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Abstract: The article presents an outline of the concept of a prototype system allowing for the
optimization of inventory management in a diagnostic laboratory on the basis of patients results.
The effectiveness of laboratory diagnostics depends largely on the appropriate management of
resources and the quality of tests. A functional quality management system is an integral element
of every diagnostic laboratory, ensuring reliability and appropriate work standards. This system
includes maintaining correct and reliable analytical test results as well as the optimal use of the
laboratory equipment’s processing capacity and the appropriate organization of the supply chain—
both analytical material and reagents. It is extremely important to avoid situations in which tests
cannot be performed due to a lack of reagents, the overloading of analyzers, or improper calibration.
Therefore, the accurate prediction of the number of orders is crucial to optimize the laboratory’s
operations, both in the short term—for the next few hours and minutes—and in the longer term,
even monthly, which will allow for the appropriate planning of reagent stock. As part of the research
presented in this article, machine learning methods were used to implement the above functionalities,
which allowed for the development of a prototype of a laboratory optimization system using patient
test results as a basis.

Keywords: machine learning; optimization; quality control; laboratory diagnostics

1. Introduction

The analyzed example of Diagnostyka S.A. diagnostics network conducts over 80 mil-
lion tests annually, serving more than 11 million patients per year and processing over
60 thousand samples per day. Managing such a large volume of data poses significant
infrastructural challenges, encompassing various Big Data aspects. The research presented
herein aimed to develop predictive methods for both the overall number of tests and the
test outcomes for individual patients based on their previous results. This prediction allows
for the optimization of laboratory work on multiple levels. One of these levels involves
optimizing inventory management. By knowing the projected number of tests, it is possible
to precisely adjust the inventory of reagents and consumable materials, such as tubes, to
minimize storage costs while maintaining workflow efficiency in analyzers and preventing
downtime due to shortages of consumables and reagents. The second level of optimization
involves quality control. Currently, quality control is performed at least once a day for a
specific parameter, sometimes more frequently. If the control measurement indicates any
deviations, recalibration of the device is necessary. Anticipating the need for recalibration
by predicting the meta-characteristics of a parameter in patient tests could reduce the num-
ber of control measurements required. This would decrease the consumption of control
materials and analyzer runtime necessary for statistical assessments of both preliminary
and actual control measurements.

Appl. Sci. 2024, 14, 2429. https://doi.org/10.3390/app14062429 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14062429
https://doi.org/10.3390/app14062429
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8080-2254
https://orcid.org/0000-0002-9730-9594
https://orcid.org/0000-0001-8757-360X
https://doi.org/10.3390/app14062429
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14062429?type=check_update&version=1


Appl. Sci. 2024, 14, 2429 2 of 23

The diagnostic process described in Figure 1 processes data acquired from one of
the largest companies in Poland that carries out laboratory tests on biological materials
obtained in their own facilities and supplied by customers such as hospitals, health clinics,
and collection points. The research was conducted using the 10 most frequently performed
types of tests, which accounted for a total of 83% of the tests, resulting in a set of 140 million
tests over a three-year period.
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In quality control, methods that involve assessing the quality of laboratory test results
based on results obtained from control materials provided by reagent manufacturers
have been used for decades. With current production precision, the standard deviations
calculated based on control materials are minimal. The necessity for quality control is
assessed in relation to exceeding standards calculated based on these deviations, resulting
in a very rigorous quality maintenance regime. This ensures a very precise testing process.
However, as a consequence of such procedures, many device calibrations and control
measurements are performed unnecessarily because the device does not actually exhibit
any real deviations. An alternative is the PBRTQC (Patient-Based Real-Time Quality
Control) approach, discussed more comprehensively in Section 3.4, essentially involving
conducting and maintaining quality control not based on artificial control materials but
on indicators derived from actual patient test results and the distribution characteristics
obtained from these results.

PBRTQC, emerging as an alternative or complementary method to quality control, has
attracted considerable interest, and there are numerous strategies that interested users can
explore for application in their own laboratories. Nonetheless, there are lingering concerns
regarding its effectiveness and practical clinical contexts. Its ability to be applied has been
brought into question. According to Tony Badrick [1], there is minimal software assistance
available, and significant time and statistical expertise are necessary to establish a PBRTQC
program. Official guidance documents outlining the pros and cons of the methods are
lacking. However, the Clinical and Laboratory Standards Institute guidelines on risk-based
QC stand out as an exception, suggesting that the monitoring of aggregated patient results
as a QC approach is unaffected by matrix effects.

Current research challenges in the context of patient-based quality control methods
include issues related to developing specific methods and guidelines to establish norms
and protocols regarding optimal quality indicators for monitoring and analyzing patient
data in real time [2,3] and the integration of data from various medical and laboratory
systems for effective quality monitoring [3], as well as the implementation of information
systems—the development of IT tools enabling integrated analyses of patient data with
laboratory systems and prompt responses to detected irregularities [2,4].
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The present study aims to demonstrate that such an approach can indeed be applied
in practice. However, we go further by expanding the functionality of methods based on
patient study data. The innovativeness of the proposed solution lies in utilizing these data
not only for quality control but also for optimizing reagent management by forecasting
demand, optimizing device operating time, and enabling the possibility of profiling patients
based on their results. The subject of this analysis is a solution regarding the use of machine
learning in the quality control of medical analyzers and laboratory workflow management
elements using knowledge obtained from order data, as well as the solutions found in the
literature regarding the use of various machine learning models in calibrating PBRTQC
methods. They also propose different monitoring indicators. However, they typically focus
on individual studies, single-analyte parameters [2–5]. In the proposed solution, the use
of data from analytical studies can significantly influence the broader functioning of the
laboratory in various aspects.

Patient data that are dispersed throughout the national network of laboratories is
stored on distributed servers as part of the IT infrastructure of analytical laboratories. To
make these data available for processing as part of the presented work, it was necessary
to unify and aggregate the data into one common, unified database model of data and
metadata. The models developed in this work pertain to the universal, unified, and aggre-
gated metadata model describing the results of laboratory tests conducted on patients. In
addition, structures were developed to store the operating characteristics of the laboratories,
including the biochemical analyzers, their load, efficiency, and the entire quality control
process of the tests performed on these analyzers. This also enabled the analysis of these
aspects of laboratories’ operations.

As part of the described research, IT development work resulted in a central server
that integrated over 140 million tests conducted on approximately 11 million patients over
a three-year period. The data also include information on the characteristics of the tests
performed, device load, and quality control parameters for the laboratory process. The
data collected in this manner form the basis for further analysis, which is the subject of the
work presented here.

