experience,
design requirements, and on-site usage needs, the absolute error values of the optimal state
and failure state can be determined to be [0, 250]; that is, when the extension error is 0 µm,
the actuator subsystem is in the optimal state. When the extension error exceeds 250 µm, it is
determined that the actuator subsystem has failed. Considering computational complexity,
the interval for dividing the family system is selected as 50 µm and the intervals from the
optimal state to the failure state are [0, 50) ,[50, 100) , [100, 150) , [150, 200) , [200, 250) , and
(250, +∞) , respectively.
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The actuator monitoring data obtained during a specific observation period using the
FAST telescope were analyzed, resulting in a total of 259 datasets. At the initial moment
t0, multiple random moments were selected from the monitoring data for prediction and
comparison to validate the efficacy of the approach. The randomly selected initial moments
include the 5th, 29th, 41st, 65th, 88th, 126th, 143rd, 162nd, 211th, and 240th, totaling 10
moments. The comparison between the predicted and actual values at each moment is
shown in Table 2, where ŜTti+1

1 , ŜTti+1
2 , ŜTti+1

3 , ŜTti+1
4 , ŜTti+1

5 , and ŜTti+1
6 are the predicted

values for each state interval at the next time of the 10 initial moments, and STti+1
1 , STti+1

2 ,
STti+1

3 , STti+1
4 , STti+1

5 , and STti+1
6 are the actual values for each state interval at the next time

of the 10 initial moments.
To evaluate the prediction accuracy of the model, the relative error δ is used for judgment:

δr =

∣∣∣STti+1
r − ŜTti+1

r

∣∣∣
STti+1

r
× 100% (16)

Here, STti+1
r is the actual number of subsystems within the r-th state interval and

ŜTti+1
r is the predicted number of subsystems within the r-th state interval.
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Table 2. Predicted and actual values of inter-family transfer.

Initial Time 5 29 41 65 88 126 143 162 211 240

ŜTti+1
1 555 570 557 528 574 643 679 755 950 904

STti+1
1 602 542 521 529 557 631 686 757 897 985

δ1 7.8% 5.2% 6.9% 0.2% 3.1% 1.9% 1.0% 0.3% 5.9% 8.2%

ŜTti+1
2 913 984 986 1034 1071 1137 1118 1030 904 855

STti+1
2 946 969 981 1013 1062 1148 1098 1030 879 838

δ2 3.5% 1.5% 0.5% 2.1% 0.8% 1.0% 1.8% 0.0% 2.8% 2.0%

ŜTti+1
3 358 377 408 344 292 129 103 72 99 73

STti+1
3 373 369 374 359 290 129 106 126 109 127

δ3 4.0% 2.2% 9.1% 4.2% 0.7% 0.0% 2.8% 42.9% 9.2% 42.5%

ŜTti+1
4 16 30 31 25 44 53 23 36 24 39

STti+1
4 30 29 39 26 52 32 29 34 25 39

δ4 46.7% 3.4% 20.5% 3.8% 15.4% 65.6% 20.7% 5.9% 4.0% 0.0%

ŜTti+1
5 27 21 40 34 38 39 27 42 46 31

STti+1
5 45 26 41 37 36 35 35 34 31 40

δ5 40.0% 19.2% 2.4% 8.1% 5.6% 11.4% 22.9% 23.5% 48.4% 22.5%

ŜTti+1
6 355 241 199 258 204 222 273 288 201 322

STti+1
6 229 290 269 261 228 250 270 244 284 196

δ6 55.0% 16.9% 26.0% 1.1% 10.5% 11.2% 1.1% 18.0% 29.2% 64.3%

The following Figures 4–9 illustrate the actual and predicted quantities of the subsys-
tem at each state interval, along with a curve depicting the variation in relative error for
that specific interval.
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The average relative error of the prediction detected using this method during the
random sampling period is 13.3%, as concluded from comparing the rounded predicted
values of inter-family transfer in Table 2 with the actual values. Among the predicted
values for 60 state intervals at 10 random times, the relative error of 40 predicted values is
within 10%.

The root mean square error (RMSE), fitting accuracy (R2), mean absolute error (MAE),
and mean absolute percentage error (MAPE) of the conventional evaluation prediction
model are calculated. The aforementioned accuracy metrics are applicable to regression
models, enabling the assessment of the model’s conformity to the observed data and the
quantification of disparities between actual observations and predicted values.

According to Formula (17), the RMSE value of the time-varying inter-family transfer
prediction method is 35.57 (accounting for 1.598% of the total amount in the hydraulic
actuator cluster system).

RMSE =

√√√√√ n
∑

i=1
(pi − αi)

2

n
(17)

where p is the predicted value and α is the actual value.
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According to Formula (18), the R2 value is 0.9906.

R2 =

n
∑

i=1
(ŷi − y)2

n
∑

i=1
(yi − y)2

(18)

where ŷ is the predictive value, y is the actual value, and y is the average value.
According to Formula (19), the MAE value is 22.1 (accounting for 0.9932% of the total

amount in the hydraulic actuator cluster system).

MAE =

n
∑

i=1
|y − ŷ|

n
(19)

where ŷ is the predictive value, y is the actual value, and n is the number of samples.
According to Formula (20), the MAPE value is 13.29% (the model’s average prediction

error accounts for 13.29% of the true values).

MAPE =

n
∑

i=1

∣∣∣ ŷ−y
y

∣∣∣× 100%

n
(20)

where ŷ is the predictive value, y is the actual value, and n is the number of samples.
The summary of the aforementioned accuracy indicators can be found in Table 3:

Table 3. Accuracy metrics.

