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Abstract: In linear system identification problems, the Wiener filter represents a popular tool and
stands as an important benchmark. Nevertheless, it faces significant challenges when identifying long-
length impulse responses. In order to address the related shortcomings, the solution presented in this
paper is based on a third-order tensor decomposition technique, while the resulting sets of Wiener–
Hopf equations are solved with the conjugate gradient (CG) method. Due to the decomposition-
based approach, the number of coefficients (i.e., the parameter space of the filter) is greatly reduced,
which results in operating with smaller data structures within the algorithm. As a result, improved
robustness and accuracy can be achieved, especially in harsh scenarios (e.g., limited/incomplete sets
of data and/or noisy conditions). Besides, the CG-based solution avoids matrix inversion operations,
together with the related numerical and complexity issues. The simulation results are obtained in a
network echo cancellation scenario and support the performance gain. In this context, the proposed
iterative Wiener filter outperforms the conventional benchmark and also some previously developed
counterparts that use matrix inversion or second-order tensor decompositions.

Keywords: system identification; Wiener filter; conjugate gradient method; tensor decomposition;
Kronecker product; low-rank approximation; echo cancellation

1. Introduction

Linear system identification problems have to be worked out in the context of various
applications [1,2], including echo cancellation, active noise control, interference reduction,
and channel modeling among others. A benchmark technique used to address such prob-
lems is the well-known Wiener filter, which basically relies on solving a linear system
(namely the Wiener–Hopf equations) using a set of statistics. The Wiener–Hopf equations
involve a set of estimates for the covariance matrix of the input signal and the cross-
correlation vector between the input and reference sequences. The problem is formulated
following an optimization criterion in terms of minimizing the mean-squared error (MSE),
while the error is defined as the difference between the reference sequence and the output
signal. The resulting optimal filter also represents an important basis for the develop-
ment of other related tools for system identification problems, such as adaptive filtering
algorithms [3,4].

There are some inherent limitations associated with the conventional Wiener filter
solution, which is obtained by directly solving (using matrix inversion) the Wiener–Hopf
equations. First, the accuracy of the solution is highly influenced by the accuracy of
the statistics’ estimates. On the other hand, obtaining a reliable set of these estimates
requires a large amount of data, i.e., much larger than the filter length. This could represent
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a significant shortcoming when dealing with a limited (or incomplete) amount of data
and/or a long-length filter. Second, the external noise (that is part of the reference signal)
biases the Wiener filter solution, which becomes less accurate when the signal-to-noise ratio
(SNR) decreases. This could be the case in noisy environments, where different types of
perturbations are likely to emerge. Third, the conventional solution involves the covariance
matrix inversion, which is a very challenging operation in terms of both computational
complexity and numerical accuracy [5,6]. The difficulty could increase significantly when
operating with long-length filters, which further entail large dimension matrices.

Most of the previously discussed limitations are connected to the length of the fil-
ter, which could be very large in many scenarios. For example, in applications like echo
cancellation and noise reduction [7], the acoustic impulse responses to be identified have
hundreds/thousands of coefficients when using the common sampling rate of 8 or 16 kHz.
Therefore, dealing with such long-length filters could lead to significant limitations in terms
of both the accuracy and complexity of the solution. In order to reformulate such high-
dimension system identification problems (with a large parameter space) more efficiently,
a recently developed decomposition-based technique has been involved [8]. The main
idea behind this technique is to exploit the low-rank feature of the system impulse re-
sponse, in conjunction with its nearest Kronecker product (NKP) decomposition. As a
result, a system identification problem featuring a large parameter space is designed as
a combination of two shorter filters, with a significantly reduced number of coefficients.
This further implies the operation with smaller matrices/vectors and, consequently, leads
to improved robustness in terms of the accuracy of the final solution, even for the chal-
lenging cases mentioned above (e.g., a limited amount of data and/or low SNRs). Due
to these important gains, the NKP-based approach has been involved in a wide range of
applications, among which can be mentioned echo cancellation, adaptive beamforming,
linear prediction, speech dereverberation, and microphone arrays, e.g., see [9–17] and the
references therein.

Recently, the NKP technique has been applied in conjunction with a third-order tensor
(TOT) decomposition of the impulse response [18], leading to a higher efficiency in terms of
reducing the dimensionality of the system identification problem. This was not a straight-
forward extension of the low-rank approach presented in [8], since handling the rank of a
tensor is a sensitive issue that usually involves different approximation techniques [19–28].
On the other hand, the solution proposed in [18] avoids such an approximation, by con-
trolling and limiting the tensor rank to very small values. However, the resulting Wiener
filter based on TOT decomposition solves the involved sets of Wiener–Hopf equations
using the conventional approach, which relies on matrix inversion. Alternatively, different
iterative techniques could be used to avoid such an operation [29–31], like the conjugate
gradient (CG) method [32]. In [33], the CG algorithm has been applied in conjunction with
the NKP-based technique from [8], showing improved performance. However, applying
the CG method together with the TOT decomposition is a more challenging task, due to
the particular connection between the three (shorter) component filters and the need for
auxiliary variables within the algorithm.

Motivated by these aspects, in the current paper, we design an improved iterative
version of the Wiener filter. The proposed algorithm involves the TOT-based decomposition,
together with the CG method to solve three sets of Wiener–Hopf equations. As a result,
it outperforms the counterpart version from [18], which uses the direct matrix inversion
for solving the Wiener–Hopf equations, and also the CG-based solution from [33], which
exploits the second-order NKP decomposition. Following this introduction, in Section 2
we provide some background on the conventional Wiener filter, the CG method (to avoid
matrix inversion), and the TOT-based decomposition. Next, in Section 3, the proposed
algorithm is developed. Simulation results provided in Section 4 support its performance
and advantages compared to the existing solutions. The paper is summarized in Section 5,
outlining the main conclusions and several perspectives for future works.
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2. Conventional Wiener Filter, Conjugate Gradient Method, and Impulse Response
Decomposition Based on a Third-Order Tensor

In this section, several backgrounds related to the upcoming developments are pro-
vided. First, we present the conventional Wiener filter for solving linear system identifi-
cation problems. Next, the CG method is introduced as an efficient (iterative) alternative
to avoid the matrix inversion required by the direct solution of Wiener–Hopf equations.
Finally, the TOT-based decomposition of the impulse response is presented, outlining the
main idea recently introduced in [18].