The issue of data diversity from different laboratories was solved at the level of
data integration. Data from each laboratory required a separate data parser and the
transformation of its schema into a common schema developed for analysis on a central
server, where the sources were integrated (Figure 1). However, if we were to look at the
variability of data in terms of distribution characteristics, this problem is basically solved
by the size of data streams. The laboratories that we integrated are located in large cities,
each of them is itself a large source of highly diversified data (both hospitals, patients from
outpatient clinics and clinics, and individual patients). Each laboratory belongs to the
same diagnostic network, which means that it is subject to the same corporate regulations,
has the same standards and procedures, and often has devices of the same class and type.
Therefore, the common problem of maintaining consistent test conditions across facilities
due to variations in sample collection and analysis times does not occur here. In each case,
these are demographically diverse data covering the entire spectrum of the patient cohort.
Bias is thus negligible. However, the analyses were performed on full, integrated sets,
where a single patient or parameter was compared against a nationwide cross-section. It
was different only in the case of assessing the load of a single device, where the data came
from only one location. But the comparative background was historical data from the same
analyzer, and the problem of location did not play a role.

2. Materials and Methods

The initial step in this process involved creating a universal and unified metadata
model that allows for the collection of key characteristics of data, including numerical,
textual, and qualitative information, for selected laboratory tests. The resulting universal
data model was developed using the Oracle relational database engine. Dedicated external
data parsers were implemented to migrate selected data concerning a specific type of
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research from a specific period of time to a previously developed universal data aggregation
database model.

The key steps in implementing these tasks were to ensure the following:

• Data synchronization between laboratories—the decentralized database system re-
sulted in data inconsistency in the context of handling single-patient data in dif-
ferent analytical laboratories. This issue had to be handled while still considering
data anonymization.

• The anonymization of data processed in the system—in order to avoid processing
the sensitive personal data of patients, the process of data integration had to be
anonymized. This was achieved by storing only the patient’s date of birth and gender
in the universal, integrated data model. The remaining personal data are anonymized
and masked with an appropriate hash function to a unique key, making it impossible
to read the patient’s sensitive personal data.

• Consistency of data between laboratories—in order to store data in a universal model,
it was necessary to normalize the data features and characteristic parameters, which
describe the diagnostic process, test results, and qualitative and quantitative parame-
ters. The values initially used were significantly different in various laboratories and
diagnostic analyzers.

• Conducting a multi-day data import and integration process while maintaining full
availability of source systems in which the diagnostic process was carried out in real
time, resulting in the appearance of new data and updating the source databases of
research results.

The data aggregated as part of the research are stored on a central server. The server
is implemented on an HPC server with a Supermicro H11SSL motherboard (Super Micro
Computer, Inc., San Jose, CA, USA) and an AMD EPYC 7401P processor (Advanced Micro
Devices, Inc., AMD, Santa Clara, CA, USA). It has 128 GB of RAM memory and SSD drives
with a total capacity of 12 TB. The operating system used is Windows Server 2019, and the
database engine is Oracle.

As part of the research, Figure 1 presents a schematic representation of the four basic
stages of the work conducted in the group of machine learning tasks.

(1) The analysis of anonymized data from the blood test results of patients, the segmenta-
tion of sequence results for each patient, and the creation of patient profiles based on
these results. To achieve this, we employed methods for segmenting sequential data,
including unsupervised learning methods such as Kohonen networks (self-organizing
maps, SOMs), which enable correlational learning to search for objects similar to
each other in terms of sequence characteristics. Sequence analysis tools, including
PrefixSpan 2.4.0 and RNN (LSTM) (from Keras framework), were used for modeling.
The models were trained on datasets of measurement sequences for patients. The
test set comprised 49,200 records. After filtering out only patients who underwent
tests at least five times, the dataset size was reduced to approximately 4100 series.
Validation was conducted on a set consisting of 1906 series with lengths ranging from
5 to 10 measurements.

(2) The obtained patient profiles were utilized to personalize the prediction models (sub-
models) for the number of test orders. By understanding the characteristics of patient
groups, we can determine the likelihood of whether patients from a particular group
will repeat tests (those under treatment) or have completed therapy. Predicting orders
from a group that does not repeat tests (first tests) requires a different type of modeling
because we lack knowledge about previous results. Therefore, we can only rely on
time series analysis and autocorrelation. Exponential smoothing models were utilized
to analyze time series data related to the overall number of orders. This enabled the
development of prediction models for the global number of orders in patient groups,
with an accuracy range of 91–99% Determination Coefficient (R2), depending on the
parameter. The analysis of prediction accuracy was performed on a dataset concerning
11 analytes, totaling 1,388,845 orders from patients over six months (calculated from a
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period of at least 3 months from the two previous years from the same time periods).
The means and standard deviations of these samples were compared.

(3) By having datasets of results for a specific test parameter, meta-characteristics can
be observed based on all the results. Changes in their distribution may indicate
disturbances related to the calibration of devices such as analyzers. This approach to
quality control, based on measurement data, allows for the effective detection of the
necessary calibration moment and constitutes another machine learning task. Multi-
layer perceptrons (MLPs), which are a type of neural network, were used and found
to be effective. For the analysis, 16.5 thousand measurement results and 13 calibration
points were utilized. As a result of the study, 9 parameters which, in a combined
model, enable the assessment of measurement effectiveness were developed.

(4) The last task involved predicting analyzer overload. Diagnostic laboratories have
a cyclic daily pattern of work, with the testing of samples from hospital patients
and medical units continuing throughout the day. However, the largest quantity of
samples is collected during the peak period, when material is collected from partners
serving as blood collection points. This peak is associated with the transfer of material
to couriers, which can occur once or twice within an hour of operation. If all the
material flows into the device simultaneously, the queue may exceed the analyzer’s
capacity. By anticipating the moment of overflow, we can direct the material to other
less burdened devices to avoid queuing and increase overall daily testing efficiency.
Logistic regression and CART classification trees were used to create effective models
for predicting maximum load. In the case of analyzer overload, data pertained
to the six most burdened laboratory centers and covered the period of 2020 and
2021. Through aggregating information on the central server, data from a total of
434 analyzers processing data in these laboratory centers were obtained. Taking
into account their cumulative load, this number can be reduced to 201 analyzers,
assuming that optimization will only affect analyzers performing an average of at
least 21 tests per day, and similarly, 88 analyzers performing at least 100 tests per
day and 10 analyzers performing at least 1000 tests per day. The group of the most
burdened analyzers was considered (as the benefit from their optimization is the
greatest). For testing, to avoid systematic errors associated with seasonal load, a
sample of 30 daily runs was randomly selected from 5 random analyzers from the
group of the most burdened (data concerning one day of work for 5 random analyzers)
from a period of at least 3 months of work (the years 2020 and 2021 were considered).
As a control group, 30 random daily runs were selected from the two previous years
and the same time period (appropriate 3 months, appropriate 5 random analyzers).
On average, this group of analyzers performs approximately 23,000 tests per day.