Accuracy Metrics RMSE R2 MAE MAPE

Value 35.57 0.9906 22.1 13.29%

This method is observed to meet the requirements for predicting inter-family trans-
fer performance, indicating its credibility in life prediction through time-varying inter-
family transfer.

Due to the extensive observation range of the FAST telescope, which enables a multi-
tude of scientific observation tasks, diverse targets necessitate distinct observation strategies
for determining their reflective surface shape. Due to spatial constraints, the observation
strategy requirements in this case study have been simplified. The remaining lifespan of
the hydraulic actuator group system has been transformed into a correlation curve between
the number of subsystems meeting accuracy criteria and transfer times. By integrating this
curve with Equation (14) and preliminary observations, valuable insights regarding the
projected residual life can be obtained.

Taking the 240th moment in the data as an example, the transition matrix from 239 to
240 is as follows:

Tt239→t240 =



0.93 0.05 0.01 0 0 0.01
0.02 0.91 0.06 0.01 0 0
0.01 0.09 0.86 0.01 0.01 0.02
0 0.07 0.24 0.24 0.07 0.38
0 0 0.03 0.08 0.21 0.68
0 0 0 0.02 0.02 0.96


The relationship between the number of actuators meeting the accuracy requirements

for prediction at 240 time intervals and the number of transfer times can be derived using
Formula (13) based on the 240 time series system state data, as illustrated in Figure 10.
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Figure 10. Inter-family transfer and prediction of the number of normal subsystems.

The prediction curve is subject to temporal variations, particularly in the presence
of significant changes in the control state or environment. Consequently, the state ma-
trix undergoes substantial modifications, necessitating synchronous updates of both the
prediction curve and life prediction values.

6.2. Discussion and Prospects

The absolute error of the hydraulic actuator is selected as the key performance pa-
rameter in this section and the family system is categorized based on its proximity to this
parameter. By continuously updating the inter-family transfer matrix and current family
system label of each subsystem in real time, it becomes possible to determine both the
transfer probability of any subsystem and the total number of subsystems that are likely to
transition into a failure-state family system. This information can be utilized for the fur-
ther determination of remaining life and has been experimentally validated for prediction
accuracy, thus establishing the credibility of this method.

According to the definition and method framework of cluster systems, the approach
proposed in this article is applicable in diverse engineering practices, facilitating the real-
time life prediction of complex systems that adhere to the characteristics of cluster sys-
tems. Table 4 presents a performance comparison between this approach and traditional
analysis methods.

Table 4. Comparison with traditional methods.

Method Additional
Samples

Fault Data
Required

Content of Subjective
Analysis Others

The proposed method No No K value and state interval Secondary analysis if the
environment changes

Weibull distribution Yes Yes Location, shape, and
scale parameters With high sample numbers

Degradation model Yes No Multiple stress levels Fitting parameter estimation

Duane model Yes Yes Scale parameters and
growth rate

Fault maintenance and
accumulation test

Bayesian network No No Fault tree or node relationship Component failure rate

Minimum cut set No Yes Fault events and
logical relations Rely on expert experience
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This approach primarily addresses the limitations of traditional methods, which
heavily rely on exhaustive life testing, fault data accumulation, and expert knowledge. It
facilitates precise life prediction for complex systems that are either newly developed or
deployed in challenging environments where conducting comprehensive life testing and
accumulating fault data are arduous.

7. Conclusions

To tackle the challenges of limited reference samples, initial failures, and complex
environmental variables in reliability engineering for newly developed or implemented
complex systems, this paper proposes a cluster system performance prediction method
based on time-varying inter-family transitions through clustering within the cluster system
and utilizing state partitioning and Markov transitions. The proposed approach is validated
using monitoring data from the hydraulic actuator of the FAST radio telescope health mon-
itoring system, with the absolute error of the actuator as the key performance parameter.

The results demonstrate that the proposed cluster system performance prediction
method in this study, based on time-varying inter-family transfer, can accurately forecast
the failure transfer of hydraulic actuators with a fitting accuracy of 0.9906. These research
findings offer scientific guidance for the operation, maintenance, and health management
of the FAST hydraulic actuator cluster system to ensure precise observations using the
FAST radio telescope.

The method of predicting the performance of cluster systems based on time-varying
inter-family transfer can also be applied to numerous hydraulic engineering projects,
particularly those involving cluster systems. This method is applicable to the prediction of
hydraulic system maintenance, optimization of energy efficiency, monitoring the health
condition of the system, optimization of working conditions, and fault diagnosis.

Moreover, future investigations can be conducted based on this study to explore multi-
dimensional key performance parameters in inter-family transfer, providing support for
safe and reliable operation, fault prediction, data processing, and operational maintenance
of complex systems.

The health monitoring system of the FAST radio telescope serves as a highly repre-
sentative example, showcasing the integration of mechatronics in a typical group system.
The remarkable accuracy achieved in predicting its lifespan demonstrates the applicability
of this method for performance prediction in similar mechatronics integrated systems.
Therefore, these research methods can be employed for system and application design,
encompassing hydraulic system monitoring and prediction platforms, maintenance man-
agement systems for hydraulic systems, energy-efficient optimization controllers, health
monitoring programs for hydraulic systems, working condition optimization tools, fault
diagnosis systems, etc. The integration of these systems and applications will offer compre-
hensive solutions for hydraulic engineering—from real-time monitoring to performance
prediction, maintenance, and optimization—thereby enhancing the reliability of hydraulic
systems while reducing maintenance costs and ensuring efficient operation under diverse
working conditions.
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