The main framework considered in this paper is related to a single-input single-output
(SISO) linear system identification scenario, where all the involved signals are zero-mean
and real-valued. In this context, the available signals are the input x(t) and the reference
d(t), while t represents the discrete-time index. Under this scenario, there is a correlation
between these two sequences, since the reference signal is obtained at the output of an
unknown system driven by the input signal, while the output is corrupted by an additive
noise, as shown in Figure 1. Thus ,

d(t) = hTx(t) + v(t) (1)

= y(t) + v(t),

where the vector h contains the L coefficients of the unknown impulse response (with
superscript T denoting transposition), x(t) =

[
x(t) x(t − 1) · · · x(t − L + 1)

]T is a
vector that contains the L most recent time samples of the input signal x(t), and v(t) is an
additive noise, which is uncorrelated with x(t). In the second line of (1), y(t) = hTx(t)
represents the output signal.

�

h 

�(t) 

v(t) 

d(t) y(t) 

Figure 1. The reference signal obtained in a SISO scenario.

Based on the correlation between the reference sequence and the input signal, and fol-
lowing the MSE optimization criterion, an estimate of h can be obtained by solving the
Wiener–Hopf equations [2], i.e.,

RxhW = rxd, (2)

where

Rx = E
[
x(t)xT(t)

]
, (3)

rxd = E[x(t)d(t)] (4)

represent the covariance matrix of the input signal and the cross-correlation vector be-
tween the input and reference sequences, respectively, hW contains the coefficients of
the Wiener filter (i.e., L parameters), while E(·) denotes mathematical expectation. Thus,
the conventional Wiener filter results by using the matrix inversion operation, so that

hW = R−1
x rxd. (5)

In order to avoid matrix inversion, several alternative methods for solving (5) can be
applied. The basic idea is to obtain the final solution in an iterative manner. In this context,
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the CG method [32] represents a popular choice, being included in the category of exact
line search methods [34,35]. Hence, considering the initialization hW(0), an initial residual
z(0) = rxd − RxhW(0) can be computed. Also, in the initial step, it requires a conjugate
vector c(0) = z(0) and an auxiliary scalar γ(0) = zT

(0)z(0). Using this initialization, the CG
algorithm runs for k steps, each one involving the relations:

q(k) = Rxc(k−1), (6)

α(k) =
γ(k−1)

cT
(k−1)q(k)

, (7)

hW(k) = hW(k−1) + α(k)c(k−1), (8)

z(k) = z(k−1) − α(k)q(k), (9)

γ(k) = zT
(k)z(k), (10)

β(k) =
γ(k)

γ(k−1)
, (11)

c(k) = z(k) + β(k)c(k−1). (12)

The stopping criterion can be related to a maximum number of updates (i.e., for k =
1, 2, . . . , K) or a predefined threshold for the residual.

The convergence of the CG algorithm is influenced by the condition number of Rx [5],
i.e., the larger this number, the slower the convergence is. In order to improve the con-
vergence rate, a preconditioning procedure could be applied to this matrix. There are
different methods for choosing the so-called preconditioner (i.e., a matrix that multiplies
Rx), like Jacobi, Gauss–Seidel, etc. Basically, the algorithm from (6)–(12) is reformulated,
while incorporating the preconditioning directly into the iteration. On the other hand, this
procedure involves an additional computational amount. Nevertheless, the purpose of this
paper is not to analyze the influence of different preconditioners on the overall performance
of the CG algorithm. Our primary goal is to develop the decomposition-based approach in
conjunction with the CG method for solving the Wiener–Hopf equations. In this context,
the main challenges are related to the connection between the component filters and the
specific initialization (as will be shown in the next section), and not to the performance
of the CG algorithm itself. Consequently, in the following, the basic CG algorithm from
(6)–(12) is considered without preconditioning. However, in order to keep the positive-
definite character of the covariance matrix and to avoid any potential numerical/stability
problems [6], it is recommended to add a very small positive constant to the elements of
the main diagonal.

The maximum number of updates required by the Wiener filter using the CG method
(namely WF-CG) to reach the solution of the conventional Wiener filter (WF) is gener-
ally much smaller compared to the filter length. This is supported in Figures 2 and 3,
where the performances of the conventional WF and WF-CG are analyzed in two different
scenarios for the identification of a network echo path of length L = 512 (using a sam-
pling rate of 8 kHz). This impulse response results from the first cluster of ITU-T G168
Recommendation [36] concerning digital network echo cancellers. It contains 64 coefficients
padded with zeros up to the full-length L. The required statistics (Rx and rxd) are estimated
by averaging across N = ML data samples of x(t) and d(t), with M > 1. The reference
signal is obtained according to (1), using a first-order autoregressive [AR(1)] process as
input, which results from filtering white Gaussian noise through an AR(1) model; the pole
of this model is set to 0.8. The additive noise is white and Gaussian, with SNR = σ2

y /σ2
v ,

where σ2
y and σ2

v stand for the variances of y(t) and v(t), respectively. The results are shown
using a common performance measure involved in system identification scenarios, which
is the normalized misalignment (in dB). It is defined as 20log10∥h − hW∥2/∥h∥2 (where
∥·∥2 denotes the Euclidean norm) and basically shows the “difference” between the true
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impulse response and the estimated one. The lower this quantity, the better the accuracy of
the estimate.
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Figure 2. Normalized misalignment of the conventional WF and WF-CG using different amounts of
data to estimate Rx and rxd. These statistics are obtained by averaging across N = ML data samples
(with L = 512 and different values of M), while SNR = 20 dB.
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Figure 3. Normalized misalignment of the conventional WF and WF-CG for different SNRs. The es-
timates of the statistics Rx and rxd are obtained by averaging across N = 5L data samples, where
L = 512.

In the first scenario considered in Figure 2, we evaluate the impact of using different
amounts of data (N = ML) to estimate the statistics by varying the value of M. It can
be noticed that a low amount of data significantly influences the accuracy of the Wiener
solution. Nevertheless, the WF-CG converges toward the conventional WF after a small
number of CG iterations (as compared to the filter length). Second, in Figure 3, the SNR
influence is outlined. As expected, a lower SNR reduces the accuracy of the Wiener estimate.
Similarly to the previous experiment, the WF-CG reaches the conventional WF for K ≪ L.
Both analyzed scenarios support the influence of the main factors that affect the behavior of
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the Wiener filter, i.e., the amount of available data for estimating the statistics and the SNR
level. Thus, it is of great importance to improve the overall performance and robustness
related to these aspects.

In terms of computational complexity, the conventional Wiener solution based on
matrix inversion requires O(L3) operations, while the iterative version that uses the CG
method needs an O(KL2) amount, with K ≪ L. Nevertheless, when identifying a long-
length impulse response, a large value of K could be required for the CG iterations. This also
represents a motivation for the dimensionality reduction of the problem, by reformulating
a system identification scenario with a large parameter space (i.e., a large number of
coefficients) as a combination of the estimates provided by shorter filters.