3. Results
3.1. Patient Profiling—Clustering

The segmentation of patient profiles was established on the premise that healthy
patients undergoing only follow-up tests typically do not repeat those tests within the
same year. The research findings do not allow for predicting future orders in this group.
However, there exists a sizable subset of patients (approximately 10%) who undergo tests
more than 10 times, indicating progress in their therapy. Some patients repeat tests until
reaching a specific expected level of the parameter, signifying recovery or another condition,
such as pregnancy in the case of the bHCG test. In these cases, it is possible to deduce from
the test results whether they will return for additional tests and within what time frame.

The initial step involved demonstrating the statistical differences between patient
groups to facilitate further conclusions. Self-organizing maps (SOMs) were utilized for
this purpose [6]. SOMs are Kohonen neural networks designed for unsupervised learning,
particularly useful for clustering sequential data like time sequences or time series. They
can cluster and analyze patterns within these data. The process of clustering sequence data
using SOMs involves training a SOM map on the data to represent the data’s structure and
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relationships [7]. SOMs can identify similar patterns in temporal sequences and group them
based on their similarity characteristics. For instance, when analyzing temporal sequences
in patient data, SOMs can assist in identifying similar study patterns.

The implementation of the models was carried out in Python using the MiniSom
library and various tools for data analysis and machine learning, such as numpy, pandas,
keras, tensorflow, etc. SOM was used for clustering sequence data of patient examinations
and then presenting the results in the form of a cluster map. Cluster and sequence data
were then used to train LSTM networks for future patient classification into specific profiles.
The data underwent preprocessing, including normalization and padding/extending to a
constant length. In the next stage, appropriate parameters for the self-organizing map were
selected, and then the map was trained on the data. The implementation in the MiniSom
library does not require the predefinition of layers or neurons. A SOM is a one-dimensional
layer containing neurons, each of which is connected to all inputs, thus adapting to input
vectors and their lengths.

The outcome of this process was a mapping of temporal sequences based on their
similarities, enabling the visualization and identification of clusters or patterns, which
proved valuable for analyzing and understanding the structure of the sequence data (see
Figure 2) [8].
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The research results presented in Figure 2, characteristic of the four selected clus-
ters, illustrates how typical variations in the outcomes of a given study may manifest in
individual patients. We have a normalized value of the bHCG test on the Y axis, and
the number of tests in the series is placed on the X axis. In individuals who constantly
monitor the level of a certain parameter (in this case, betaHCG), this level may undergo
characteristic fluctuations, which may indicate a disorder (in this case, desired pregnancy
is often the case), effectiveness or ineffectiveness of therapy, etc. Depending on changes in
the parameter value, further steps in therapy can be predicted and, consequently, so can
specific patient behavior regarding further tests (whether a repeat test should be expected
or not).

Clustering was performed using self-organizing maps, and the number of clusters was
selected based on the Silhouette index. The algorithm takes a list of numerical sequences,
map size, learning rate, sigma, and network size as its input and produces a list of clusters



Appl. Sci. 2024, 14, 2429 7 of 23

with sequences assigned to them as its output. Silhouette Index Analysis is a method used
to interpret and validate consistency across data clusters. The indicator value measures the
similarity of an object to its own cluster compared to other clusters. It can be used to study
the separation distances between resulting clusters. The ratio is calculated by averaging
the distance between clusters (a) and the distance to the nearest cluster (b) for each sample.

Additionally, the PrefixSpan sequence pattern discovery method was employed [9].
This method aims to identify the most frequently occurring sequences of events based on
a list of sequences and a minimum support value that determines their frequency. The
algorithm also identifies the longest sequences, assuming a minimum number of repeti-
tions. The algorithm also identifies the longest sequences, assuming a minimum number of
repetitions. The results are sorted based on the specified criteria. The method presented
produces a set of sequence patterns. Each tuple in the set contains two values: the support
of the pattern and the recognized sequence, which is a list of cyclically repeated values.
The data were discretized (qualitized) using the KBinsDiscretizer method [10] from the
sklearn.preprocessing library to ensure they could be used with the PrefixSpan method.
Discretization is the process of transforming continuous data into discrete values for numer-
ical processing. The method used grouped variable values into countable containers and
assigned each a unique integer while maintaining the ordinal relationship between them.

This research study proposes a third algorithm for classifying sequences into indi-
vidual categories using LSTM recurrent neural networks [11]. The recurrent network is
trained using the sequence and the SOM clustering result from the previous method. Test
data are fed to the trained network to determine the correct operation of the algorithm.
The resulting classifier can be used to classify patient data. A recurrent neural network
is a type of artificial neural network that creates a directed or undirected graph along a
time sequence [12]. Its use demonstrates the dynamic behavior of data over time. Unlike
feedforward neural networks, recurrent neural networks use their internal state (memory)
to analyze sequences of variable-length input data. LSTM (Long Short-Term Memory)
is a type of recurrent neural network that is designed to work with sequential data such
as text, time series, audio, or action sequences. It has the ability to remember long-term
dependencies in data [13].

LSTM is distinguished by its capacity to retain information for longer periods than
standard RNNs, thereby eliminating the vanishing gradient problem that occurs in classic
RNNs. This is accomplished through the use of special structures known as ‘gates’ that
determine which information should be retained and which should be discarded during
sequence processing [14].

The data are divided into training and testing sets (80:20) to train the model and
evaluate its performance, as well as its accuracy on data it has not seen before. The utilized
recurrent neural network model consists of the following layers:

• Input layer: The number of features in the input data depends on the lengths of series
(sequences).

Hidden layers:

• LSTM layer: 100 neurons—A type of recurrent network that utilizes special units in
addition to standard units containing memory. Thanks to these special cells, they
can store information in memory for a long time, allowing them to learn long-term
dependencies.