In this regard, the recent solution from [18] is based on a third-order tensor decompo-
sition of the impulse response, namely TOT decomposition. As a result, the final estimate
results as a combination (via the Kronecker product) of the coefficients associated with
three filters, which are significantly shorter (as compared to the original impulse response).
This idea is briefly explained in the following. First, let us consider that the length of the
filter can be factorized as L = L1L2, with L1 ≫ L2, so that the impulse response of the
system results in [8]

h =
L2

∑
i=1

hi
2 ⊗ hi

1. (13)

Here, the shorter impulse responses hi
1 and hi

2 have the lengths L1 and L2, respectively,
while ⊗ denotes the Kronecker product [37]. At this point, let us assume that hi

1 is low
rank [8]. Moreover, its length can be factorized as L1 = L11L12 (with L11 ≥ L12). Conse-
quently, the global impulse response results in

h =
L2

∑
i=1

P

∑
j=1

hi
2 ⊗ hij

12 ⊗ hij
11, (14)

where the two impulse responses hij
11 and hij

12 have the lengths L11 and L12, respectively,
while P < L12. It can be noticed that the coefficients of h can be “rearranged” in the form
of a third-order tensor, i.e.,

H =
P

∑
j=1

(
L2

∑
i=1

hij
11 ◦ hij

12 ◦ hi
2

)
, (15)

where ◦ stands as the notation for the outer product. Furthermore, H is in fact a sum of P
third-order tensors, each one of rank L2 [19]. As indicated in [18], the recommended values
for L2 are small (e.g., 2 or 3).

Summarizing, the identification of the global impulse response h of length L (i.e.,
with L11L12L2 coefficients) is transformed into a combination of three (shorter) sets of
impulse responses, i.e., hij

11, hij
12, and hi

2 (for i = 1, 2, . . . , L2 and j = 1, 2, . . . , P). As a result,
the new parameter space of the filter involves only PL11L2, PL12L2, and L2

2 coefficients,
respectively. Since usually P ≪ L12 [18], the TOT-based decomposition approach leads to
a significant dimensionality reduction, which is achieved especially when dealing with
long-length filters (i.e., large values of L). While the conventional Wiener filter using matrix
inversion involves a computational complexity proportional to O(L3) = O

[
(L3

11L3
12L3

2)
]
,

the decomposition-based solution using the CG method combines the estimates
of three shorter filters, which results in a computational complexity proportional to
O
[
(PL11L2)

2 + (PL12L2)
2 + L4

2
]
, with P ≪ L12.

3. Iterative Wiener Filter Based on TOT and CG

The current section is dedicated to the development of the proposed solution, which
results in the form of an iterative Wiener filter based on TOT decomposition and using the
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CG method for solving the associated sets of Wiener–Hopf equations. For this purpose
and a better readability of the upcoming developments, several preliminary elements
from [18] and the specific notation are presented at the beginning of this section. These
preliminaries are related to the TOT-based decomposition framework and the associated
Wiener–Hopf equations. Further, the proposed solution is developed. The differences
between the version from [18] and the current proposal based on the CG method are mainly
related to (i) the specific initialization that involves auxiliary matrices and (ii) the connection
between the component filters from one CG cycle to another within the main iterations
of the proposed CG-based Wiener filter. Moreover, since the impulse responses from (14)
have different lengths, the CG cycles corresponding to the component filters use different
numbers of updates.

As shown in [18], the estimates of the component impulse responses from (14) can be
obtained based on a multilinear optimization approach [38,39]. In other words, two of the
component impulse responses are considered fixed, while optimizing the third (remaining)
one. This approach leads to three sets of Wiener–Hopf equations, i.e.,(

G12,11
)TRxG12,11g

2,W
=
(
G12,11

)Trxd, (16)(
G2,11

)TRxG2,11g
12,W

=
(
G2,11

)Trxd, (17)(
G2,12

)TRxG2,12g
11,W

=
(
G2,12

)Trxd. (18)

The corresponding data structures and the associated notation are shown in Table 1, where
g⋆,W generally denotes the estimate of h⋆ from (14), while IL• is the identity matrix of size
L• × L•.

At this point, (16)–(18) are going to be solved with the CG method. The resulting
solutions will then be sequentially iterated and combined (via the Kronecker product).
Finally, the Wiener filter gW, which represents an estimate of h, will be obtained as

gW =
L2

∑
i=1

P

∑
j=1

gi
2,W ⊗ gij

12,W ⊗ gij
11,W, (19)

where gi
2,W, gij

12,W, and gij
11,W are obtained from g

2,W
,g

12,W
, and g

11,W
, respectively. All

these steps of the designed algorithm are detailed in the following.
As mentioned before, the developed iterative Wiener filter is based on the TOT decom-

position of the global impulse response, while the CG updates are used to efficiently solve
(16), (17), and (18), respectively. To this purpose, the main iterations of the Wiener filter are
denoted as superscripts (n), while the CG updates appear in subscripts (k). The initialization
of the algorithm concerns the three component filters, which are initially defined as

g(0)
2,W(K2)

=
[

ϵ 0T
L2

2−1

]T
, (20)

g(0)
12,W(K1)

=
[

ϵ 0T
PL12L2−1

]T
, (21)

g(0)
11,W(K1)

=
[

ϵ 0T
PL11L2−1

]T
, (22)

where K1 and K2 represent the maximum number of CG updates (for the component
filters), ϵ is a very small positive number, while 0• denotes an all-zeros vector with the
length indicated in subscript. The reason for using K1 ̸= K2 is that we are dealing with
different lengths for the component filters. Among them, the length of g

2,W
(which has L2

2
coefficients) could be significantly smaller, taking into account that g

12,W
and g

11,W
have

PL12L2 and PL11L2 coefficients, respectively, while L2 ≪ L11L12.
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Table 1. Specific Data Structures and Notation Related to Wiener–Hopf equations with TOT
Decomposition.

Data structures and notation from (16) :

G12,11 =
[

G1
12,11 G2

12,11 · · · GL2
12,11

]
,

where Gi
12,11 = ∑P

j=1 Gij
12,11, i = 1, 2, . . . , L2,

with Gij
12,11 = IL2 ⊗ gij

12,W ⊗ gij,W
11 , i = 1, 2, . . . , L2, j = 1, 2, . . . , P

g
2,W

=

[ (
g1

2,W

)T (
g2

2,W

)T
· · ·

(
gL2

2,W

)T
]T

Data structures and notation from (17) :

G2,11 =
[

G1
2,11 G2

2,11 · · · GL2
2,11

]
,

where Gi
2,11 =

[
Gi1

2,11 Gi2
2,11 · · · GiP

2,11

]
, i = 1, 2, . . . , L2

with Gij
2,11 = gi

2,W ⊗ IL12 ⊗ gij
11,W, i = 1, 2, . . . , L2, j = 1, 2, . . . , P

g
12,W

=

[ (
g1

12,W

)T (
g2

12,W

)T
· · ·

(
gL2

12,W

)T
]T

where gi
12,W =

[ (
gi1

12,W

)T (
gi2

12,W

)T
· · ·

(
giP

12,W

)T
]T

, i = 1, 2, . . . , L2

Data structures and notation from (18) :

G2,12 =
[

G1
2,12 G2

2,12 · · · GL2
2,12

]
,

where Gi
2,12 =

[
Gi1

2,12 Gi2
2,12 · · · GiP

2,12

]
, i = 1, 2, . . . , L2,

with Gij
2,12 = gi

2,W ⊗ gij
12,W ⊗ IL11 , i = 1, 2, . . . , L2, j = 1, 2, . . . , P

g
11,W

=

[ (
g1

11,W

)T (
g2

11,W

)T
· · ·

(
gL2

11,W

)T
]T

,

where gi
11,W =

[ (
gi1

11,W

)T (
gi2

11,W

)T
· · ·

(
giP

11,W

)T
]T

, i = 1, 2, . . . , L2

At this point, we need to introduce the auxiliary matrices (for i = 1, 2, . . . , L2 and
j = 1, 2, . . . , P):

Mij(0)
12,11 = IL2 ⊗

[
ϵ 0T

L12−1

]T
⊗
[

ϵ 0T
L11−1

]T
, (23)

Mij(0)
11 = IL12 ⊗

[
ϵ 0T

L11−1

]T
, (24)

which will further facilitate the definition of matrices G12,11 and G2,11. Hence, in each main
iteration (n) of the algorithm, we first construct using (23):

Gij(n)
12,11 = Mij(n−1)

12,11 , i = 1, 2, . . . , L2, j = 1, 2, . . . , P, (25)

Gi(n)
12,11 =

P

∑
j=1

Gij(n)
12,11, i = 1, 2, . . . , L2, (26)

G(n)
12,11 =

[
G1(n)

12,11 G2(n)
12,11 · · · GL2(n)

12,11

]
. (27)

These allow us to compute

R(n)
2 =

(
G(n)

12,11

)T
RxG(n)

12,11, (28)

r(n)2 =
(

G(n)
12,11

)T
rxd. (29)
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The structures from (28) and (29) are used to process (16) with the CG method. Consequently,
using (20), the initial settings are

g(n)
2,W(0) = g(n−1)

2,W(K2)
, (30)

z(n)2(0) = r(n)2 − R(n)
2 g(n)

2,W(0), (31)

c(n)2(0) = z(n)2(0), (32)

γ
(n)
2(0) =

(
z(n)2(0)

)T
z(n)2(0). (33)

Next, for k2 = 1, 2, . . . , K2, we perform similar to (6)–(12):

q(n)
2(k2)

= R(n)
2 c(n)2(k2−1), (34)

α
(n)
2(k2)

=
γ
(n)
2(k2−1)(

c(n)2(k2−1)

)T
q(n)

2(k2)

, (35)

g(n)
2,W(k2)

= g(n)
2,W(k2−1) + α

(n)
2(k2)

c(n)2(k2−1), (36)

z(n)2(k2)
= z(n)2(k2−1) − α

(n)
2(k2)

q(n)
2(k2)

, (37)

γ
(n)
2(k2)

=
(

z(n)2(k2)

)T
z(n)2(k2)

, (38)

β
(n)
2(k2)

=
γ
(n)
2(k2)

γ
(n)
2(k2−1)

, (39)

c(n)2(k2)
= z(n)2(k2)

+ β
(n)
2(k2)

c(n)2(k2−1). (40)

The final solution g(n)
2,W(K2)

will represent the initialization for the CG cycle associated
with this filter [similar to (30)] in the next main iteration of the algorithm. Also, it is
decomposed as

g(n)
2,W(K2)

=

[ (
g1(n)

2,W(K2)

)T (
g2(n)

2,W(K2)

)T
· · ·

(
gL2(n)

2,W(K2)

)T
]T

, (41)

which further allows the evaluation of

Gij(n)
2,11 = gi(n)

2,W(K2)
⊗ Mij(n−1)

11 , i = 1, 2, . . . , L2, j = 1, 2, . . . , P, (42)

Gi(n)
2,11 =

[
Gi1(n)

2,11 Gi2(n)
2,11 · · · GiP(n)

2,11

]
, i = 1, 2, . . . , L2, (43)

G(n)
2,11 =

[
G1(n)

2,11 G2(n)
2,11 · · · GL2(n)

2,11

]
, (44)

so that we can compute

R(n)
12 =

(
G(n)

2,11

)T
RxG(n)

2,11, (45)

r(n)12 =
(

G(n)
2,11

)T
rxd. (46)
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The notation from (45) and (46) is used to process (17) with the CG updates. Hence, in this
step, we follow the initial settings from (21), so that

g(n)
12,W(0) = g(n−1)

12,W(K1)
, (47)

z(n)12(0) = r(n)12 − R(n)
12 g(n)

12,W(0), (48)

c(n)12(0) = z(n)12(0), (49)

γ
(n)
12(0) =

(
z(n)12(0)

)T
z(n)12(0). (50)

Consequently, the CG cycle for the second filter is defined by the relations:

q(n)
12(k1)

= R(n)
12 c(n)12(k1−1), (51)

α
(n)
12(k1)

=
γ
(n)
12(k1−1)(

c(n)12(k1−1)

)T
q(n)

12(k1)

, (52)

g(n)
12,W(k1)

= g(n)
12,W(k1−1) + α

(n)
12(k1)

c(n)12(k1−1), (53)

z(n)12(k1)
= z(n)12(k1−1) − α

(n)
12(k1)

q(n)
12(k1)

, (54)

γ
(n)
12(k1)

=
(

z(n)12(k1)

)T
z(n)12(k1)

, (55)

β
(n)
12(k1)

=
γ
(n)
12(k1)

γ
(n)
12(k1−1)

, (56)

c(n)12(k1)
= z(n)12(k1)

+ β
(n)
12(k1)

c(n)12(k1−1), (57)

for k1 = 1, 2, . . . , K1. The final solution g(n)
12,W(K1)

will represent the initial setting in the
next main iteration of the algorithm [similar to (47)]. The decomposition of this impulse
response is performed in two steps, i.e.,

g(n)
12,W(K1)

=

[ (
g1(n)

12,W(K1)

)T (
g2(n)

12,W(K1)

)T
· · ·

(
gL2(n)

12,W(K1)

)T
]T

, (58)

gi(n)
12,W(K1)

=

[ (
gi1(n)

12,W(K1)

)T (
gi2(n)

12,W(K1)

)T
· · ·

(
giP(n)

12,W(K1)

)T
]T

, i = 1, 2, . . . , L2. (59)

At this point, having the components from (41) and (59), we continue with the devel-
opment associated with the last component filter, starting with the evaluation of

Gij(n)
2,12 = gi(n)

2,W(K2)
⊗ gij(n)