• Dropout: 50% dropout rate. No neurons; it is a regularization layer. It is a layer that
randomly sets input units to 0 with a certain frequency at each step during training,
which helps prevent overfitting.

• Dense layer (hidden layer): 100 neurons with ReLU activation function.
• Output layer: Dense layer: The number of outputs, which is equal to the number of

clusters (25 in this case) with softmax activation function.

The training process involves the use of the categorical_crossentropy loss function,
which is typically used in multi-cluster classification tasks where a sequence can belong
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to one of several categories and the model must determine the appropriate category. The
recurrent network was trained multiple times, and the average results are presented in
Figure 3. A graph of loss and correctness during specific epochs of data training is also
provided for the best result. The results of training and testing recurrent neural networks
for recognizing sequences belonging to particular categories were 91.79%. The graphs
presented in Figure 3 illustrate the training process by showing the accuracy and loss values
in individual epochs.
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Accuracy and loss graphs are common tools used in training recurrent neural networks
(RNNs) to monitor the performance and progress of the model during training. Accuracy
refers to the proportion of correctly classified instances among the total instances. In the
context of RNNs, an accuracy graph shows how well the model is performing in terms
of making correct predictions. Accuracy is plotted against the number of training epochs
(iterations through the dataset). At the beginning of training, accuracy is low as the model
is still learning patterns in the data. As training progresses, accuracy increases as the model
learns to make better predictions. Accuracy graphs provide insights into whether the model
is learning and improving over time. A consistently increasing accuracy curve indicates
that the model is learning effectively, while fluctuations or a plateau may suggest issues
such as overfitting or underfitting.

Loss, also known as error, measures how far the predicted values are from the actual
values. A loss graph shows the value of the loss function (categorical cross-entropy) over
the training epochs. The goal during training is to minimize the loss, that is, to make the
predicted values as close as possible to the actual values. Similar to accuracy, loss is plotted
against the number of training epochs. At the beginning of training, the loss is high as
the model makes random predictions. As training progresses, the loss decreases as the
model adjusts its parameters to make better predictions. Loss graphs help monitor the
convergence of the model during training. A decreasing loss curve indicates that the model
is learning and adjusting its parameters effectively.

Monitoring both graphs during training helps to assess the performance and conver-
gence of the recurrent neural network.

3.2. Prediction of the Number of Orders—Exponential Smoothing

As part of the research, a universal model was selected to suit diverse time series of
various types of research and provide precise data on the number of orders aggregated
monthly. The chosen forecasting model is based on exponential smoothing, which uses a
weighted moving average to reduce variance and predict future values of the series. The
exponential methods employed include Brown’s Model, Holt’s Linear Model, and Winters’
Model, all time series forecasting techniques.
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The Winters’ Exponential Smoothing Model is an extension of the classic exponential
smoothing model and takes into account seasonality and trends in the data [15].

• Level Component: Represents the baseline level of data over a given period of time. In
Winter’s Exponential Smoothing Model, it is updated according to the last observation
and takes into account current level changes.

• Seasonal Component: Represents cyclical changes in data, such as months of the year,
days of the week, etc. It is accounted for in Winter’s model by including a seasonal
factor modifying the forecasts.

• Trend Component: Represents a long-term upward or downward trend in the data. It
is included to predict future trend changes.

Exponential smoothing is a forecasting technique that assigns exponentially decreasing
weights to historical observations. This means that the future value is not only dependent
on the last observed value but on the entire series of values. The influence of older values
is smaller than that of newer values. It is important to note that this technique assumes
that the future value depends on the entire series of values.

Exponential smoothing models are characterized by four parameters (α, β, γ, ϕ), and
various initialization methods are considered. The β parameter controls the trend, while the
ϕ parameter controls the strength of extinguishing the trend. The γ value is responsible for
seasonality in the model. The main challenge in the algorithm is selecting the appropriate
parameters to achieve the most accurate forecasts. Furthermore, the model allows for
an independent determination of the nature of each component—trend, seasonality, and
residuals—detecting whether each component is either additive or multiplicative. It is
also possible to assume that a component does not appear in the series, particularly for
trend and seasonality. To shorten the notation, we use the standard ETS designation for
exponential smoothing models. The model components are represented by the letters E
for error, T for trend, and S for seasonality. The appropriate symbols for each component
type are then inserted: A for additive, M for multiplicative, and N for none (only for trend
and seasonality). In the case of a damped trend, the letter ‘d’ is added. For instance, a
model refers to a set of models with additive errors, a multiplicative damped trend, and
no seasonality.

Subsequent modifications and extensions of this algorithm gave it the form currently
popularly used: AAA ETS, i.e., AAA = Additive Error, Additive Trend, and Additive
Seasonality; ETS = Exponential Triple Smoothing algorithm [16].

The research scenario stated that the ten parameters with the highest reagent con-
sumption (i.e., the largest number of tests) would be selected for testing. A list of the ten
most frequently performed tests was compiled, taking into account that some tests do not
require reagents (such as blood count tests or urinalysis). Although bHCG was only ranked
43rd, it was included in the list due to the repeated tests on this hormone and its prediction
being used as a reference value.

Three separate forecast sub-models were developed for each of the tests mentioned
in Table 1, one for each patient profile. Furthermore, it was noted that order values on
weekends seldom exceed 5%. As a result, separate models were created for weekend
forecasts. In total, 33 time series simulations were conducted, each spanning 21 months
(with a three-month delay for the initial forecast). The total number of regular forecasts
was 693, with an additional 33 weekend forecasts. Figure 4 provides a few examples of
individual forecasts.
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Table 1. Number of tests on individual parameters.

No. TEST_CODE NAME Number of Tests

1 100 TSH 1,364,261
2 20 ALT 858,255
3 61 CRP 763,815
4 21 AST 581,132
5 101 FT4 483,112
6 13 Potassium 465,509
7 40 Iron 335,365
8 12 Sodium 287,343
9 114 Prolactin 102,062
10 112 Estradiol 72,785
. . . . . . . . . . . .
43 116 Beta-HCG 55,689
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A prediction plot with confidence intervals overlaid on plotted historical data from
the same period is shown in Figure 4. The forecasts were calculated based on data from two
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three-month periods from each of the three previous years; therefore, the timeline (x-axis)
cannot be regarded as a continuous range but rather as individual measurement points.
Each of the plots depicts the trend and prediction for a different examined parameter. It can
be observed that at some points, the prediction lags by one time step from the historical data;
however, the confidence intervals cover the variability quite well, especially considering
that the studied period includes the time of the pandemic. It is also worth noting that
the period during which the models were examined coincided with the pandemic, which
disrupted the blood research market, affecting its dynamics.