12,W(K1)
⊗ IL11 , i = 1, 2, . . . , L2, j = 1, 2, . . . , P, (60)

Gi(n)
2,12 =

[
Gi1(n)

2,12 Gi2(n)
2,12 · · · GiP(n)

2,12

]
, i = 1, 2, . . . , L2, (61)

G(n)
2,12 =

[
G1(n)

2,12 G2(n)
2,12 · · · GL2(n)

2,12

]
. (62)

Therefore, introducing the notation:

R(n)
11 =

(
G(n)

2,12

)T
RxG(n)

2,12, (63)

r(n)11 =
(

G(n)
2,12

)T
rxd, (64)
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we can further process (18) with the CG method. To this purpose, the initialization relies on
(22), so that the settings are

g(n)
11,W(0) = g(n−1)

11,W(K1)
, (65)

z(n)11(0) = r(n)11 − R(n)
11 g(n)

11,W(0), (66)

c(n)11(0) = z(n)11(0), (67)

γ
(n)
11(0) =

(
z(n)11(0)

)T
z(n)11(0). (68)

Thus, for k1 = 1, 2, . . . , K1, the CG cycle for the third filter consists of the relations:

q(n)
11(k1)

= R(n)
11 c(n)11(k1−1), (69)

α
(n)
11(k1)

=
γ
(n)
11(k1−1)(

c(n)11(k1−1)

)T
q(n)

11(k1)

, (70)

g(n)
11,W(k1)

= g(n)
11,W(k1−1) + α

(n)
11(k1)

c(n)11(k1−1), (71)

z(n)11(k1)
= z(n)11(k1−1) − α

(n)
11(k1)

q(n)
11(k1)

, (72)

γ
(n)
11(k1)

=
(

z(n)11(k1)

)T
z(n)11(k1)

, (73)

β
(n)
11(k1)

=
γ
(n)
11(k1)

γ
(n)
11(k1−1)

, (74)

c(n)11(k1)
= z(n)11(k1)

+ β
(n)
11(k1)

c(n)11(k1−1). (75)

The decomposition of the final solution g(n)
11,W(K1)

results in

g(n)
11,W(K1)

=

[ (
g1(n)

11,W(K1)

)T (
g2(n)

11,W(K1)

)T
· · ·

(
gL2(n)

11,W(K1)

)T
]T

, (76)

gi(n)
11,W(K1)

=

[ (
gi1(n)

11,W(K1)

)T (
gi2(n)

11,W(K1)

)T
· · ·

(
giP(n)

11,W(K1)

)T
]T

, i = 1, 2, . . . , L2, (77)

and provides the final elements for evaluating the estimated impulse response based on (19).
Also, g(n)

11,W(K1)
represents the initialization for the next main iteration of the algorithm,

according to (65).
Summarizing, using (41), (59), and (77), we obtain

g(n)
W =

L2

∑
i=1

P

∑
j=1

gi(n)
2,W(K2)

⊗ gij(n)
12,W(K1)

⊗ gij(n)
11,W(K1)

. (78)

Finally, using the same components, we evaluate the auxiliary matrices (for i = 1, 2, . . . , L2
and j = 1, 2, . . . , P):

Mij(n)
12,11 = IL2 ⊗ gij(n)

12,W(K1)
⊗ gij(n)

11,W(K1)
, (79)

Mij(n)
11 = IL12 ⊗ gij(n)

11,W(K1)
. (80)

These will be used in the next main iteration of the algorithm, in order to compute the
structures from (25) and (42), respectively.
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The resulting iterative Wiener filter (IWF) is based on TOT decomposition and uses
the CG method, which will be referred to as IWF-TOT-CG. Its main steps are summarized
in Table 2, while the CG cycles for solving (16)–(18) are detailed in Table 3.

Table 2. Iterative Wiener Filter Based on a Third-Order Tensor Decomposition and Using the CG
Method (IWF-TOT-CG).

Data: Rx, rxd (estimated statistics based on N data samples)
L = L11L12L2, L12 ≤ L11, L2 ≪ L11L12, P < L12
Initialization:

g(0)
2,W(K2)

=
[

ϵ 0T
L2

2−1

]T
, 0 < ϵ ≤ 1

g(0)
12,W(K1)

=
[

ϵ 0T
PL12 L2−1

]T

g(0)
11,W(K1)

=
[

ϵ 0T
PL11 L2−1

]T

for i = 1, 2, . . . , L2, j = 1, 2, . . . , P :

Mij(0)
12,11 = IL2 ⊗

[
ϵ 0T

L12−1

]T
⊗
[

ϵ 0T
L11−1

]T

Mij(0)
11 = IL12 ⊗

[
ϵ 0T

L11−1

]T

For n = 1, 2, . . . :

Gij(n)
12,11 = Mij(n−1)

12,11 , i = 1, 2, . . . , L2, j = 1, 2, . . . , P

Gi(n)
12,11 = ∑P

j=1 Gij(n)
12,11, i = 1, 2, . . . , L2

G(n)
12,11 =

[
G1(n)

12,11 G2(n)
12,11 · · · GL2(n)

12,11

]
g(n)

2,W(0) = g(n−1)
2,W(K2)

Solve (16)
CG (K2)−−−−−−→

(see Table 3)
g(n)

2,W(K2)

(41)−−→ gi(n)
2,W(K2)

, i = 1, 2, . . . , L2

Gij(n)
2,11 = gi(n)

2,W(K2)
⊗ Mij(n−1)

11 , i = 1, 2, . . . , L2, j = 1, 2, . . . , P

Gi(n)
2,11 =

[
Gi1(n)

2,11 Gi2(n)
2,11 · · · GiP(n)

2,11

]
, i = 1, 2, . . . , L2

G(n)
2,11 =

[
G1(n)

2,11 G2(n)
2,11 · · · GL2(n)

2,11

]
g(n)

12,W(0) = g(n−1)
12,W(K1)

Solve (17)
CG (K1)−−−−−−→

(see Table 3)
g(n)

12,W(K1)

(58),(59)−−−−−→ gij(n)
12,W(K1)

, i = 1, 2, . . . , L2, j = 1, 2, . . . , P

Gij(n)
2,12 = gi(n)

2,W(K2)
⊗ gij(n)

12,W(K1)
⊗ IL11 , i = 1, 2, . . . , L2, j = 1, 2, . . . , P

Gi(n)
2,12 =

[
Gi1(n)

2,12 Gi2(n)
2,12 · · · GiP(n)

2,12

]
, i = 1, 2, . . . , L2

G(n)
2,12 =

[
G1(n)

2,12 G2(1)
2,12 · · · GL2(n)

2,12

]
g(n)

11,W(0) = g(n−1)
11,W(K1)

Solve (18)
CG (K1)−−−−−−→

(see Table 3)
g(n)

11,W(K1)

(76),(77)−−−−−→ gij(n)
11,W(K1)

, i = 1, 2, . . . , L2, j = 1, 2, . . . , P

Mij(n)
12,11 = IL2 ⊗ gij(n)

12,W(K1)
⊗ gij(n)

11,W(K1)
, i = 1, 2, . . . , L2, j = 1, 2, . . . , P

Mij(n)
11 = IL12 ⊗ gij(n)

11,W(K1)
, i = 1, 2, . . . , L2, j = 1, 2, . . . , P

g(n)
W = ∑L2

i=1 ∑P
j=1 gi(n)

2,W(K2)
⊗ gij(n)

12,W(K1)
⊗ gij(n)

11,W(K1)
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Table 3. CG Solutions of the Wiener–Hopf Equations within IWF-TOT-CG.

Solution of (16) :

R(n)
2 =

(
G(n)

12,11

)T
RxG(n)

12,11, r(n)2 =
(

G(n)
12,11

)T
rxd

g(n)
2,W(0) = g(n−1)

2,W(K2)
, z(n)2(0) = r(n)2 − R(n)

2 g(n)
2,W(0), c(n)2(0) = z(n)2(0), γ

(n)
2(0) =

(
z(n)2(0)

)T
z(n)2(0)

For k2 = 1, 2, . . . , K2 :

q(n)
2(k2)

= R(n)
2 c(n)2(k2−1), α

(n)
2(k2)

=
γ
(n)
2(k2−1)(

c(n)2(k2−1)

)T
q(n)

2(k2)

g(n)
2,W(k2)

= g(n)
2,W(k2−1) + α

(n)
2(k2)

c(n)2(k2−1)

z(n)2(k2)
= z(n)2(k2−1) − α

(n)
2(k2)

q(n)
2(k2)

γ
(n)
2(k2)

=
(

z(n)2(k2)

)T
z(n)2(k2)

, β
(n)
2(k2)

=
γ
(n)
2(k2)

γ
(n)
2(k2−1)

c(n)2(k2)
= z(n)2(k2)

+ β
(n)
2(k2)

c(n)2(k2−1)
Solution of (17) :

R(n)
12 =

(
G(n)

2,11

)T
RxG(n)

2,11, r(n)12 =
(

G(n)
2,11

)T
rxd

g(n)
12,W(0) = g(n−1)

12,W(K1)
, z(n)12(0) = r(n)12 − R(n)

12 g(n)
12,W(0), c(n)12(0) = z(n)12(0), γ

(n)
12(0) =

(
z(n)12(0)

)T
z(n)12(0)

For k1 = 1, 2, . . . , K1 :

q(n)
12(k1)

= R(n)
12 c(n)12(k1−1), α

(n)
12(k1)

=
γ
(n)
12(k1−1)(

c(n)12(k1−1)

)T
q(n)

12(k1)

g(n)
12,W(k1)

= g(n)
12,W(k1−1) + α

(n)
12(k1)

c(n)12(k1−1)

z(n)12(k1)
= z(n)12(k1−1) − α

(n)
12(k1)

q(n)
12(k1)

γ
(n)
12(k1)

=
(

z(n)12(k1)

)T
z(n)12(k1)

, β
(n)
12(k1)

=
γ
(n)
12(k1)

γ
(n)
12(k1−1)

c(n)12(k1)
= z(n)12(k1)

+ β
(n)
12(k1)

c(n)12(k1−1)
Solution of (18) :

R(n)
11 =

(
G(n)

2,12

)T
RxG(n)

2,12, r(n)11 =
(

G(n)
2,12

)T
rxd

g(n)
11,W(0) = g(n−1)

11,W(K1)
, z(n)11(0) = r(n)11 − R(n)

11 g(n)
11,W(0), c(n)11(0) = z(n)11(0), γ

(n)
11(0) =

(
z(n)11(0)

)T
z(n)11(0)

For k1 = 1, 2, . . . , K1 :

q(n)
11(k1)

= R(n)
11 c(n)11(k1−1), α

(n)
11(k1)

=
γ
(n)
11(k1−1)(

c(n)11(k1−1)

)T
q(n)

11(k1)

g(n)
11,W(k1)

= g(n)
11,W(k1−1) + α

(n)
11(k1)

c(n)11(k1−1)

z(n)11(k1)
= z(n)11(k1−1) − α

(n)
11(k1)

q(n)
11(k1)

γ
(n)
11(k1)

=
(

z(n)11(k1)

)T
z(n)11(k1)

, β
(n)
11(k1)

=
γ
(n)
11(k1)

γ
(n)
11(k1−1)

,

c(n)11(k1)
= z(n)11(k1)

+ β
(n)
11(k1)

c(n)11(k1−1)

4. Simulation Results

The experimental setup is based on a network echo cancellation scenario [36], as pre-
viously described in Section 2, related to the results reported in Figures 2 and 3. The ex-
periments were performed using MATLAB R2018b (for programming and graphic repre-
sentations), running on a GIGABYTE AORUS 15G XC device (Windows 10 OS) sourced
by GYGABYTE, Taipei, Taiwan, which has an Intel Core i7-10870H CPU with 8 Cores, 16
Logical Processors (@2.21 GHz base speed), and 32 GB of RAM. As a performance measure,
the normalized misalignment (in dB) is involved in all the following experiments. Summa-
rizing, the main goal is to identify an impulse response h of length L = 512 (corresponding
to a network echo path), while the input signal x(t) is an AR(1) process. In this context,
the reference signal d(t) is obtained based on (1), using a white Gaussian additive noise
v(t) with different SNRs. Specifically, three SNR levels are used, i.e., 20 dB, 10 dB, and 0 dB.
The first one corresponds to good SNR conditions, where the noise level is mild, thus
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expecting a good accuracy of the Wiener filter. Second, using SNR = 10 dB corresponds
to moderate noisy conditions, while noticing the influence in reducing the accuracy of
the solution (i.e., an increase in the misalignment). Finally, heavy noise conditions are
considered when SNR = 0 dB, critically influencing the reliability of the Wiener filter.

4.1. IWF-TOT-CG versus WF-CG

In the first set of simulations, the performance of the proposed IWF-TOT-CG is
analyzed according to its main parameters, i.e., K1, K2, and P. The benchmark algo-
rithm involved in comparisons is the WF-CG, using K = 50 CG updates. As shown
in Figures 2 and 3, this value of K is sufficient for the WF-CG to reach the conventional
WF solution. Since L = 512, the decomposition of the IWF-TOT-CG is performed using
L11 = L12 = 16 and L2 = 2.