Table 2 presents the results of forecasts for 11 factors, including the 10 most commonly
performed plus bHCG, over a six-month period. The forecasts were calculated based
on data from two three-month periods from each of the three previous years during the
same periods of the year. The table compares the averages and standard deviations of
these samples.

Table 2. Results regarding the number of forecasts and the corresponding parameters.

No. of Tests (Parameters) 11

RSS Residual Sum of Squares 4,711,975
MAE Mean Absolute Error 1559
RMSE Relative Mean Square Error 0.01

d Relative Average Deviation 0.08
r Correlation Coefficient 0.99

R2 Determination Coefficient 0.98
MAPE Mean Absolute Percentage Error 2.16%

The Mean Absolute Percentage Error (MAPE) is the percentage error calculated sepa-
rately for each parameter within a given set of forecasts and then averaged. The MAPE
value of 2.16% indicates the precision of the models. Figure 5 shows a scatter plot of the
model predictions compared to the observed order quantities.
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Figure 5. A scatter plot of model predictions against observed order quantities. The blue dots
indicates the actual values, while the red line indicates the predicted model, while the dotted red
lines indicate the confidence interval.

Figure 5 shows a graphical representation where, on the Y axis, we have the predictions
made by a model and, on the X axis, we have the actual observed quantities of orders.
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Lines representing confidence intervals in a scatter plot indicate the range within which
the true values of the data points are likely to fall with a 90% level of confidence. In
other words, they provide an estimation of the uncertainty associated with the predicted
values. Typically, the narrower the confidence interval, the more precise the predictions are
considered to be.

3.3. Classification of Analyzer Overload—Decision Trees and Logistic Regression

The objective was to develop models that characterize the utilization patterns of
analyzers in different time intervals and create efficient models based on them that describe
the temporal variability. This enables the representation and prediction of their successive
values in the future. The developed mechanisms optimize the workload of analyzers. The
objective of the task was to eliminate periods of excessive workload for analysts, which
cause bottlenecks, accelerated wear, and delays in issuing test results. Additionally, it is
essential to reduce the time during which a sample awaits the completion of the requested
analysis. The workload for analysts should be evenly distributed, ensuring scheduled
downtime for maintenance and other service activities related to the equipment.

The initial phase of data processing in the acquisition, parsing, and analysis process in-
volved creating techniques to identify workload limits for analyzers, followed by optimiza-
tion. These mechanisms were then tested and optimized. Based on the results, fundamental
structures and interfaces were developed to signal alarm states for analyzer workload.

An analysis was conducted on the cyclic nature of workload curves for analyzers in
different cycles and various devices (Figure 6). The factors and periodic indicators for
each curve were evaluated to facilitate the selection of periods for training models when
approximating workload curve models for analyzers.

Each of the graphs in Figure 6 present the daily cycles of variability in analyzer load
for different parameters. Each of the three graphs display data from multiple daily cycles.
The essence of approximating the daily curve is to find statistical characteristics that best
capture the cyclical variability in load and allow for the most efficient prediction of device
overload moments, as this is when process bottlenecks are expected. Alerting such a
situation a few minutes in advance, before overflow occurs, allows for the relocation of
some samples to another analyzer and avoids queues.

The use of approximation models facilitated a statistical study to detect the maximum
performance point in the analyzer model. This analysis enables the identification of the
alerting point before the peak performance point in the prepared program. The aim was to
find characteristics that accurately represent the variability of the load while also presenting
it in a way that ensured it was smooth and resistant to momentary disturbances and
deviations. Regression tools, such as linear regression, exponential regression, polynomial
regression, spline regression, and DWLS (distance-weighted least squares smoothing) [17],
were used to analyze the variability of individual curves. The LOWESS (locally weighted
scatterplot smoothing) method produced the most accurate curve fitting results. This
method determines the individual points of the curve using polynomial regression models,
resulting in a well-fitted approximation of the entire pattern in strongly nonlinear and
irregular models. This captures the specific nature of the time-indexed load dependency.
The LOWESS method involves fitting a regression curve to a subset of the data by selecting a
window for each data point that includes only the nearest neighboring points. The window
size is a hyperparameter of the model. Within this window, regression is performed using
a low-degree polynomial to fit the local curve to the data. Weighted least squares are used
to assign greater weight to nearby points and less weight to distant points, allowing for
the consideration of local trends. The key parameter of the LOWESS method is the width
of the window, which determines the number of points included in the local curve fitting.
Narrower windows result in more detailed smoothing, while wider windows lead to more
general trends. The LOWESS algorithm repeats this process for all data points, resulting in
a smoothed curve that reflects local trends in the data. The LOWESS method is flexible and
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can handle nonlinear dependencies between variables. However, the algorithm may be
susceptible to the influence of outliers or be unstable in the case of low-density data [18].
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The median was used as the most representative indicator. A rolling median was
calculated based on historical data from the past 10 runs, followed by another calculation
based on the median historical run with a window of 5. A regression coefficient was
then computed to allow for slope assessment, assuming a zero intercept (intercept = 0) to
maintain the intersection point on the same level for each line in the resulting dataset. The
training data were labeled using the ‘signal’ parameter to indicate a binary label for when
an alert should be triggered. This signifies the saturation of the analyzer and, specifically,
an assessment of saturation risk, requiring the initiation of procedures related to redirecting
further investigations to another device.
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Logistic regression is a popular statistical model used for analyzing categorical data,
where the dependent variable takes two possible binary values. Logistic regression is
a classification technique that predicts the probability of something belonging to one
of two classes based on the values of independent variables, such as characteristics in
the form of a rolling median and time. The main idea behind logistic regression is to
transform a linear regression model into the logarithm of odds space, which allows for
the modeling of the probability of something belonging to a specific class. Unlike linear
regression, which predicts continuous values, logistic regression estimates the probability
of something belonging to one of two classes. The basic form of logistic regression is a
binary model where the dependent variable takes values 0 or 1. This model is based on
the logistic function, also known as the sigmoid function, which transforms the results of
linear regression into the [0, 1] range [19].

The logistic regression model achieved a satisfactory 96% correct classification rate.
Other devices achieved even higher accuracy, with the largest analyzers reaching up to
99.5%. However, some analyzers had an error rate as high as 15.1%, indicating weaknesses
in the model that require the careful monitoring of curve variability in the lower range. The
error occurred due to temporary, minor intensities in the daily cycle. To address this issue, it
is necessary to narrow the variability range in daily cycles, particularly during hours when
loading the analyzer to the narrow throat level is not possible. However, calibrating each
analyzer model separately is not optimal or feasible when the set of analyzers subjected to
such prediction is not closed and constant.

To enhance result accuracy, we decided to use a different classifier, specifically a
decision tree, along with the slope metric of the curve represented by calculated regression
coefficients and a moving median for load profiles. CART (Classification and Regression
Trees) models are a widely used method for classification and regression in data analysis.
Decision trees are diagrams that show hierarchical decision structures. They allow decisions
to be made based on a set of conditions or independent variables. CART constructs a
decision tree by dividing the dataset into subsets based on the values of independent
variables to minimize heterogeneity (impurity) within each subset [20].

The aim of the optimization was to decrease the maximum load analyzer time by 5%
by redirecting a portion of the samples to other devices when maximum efficiency was
achieved, with a minimum accuracy of 80%. To prevent systematic errors associated with
seasonal loads, a sample of 30 daily profiles was randomly selected from five random
analyzers in the most burdened group. The data for one day of work of the five analyzers
were collected over a period of at least three months, considering the years 2020 and
2021. As a control group, 30 random daily profiles were selected from the two previous
years during the same period of the year. This corresponds to three months and five
random analyzers.

Table 3 presents the results of the conducted tests. The value referred to as the
“average daily load” essentially represents the percentage of time when the device operates
at maximum capacity. This is evident from the characteristic plateau observed in the graphs
in Figure 6, indicating that the device has a backlog of orders and the samples are “waiting”
for analysis. In this context, the standard deviation shows by how many percentage points
these average values typically differ across different daily cycles. The reduction in the
load, induced by transferring samples to other devices after the forecasted overload alert is
observed, is measured by the “average daily load (∆transfer)” variable. In this case, the
standard deviation does not significantly differ from the results without transfer.

The accuracy of alert predictions, measured as the percentage agreement with load
predictions, was calculated for ten of the most heavily loaded analyzers, as well as for 30
daily runs randomly selected for the years 2021 and 2022. The accuracy level exceeded 80%
in each analyzer’s case, with an overall accuracy of 81.72%. The tests showed that each
analyzer reduced working time by more than 10%, with an average reduction of 11.98%
under maximum load.
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Table 3. The results of the testing procedure.

Analyzer ID
% of Load
Prediction
Accuracy

Average Daily
Load

Standard
Deviation of
Daily Load

Average Daily
Load

(∆transfer)

Standard
Deviation of
Daily Load
(∆transfer)

% Reduction in
Load Time
(∆transfer)

1442906466 81.74% 48.04% 0.10 41.09% 0.08 14.22%
1460164480 83.67% 46.33% 0.12 40.87% 0.11 11.65%
780608985 82.84% 36.23% 0.11 32.00% 0.10 11.62%
818173510 80.82% 61.86% 0.15 53.83% 0.13 13.01%
818173511 82.02% 65.25% 0.13 57.44% 0.11 11.99%
923237128 82.36% 47.89% 0.10 41.71% 0.08 12.90%
923237129 81.48% 49.96% 0.11 40.87% 0.11 11.59%

2535034200 80.02% 40.25% 0.11 32.00% 0.1 10.26%
171978668 80.52% 63.74% 0.1 53.83% 0.13 11.04%
797783690 81.69% 67.22% 0.12 57.44% 0.11 11.54%

Total 81.72% 52.68% 0.12 45.11% 0.11 11.98%

3.4. Detection of the Required Calibration Moment—Neural Networks

The initial step is to identify weaknesses in the control processes, such as quality
control parameters that do not accurately reflect the true variability of the measurements of
the analyzers due to small initial study samples and the excessive precision of measure-
ments on control materials. Further efforts should focus on identifying mechanisms to
achieve quality control by determining appropriate methods for analyzing data from real
patient measurements [21]. Quality control (QC) based on measurements of proprietary
control materials covers only the analytical stage of the result generation process. Patient-
based quality control techniques have been described for over fifty years and have been
widely used in hematology for forty years [22]. However, due to practical issues, they are
not widely applied in clinical chemistry laboratories. Nevertheless, recently, due to the
availability of intermediary software and a greater appreciation of the benefits of these
processes, there has been an interest in exploring their use as quality control tools. One
method of such analysis is the assessment of “averages of normals” (AONs) proposed by
Cembrowski.

The purpose of implementing these assumptions was to create models for estimating
the compatibility of statistical methods with the actual results obtained on analyzers
during quality control studies and after device recalibration. One of the elements involves
identifying the parameters of the AoN method [23].

• Exclusion from the set of measurement values that fall outside the reference ranges [24].
• Determining the number of results necessary for calculating averages (e.g., using the

Cembrowski procedure).
• Establishing control ranges.
• Developing a model to assess the impact of recalibrating analyzers on the statistical

characteristics of the results obtained on the devices [25].

MA QC, also known as Patient-Based Real-Time Quality Control (PBRTQC), is a
mathematical procedure that averages patient test results in real time and uses the obtained
mean values for quality control purposes [26]. Patient-based QC generally uses the mean,
but other algorithms, including the median, exponentially weighted moving average, and
others, have also been developed and evaluated. The effectiveness of methods based on
patient results depends heavily on the selected cutoff levels. Reference ranges have been
studied for decades, yet there is still no effective and universal method for determining
cutoff points, as noted by Cembrowski [27]. It is important to use precise technical terms and
avoid figurative language when discussing scientific concepts. The degree of interpersonal
variability in a measured analyte, or the variance at the interindividual level, plays a
significant role.
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In laboratory practice, quality control (QC) tests are routinely conducted both daily in
the morning and when there is a change in Lot or Batch, referring to the reagent used for
analyses on the device. Recalibration is performed when QC checks reveal any discrepan-
cies, as well as according to a predetermined schedule. The aim of the study in the reported
task was to identify which quality controls, especially recalibrations, were unnecessary.
The need for corrective action resulting from inaccurate quality control outcomes can be
verified or refuted based on patient test results (see Figure 7).
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Figure 7. Quality control and calibration points in relation to AoN and MA. The pairs of vertical lines:
the first indicating quality control and the second (marked with the dot on the top of line) marking
the calibration of the device as a result. The remaining blue dots at the 100 level represent quality
control marks that did not result in the need for calibration.