In Figure 4, the influence of K1 is assessed, i.e., the maximum number of CG updates
used for the two longer filters within the IWF-TOT-CG. Since the third filter (of length
L2

2 = 4) is very short and the corresponding CG parameter (K2) should be much smaller
than its length, it is natural to use the smallest value K2 = 1. In this simulation, the de-
composition parameter of the IWF-TOT-CG is set to P = 2; the influence of this parameter
will be analyzed in an upcoming experiment. Also, the amount of data available for es-
timating the statistics is N = 5L, while SNR = 20 dB. These represent good conditions
for the WF-CG (i.e., the comparing algorithm) to obtain a reliable estimate in terms of
accuracy. Nevertheless, as we can notice from Figure 4, the proposed IWF-TOT-CG reaches
a significantly lower misalignment level (i.e., a better accuracy) for all the values of K1.
A larger value of this parameter leads to a faster convergence rate, but up to a certain
limit. On the other hand, a larger number of iterations also increases the computational
complexity in terms of the number of operations. Consequently, a compromise should be
made. As we can notice from Figure 4, increasing the value of K1 to more than 12 (e.g.,
14) does not lead to performance improvements. Besides, the difference between the cases
K1 = 10 and K1 = 12 is not so apparent (as compared to the difference between K1 = 8 and
K1 = 10), slightly improving the convergence rate, while reaching the same misalignment
level (i.e., accuracy). In this context, using K1 = 10 or 12 are reasonable choices.

2 4 6 8 10 12 14 16 18 20

Iterations (n)

-35

-30

-25

-20

-15

-10

-5

0

N
o
rm

a
liz

e
d
 m

is
a
lig

n
m

e
n
t 
(d

B
)

WF-CG

IWF-TOT-CG, K
1
 = 8

IWF-TOT-CG, K
1
 = 10

IWF-TOT-CG, K
1
 = 12

IWF-TOT-CG, K
1
 = 14

Figure 4. Normalized misalignment of the WF-CG (after K = 50 CG updates) and IWF-TOT-CG with
P = 2, K2 = 1, and using different values of K1. The required statistics are obtained by averaging
across N = 5L data samples, L = 512, and SNR = 20 dB.
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A similar experiment is considered in Figure 5, but using a fixed value for the first CG
parameter (i.e., K1 = 10) and two different values for K2. These represent the minimum and
maximum values for this parameter, i.e., K2 = 1 and K2 = 4, respectively. The maximum
value is associated with the length of the corresponding filter (L2

2). The other conditions
remain the same as in the previous simulation. Under these circumstances, it can be
noticed in Figure 5 that a higher value of K2 does not significantly influence the overall
performance of the IWF-TOT-CG so it is natural to use K2 = 1 in the following experiments.
The experiment from Figure 5 was performed to assess the influence of K2, i.e., the number
of CG iterations for the shorter filter. We should note that similar conclusions can be
obtained when using other values of K1 (for the two longer filters).
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Figure 5. Normalized misalignment of the WF-CG (after K = 50 CG updates) and IWF-TOT-CG with
P = 2, K1 = 10, and using different values of K2. The required statistics are obtained by averaging
across N = 5L data samples, L = 512, and SNR = 20 dB.

Next, the influence of the decomposition parameter P is analyzed in Figure 6. Based
on the previous experiments, the setup used for the IWF-TOT-CG is K1 = 12 and K2 = 1,
while N = 5L and SNR = 20 dB. As shown in Section 2, the decomposition parameter is
chosen such that P ≪ L12, relying on the low-rank feature of the impulse response. For all
the values of P considered in Figure 6, the IWF-TOT-CG outperforms the WF-CG. Even the
minimum value P = 1 produces a reasonable attenuation of the normalized misalignment,
showing improved accuracy as compared to the benchmark algorithm. Moreover, we can
notice that increasing the value of P beyond a certain value does not improve the overall
performance, which also certifies the low-rank approach.

Finally, the last experiment from this first set concerns the influence of different
conditions on the performance of the proposed IWF-TOT-CG, as compared to the WF-CG.
To this purpose, in Figure 7, several scenarios are considered using different amounts of
data for estimating the statistics and lower SNRs. The IWF-TOT-CG uses the same CG
parameters as in the previous simulation, while P = 1. This represents a very advantageous
setup as compared to the WF-CG counterpart. While the benchmark algorithm involves
a single filter of length L = 512, the proposed version combines the estimates provided
by three filters of lengths PL11L2, PL12L2, and L2

2, which have 32, 32, and 4 coefficients,
respectively. Consequently, there is an important reduction in terms of the parameter space,
using only 68 coefficients instead of 512. As a result, due to the significantly smaller data
structures used within the IWF-TOT-CG, the proposed algorithm is much more robust in
harsh conditions, as compared to the WF-CG. This is supported in Figure 7, where the



Appl. Sci. 2024, 14, 2430 16 of 22

IWF-TOT-CG outperforms the WF-CG algorithm, especially when using a low amount of
data for estimating the statistics (e.g., N = L in Figure 7b) and/or in noisy environments
(e.g., SNR = 10 or 0 dB in Figure 7c and d, respectively).
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Figure 6. Normalized misalignment of the WF-CG (after K = 50 CG updates) and IWF-TOT-CG with
K1 = 12, K2 = 1, and using different values of P. The required statistics are obtained by averaging
across N = 5L data samples, L = 512, and SNR = 20 dB.
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Figure 7. Normalized misalignment of the WF-CG (after K = 50 CG updates) and IWF-TOT-CG with
K1 = 12, K2 = 1, P = 1, and using different amounts of data (N = ML, with L = 512) to estimate
the required statistics, under different SNR conditions. (a) M = 2 and SNR = 20 dB; (b) M = 1 and
SNR = 20 dB; (c) M = 2 and SNR = 10 dB and (d) M = 5 and SNR = 0 dB.
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4.2. IWF-TOT-CG versus IWF-TOT

The second set of experiments focuses on the comparison between the proposed IWF-
TOT-CG and its counterpart recently developed in [18], namely IWF-TOT. This iterative
Wiener filter is also based on TOT decomposition but uses direct matrix inversion to solve
the associated sets of Wiener–Hopf equations. Therefore, in terms of their decomposition,
both algorithms will use the same setup, i.e., L = L11L12L2, with L11 = L12 = 16 and
L2 = 2. Besides, the IWF-TOT-CG involves its specific CG cycles, using the settings K1 = 12
and K2 = 1 (as in the previous set of simulations).