Figure 7 shows a variability plot indicating that the MA results exhibit increasing
variability over time (rather than AoN), leading to a quality control, followed by calibration.
They are marked by pairs of vertical lines, with the first indicating quality control and the
second (marked with the dot on the top of line) marking the calibration of the device as a
result. The remaining blue dots at the 100 level represent quality control marks that did not
result in the need for calibration; hence, from the perspective of data quality, they were not
essential. The aim is to capture the change that necessitates calibration, thus demonstrating
the absence of the need for quality control in the remaining points.

Figure 7 presents the actual values of the tested material from patients in the form
of data points. The diversity of results is natural, reflecting the variety of disorders and
individual characteristics. However, the assumptions of methods based on patient results
suggest that despite this diversity, there should be constant characteristics describing the
distribution of this diversity. On the graph, we can observe quality control points, marked
as blue dots, and device recalibration, marked as red vertical lines.

Statistical algorithms used for quality control on patient data include the following:

1. AoN (Analysis of Numbers).
2. Moving average of test results in a block.
3. Moving average of natural logarithms of test results in a block.
4. Moving average of square roots of test results in a block.
5. Moving median of test results in a block.
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6. Moving median of natural logarithms of test results in a block.
7. Moving median of square roots of test results in a block.

Figure 8 presents the actual values of the examined material from patients as points,
while various statistical characteristics are represented by dashed lines. The purpose of this
chart is to magnify a short segment of data to observe the change in the curves resulting
from device calibration. This change suggests that calibration affects the characteristics of
the distribution of test result variability. To investigate how calibration affects parameters,
individual points were labeled with ‘DIFF’ labels. These labels take the value of 1 when a
difference is observed (Figure 8) and 0 when calibration does not alter the indicators.
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Figure 8. The visible changes in indicators after calibration: actual values of the examined material
from patients are presented as points, while various statistical characteristics are represented by
dashed lines. The brown box marks the area before and after calibration (indicated with blue vertical
line) where the change in indicator values is best visible.

This labeling allows us to distinguish between the observation blocks from before and
after calibration (Figure 9). As observed, the results after calibration (first two box plots) do
not differ significantly—their boxes overlap. However, the values in the subsequent two
plots show significant variation. Therefore, the conclusion is that observations in blocks
preceding the calibration, marked as DIFF −1 (i.e., necessary), are significantly different
from those preceding the calibration, marked as DIFF 0 (i.e., not introducing a significant
change).

The analysis visualized in Figure 9 aimed to examine whether the selected characteris-
tic, depicted here as the Moving Average of Square Roots of test results in a block, exhibits
significant differences between values before and after calibration. Calibrations labeled
as DIFF = 1, meaning those deemed necessary from a quality control standpoint, show a
significant difference in the presented characteristic.
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The goal of the further models was to capture the dependencies of indicator impact on
the calibration designation as necessary (DIFF = 1) or unnecessary (DIFF = 0), specifically
identifying quality control points that could potentially be omitted since they are not
essential. To achieve this, three models were developed: the first utilized decision trees,
and the other two employed neural network models.

The developed decision tree model indicates that, based on the two most important
indicators, AoN and MA, an effective classifier can be created to distinguish between
necessary and unnecessary calibrations without introducing significant changes. However,
it was also demonstrated that the model is not entirely accurate. While many leaves exhibit
high accuracy at 87% and 95%, there is a node that serves as a partition with high variability,
associated with an error rate of 43% (for high values of moving averages and AoN when
the device approaches a state requiring calibration). Hence, the employment of alternative
techniques was deemed a necessity.

The next algorithm used in the classification of the control points was a neural network
model, which yielded significantly better fitting compared to the decision trees. We utilized
the Automatic Neural Network (ANN from Statistica 13.1 Statsoft Poland) algorithm
for architecture searching and exploring the spaces of possible architectures, including
varying the number of layers and neurons in the hidden layers, as well as MLP and RBF
architectures, different activation functions, determining the optimal architecture to be MLP
9-13-2 (Statistica 13.1, Statsoft, Kraków, Poland). The MLP 9-13-2 configuration specifies the
architecture of the network, indicating that it consists of 9 input neurons (determined by
input variables), a hidden layer with 13 neurons, and 2 output neurons. Also, the notation
BFGS 92 refers to the Broyden–Fletcher–Goldfarb–Shanno training algorithm with 92 cycles
of iteration. This optimization algorithm is used to minimize the objective function during
the training process. The BFGS algorithm is a quasi-Newton method that approximates the
second derivative (Hessian matrix) of the objective function and updates the parameters
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iteratively to find the minimum of the function. SOS (“Sum of Squares”) and entropy
error functions are functions used in the context of neural networks for error calculation
during the training process. Since the network architecture was generated automatically
and the best configurations were tested, we can observe that neither error metrics nor the
types of activation functions had a significant impact on the network’s results. As evident
from these comparisons, activation functions perform similarly regardless of whether they
are hyperbolic tangents (tanh), exponential functions, or softmax functions. Numerous
models were created, and the best exemplary architectures with good results are presented
in Table 4. The presented network architectures differ in accuracy on the validation set,
with noticeable differences. Interestingly, the networks labeled ID 2 and ID 5 exhibited
higher effectiveness despite weaker performance on the test set, suggesting overfitting in
network ID 4.

Table 4. The best network architectures.

Network ID Network
Name

Training
Quality

Testing
Quality

Validation
Quality

Learning
Algorithm Error Function Hidden

Activation
Output

Activation

2 MLP 9-13-2 99.13% 94.52% 98.63% BFGS 92 SOS Tanh Exponential
4 MLP 9-12-2 100.00% 100.00% 97.26% BFGS 71 Entropy Tanh Softmax
5 MLP 9-13-2 99.13% 93.15% 98.63% BFGS 25 Entropy Exponential Softmax

Our observations reveal that a smaller number of input neurons, representing only
two variables—AoN and MA—resulted in a decrease in accuracy. Hence, it can be inferred
that utilizing additional indicators allows for better prediction. A sensitivity analysis of
the network enables the assessment of the impact of individual indicators on the network
output. The results can be compared by carrying out an evaluation using CART. As
depicted in Table 5, neural networks exhibit a preference for MA over AoN, although
ln(MMe) also proves to be a significant factor. A detailed sensitivity analysis can be
seen in Table 5. It includes assessments of the impact of individual factors (significance)
on the results obtained by the networks. The analysis showed that ln(MMe)—moving
median natural logarithms—takes, on average, third place in the ranking of the influence
of individual parameters.