In Figure 8, the two TOT-based algorithms are compared for different values of the
decomposition parameter P under favorable conditions, i.e., N = 5L data samples (to
estimate the statistics) and SNR = 20 dB. While for P = 1 the performances are very similar,
the CG-based version achieves a better accuracy for a larger value of P. This supports
the advantage of the line search methods (like CG), as compared to the traditional matrix
inversion approach, which is also indicated in other previous works [33–35]. As shown in
the experiment related to Figure 6, increasing the value of P beyond a certain value does
not lead to performance improvement, while increasing the computational complexity
on the other hand. In fact, this trade-off relies on the low-rank approach. As indicated
in [18], for network impulse responses, the rank of the corresponding matrices is much
lower than L12, e.g., usually less than L12/5. In our scenario, this leads to a range for P
between 1 and 3. This was also previously supported in Figure 6, where we can notice
that the misalignment curves for P = 2 and P = 3 are very similar. Consequently, there is
no reason for choosing P beyond these values, since there is no performance gain while
paying in terms of computational complexity.
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Figure 8. Normalized misalignment of the IWF-TOT [18] and IWF-TOT-CG (with K1 = 12 and
K2 = 1) using different values of P. The required statistics are obtained by averaging across N = 5L
data samples, L = 512, and SNR = 20 dB.

The robustness of the line search methods in noisy environments is also an important
feature to be considered. The experiment provided in Figure 9 outlines this gain. As we can
notice, even for P = 1 (which led to similar results in good SNR conditions), the IWF-TOT-
CG performs better as compared to the previous IWF-TOT [18] in low SNR environments.
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Figure 9. Normalized misalignment of the IWF-TOT [18] and IWF-TOT-CG (with K1 = 12 and
K2 = 1) using P = 1. The required statistics are obtained by averaging across N = 5L data samples
(with L = 512), while (a) SNR = 10 dB and (b) SNR = 0 dB.

4.3. IWF-TOT-CG versus IWF-NKP-CG

The last set of experiments aims to evaluate the Wiener filters based on the CG method
in conjunction with the decomposition-based approaches. The proposed IWF-TOT-CG is
compared with a recently designed version of the iterative Wiener filter [33]. This algorithm
(namely IWF-NKP-CG) also uses the CG method to solve the associated Wiener–Hopf
equations, but it relies on the second-order NKP decomposition, thus following the initial
approach from [8]. In this case, the length of the filter is factorized as L = L∗

1 L∗
2 , while the

low-rank approach relies on the decomposition parameter P∗ < L∗
2 . In our scenario that

considers an impulse response of length L = 512, this decomposition is performed using
L∗

1 = 32 and L∗
2 = 16. The IWF-NKP-CG involves two sets of Wiener–Hopf equations,

which correspond to two component Wiener filters of lengths P∗L∗
1 and P∗L∗

2 . Their
solutions are obtained based on the CG method, using a maximum number of updates
(denoted by K∗). Since in the involved setup, we have L∗

2 = L12, it is reasonable to use
K∗ = K1.

In Figure 10, the required statistics are obtained by averaging across N = 5L available
data samples, while SNR = 20 dB. These represent reasonably good conditions, which favor
reliable estimates. Nevertheless, the IWF-NKP-CG [33] is outperformed by the proposed
IWF-TOT-CG for different values of their decomposition parameters. This performance gain
results from the TOT decomposition compared to the second-order NKP-based approach,
which further supports the initial findings from [18]. For this experiment, the values of P
and P∗ were selected according to the low-rank approach. Concerning the values of P (for
IWF-TOT-CG), these considerations were previously indicated related to Figures 6 and 8.
Similar aspects can be outlined when choosing the values of P∗ (for IWF-NKP-CG). As re-
cently indicated in [33] and previously supported in [8], for network impulse responses,
the rank of the corresponding matrix of size L∗

1 × L∗
2 (where L∗

1 × L∗
2 = L) associated with

the reshaped impulse response is much lower than L∗
2 , e.g., usually less than L∗

2/6. In this
context, it is reasonable to consider P∗ < 3 in Figure 10, in order to properly address the
trade-off between performance and complexity. Otherwise, using larger values of P∗ will
not justify the performance gain, while increasing the computational amount.
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Figure 10. Normalized misalignment of the IWF-NKP-CG [33] (with K∗ = 12) and IWF-TOT-CG
(with K1 = 12 and K2 = 1) using different values of P∗ and P, respectively. The required statistics are
obtained by averaging across N = 5L data samples, L = 512, and SNR = 20 dB.

Finally, the IWF-NKP-CG [33] and the proposed IWF-TOT-CG (using P∗ = P = 1)
are compared in more challenging conditions, when using smaller amounts of data for
estimating the required statistics, i.e., N = 2L and N = L. As we can notice in Figure 11,
the performance gain of the IWF-TOT-CG is more apparent in these cases, which shows the
robustness of the TOT-based decomposition in conjunction with the CG method.
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Figure 11. Normalized misalignment of the IWF-NKP-CG [33] (with K∗ = 12) and IWF-TOT-CG
(with K1 = 12 and K2 = 1) using P∗ = P = 1, while SNR = 20 dB. The required statistics are obtained
by averaging across N = ML data samples (with L = 512), where (a) M = 2 and (b) M = 1.

5. Conclusions and Future Works

In this paper, we have developed an iterative version of the Wiener filter using the CG
method and exploiting a tensorial decomposition of the impulse response. The resulting
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IWF-TOT-CG combines the solutions of three sets of Wiener–Hopf equations which are
solved with CG updates, thus avoiding matrix inversion operations. An important gain
is related to the dimensionality reduction in a long-length system identification problem,
which can be reformulated using a reduced set of coefficients, corresponding to three
(much) shorter filters. This approach fits very well with the identification of low-rank
impulse responses, like in echo cancellation.

In terms of its performance, the proposed IWF-TOT-CG outperforms the conventional
Wiener filter, especially in some challenging scenarios. Here, we can mention the cases when
dealing with a small amount of available data (to estimate the statistics) or working in low
SNR environments. While the accuracy of the conventional Wiener filter is highly affected
in such conditions, the proposed version (which operates with smaller data structures) is
still robust and provides reliable solutions. Moreover, the IWF-TOT-CG performs better
as compared to the previously developed IWF-TOT [18], which involves matrix inversion
operations to solve the Wiener–Hopf equations. Also, the proposed algorithm provides
improved performance as compared to its counterpart based on the second-order NKP
decomposition, i.e., the IWF-NKP-CG [33].

Future works will focus on three main directions. First, we can exploit other line
search methods to solve the Wiener–Hopf equations, like those based on the coordinate
descent technique [34,35]. A comparison between these methods is beyond the scope of
this paper; however, this could open the path toward using inexact line search methods
in conjunction with decomposition-based algorithms. Among them, we can mention the
dichotomous coordinate descent technique [40–44], which is very appealing in terms of
computational efficiency. Second, another direction for future works targets the extension
to higher-order tensors, which could lead to improved decomposition-based solutions
and higher dimensionality reduction. Third, it would be highly useful to extend the
decomposition-based approach and the tensorial framework to other potential solutions
used for system identification problems, like the Kalman filter and different adaptive
filtering algorithms. These developments could be further used in real-world applications,
like echo cancellation, active noise control, and interference reduction.
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