Table 5. Sensitivity analysis of the best network architectures.

Network MA ln(MMe) Sqrt(MA) AoN ln(MA) sqrt(MMe) MM.median ln(x).r sqrt(x).r

2.MLP 9-13-2 26,960.4 255 289.3 6 13 56.5 42.1 1.3 1.1
4.MLP 9-12-2 443.4 167.8 41.6 120.9 92.4 33.7 19.1 3.8 2.2
5.MLP 9-13-2 4.2 14.3 1.7 2.7 5.9 4.1 1.2 1 1.1

Average 9136 145.7 110.9 43.2 37.1 31.4 20.8 2 1.5

Table 5 indicates yet another aspect of comparing the presented architectures. Each of
these selected networks has a different proportion of influence on individual characteristics.
Network ID 2 strongly prefers the moving average, with its importance being two orders
of magnitude greater than the next characteristic. On the other hand, the last network, ID 5,
prioritizes the natural logarithm of the moving median, followed by the natural logarithm
of the moving average, but the differences in importance are not as pronounced. Only
network ID 4 assigns significant weight to AoN.

The error that was particularly crucial in this situation, namely the False Negative,
indicates that the model predicted that calibration was unnecessary when, in fact, it was
essential. This error stands at 1.5% in the best model, while the overall accuracy of the
model is 98.8%.

4. Discussion

The results of the presented research work share a common goal and foundation. As a
system of interconnected models, they enable the optimization of diagnostic laboratory net-
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work operations. They implement the functional assumptions of multiple analytical models,
collectively referred to as CM4QC—Computational Model for Quality Control. However,
a significant distinction among the described models lies in their shared characteristic—
instead of the need to power each functionality with a separate database obtained by
specialists from different departments, we introduce a common data source. Additionally,
these data comprise the fundamental raw material for laboratories—information derived
from real patient test results. In this way, machine learning models facilitate the rapid
and cost-effective improvement of quality management processes using readily available
resources. The concept of the system is summarized in Figure 10.
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As sub-models of the system, we identify the following:

• SOM networks (patient segmentation), which enable the creation of predictive models
for the number of orders for each profile separately.

• Exponential smoothing was employed for prediction.
• Simple multilayer perceptrons (MLPs) were utilized to predict the need for analyzer

calibration.
• Logistic regression was applied to predict the moment of device filling.
• Decision trees were used for classification.

As noted, a variety of straightforward machine learning techniques rooted in data
from research results were employed. The achieved results, characterized by high accuracy
and reliability, enable effective decision making. Such an information flow structure yields
simple alerts for matters such as device fill levels, calibration needs, or order volume for
reagent inventory management. However, the decisions obtained enable the more effec-
tive and faster management of individual laboratory centers. The implemented machine
learning models have increased laboratory efficiency.

The demonstration included the accuracy of alert predictions, measured by the percent-
age agreement with load predictions, for ten analyzers experiencing the highest workloads.
This evaluation covered 30 randomly selected daily runs for the years 2021 and 2022. For
each analyzer, accuracy surpassed 80%, achieving an overall accuracy of 81.72%. Notably,
during the tests, each analyzer exhibited a time reduction exceeding 10%. This resulted
in an average decrease in working time under maximum load by 11.98%. These are tangi-
ble time savings, and most importantly, decisions are made based on ‘live’ data already
possessed by the company.
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Practical signs of laboratory performance improvement could be observed after the
introduction and implementation of the proposed enhancements into production practice.
However, at this point, we can only discuss research results, even when referring to the
validation of results on a large number of cases. Nonetheless, we can gather and summarize
the achieved results, which are highly promising:

Order Size Prediction Model: It turns out that according to the ultimately adopted so-
lution, obtaining an order plan for 10 analytes, or even 11 analytes (which could potentially
be more), takes a fraction of a second. Despite the fact that preparing the models took many
weeks and included selecting the methodology, developing profiling, clustering, selecting
the forecasting algorithms and aggregation methods, determining the hyperparameter
values of the models, and, finally, developing the equations of the models themselves, these
ready-made prediction models can be calculated as a set of equations with a sliding time
window for prepared time series, and obtaining results takes less than a second—the same
as updating a spreadsheet. For these finished models, computation time is an insignificant
boundary condition. Obtaining the order plan for analytes can be achieved extremely
quickly with such a tool. The consumption balance of reagents for testing can be calculated
as a direct ratio, where one unit of reagent is consumed per test, so the order plan is simply
a comparison of the forecasted monthly order numbers for each analyte. Some reagents
are consumed in quantities above 30,000 units per month, while others are consumed in
quantities below 2000 per month. Therefore, calculating the MAPE for each separately
and then averaging it, the average error will be only 2.16%, indicating the precision of the
models. These forecasts (for each analyte for 6 months), treated separately, constitute the
inventory and order plan. We can indicate the precision and effectiveness of the models,
but the realization of savings generated by reducing the level of reagent inventory based
on these forecasts could only be calculated after implementing these methods into the
company’s logistics procedures, but currently, we do not have data on this.

Calibration Necessity Analysis Model: The error that was particularly important in
this situation, namely False Negative, indicates that the model predicts that calibration is
unnecessary when it is actually required. This error in the best model is 1.5%, while the total
accuracy of the model is 98.6%. Even estimating with a large margin of error (much higher
than that quoted for network models) at the level of 10%, we can predict 90% out of 11%
of the average number of tests performed, which constitutes quality control, calibrations,
and repeats. However, at this stage, it cannot be determined whether this knowledge can
be utilized every time by foregoing unnecessary calibrations and thus saving time and
materials, as these decisions also depend on legal and procedural considerations.

Analyzer Work Time Optimization Model: In the case of analyzer overload, the
parameter assumed a 5% reduction in the analyzer’s working time under maximum load.
In the tests, each analyzer showed a reduction in time of over 10%. On average, the working
time under maximum load was reduced by 11.98%. On average, this group of analyzers
performs approximately 23,000 tests per day. After implementing the optimization, the
number of tests performed without delays can even exceed 25,000 tests per day.

5. Conclusions and Future Research

This study proposes the development of the PBRTQC approach [17,21], which stands
for Patient-Based Real-Time Quality Control, for a broader spectrum of applications than
just quality control itself. Based on data from real-time patient studies, we can draw
conclusions regarding quality control, as well as reagent management, analytical device
overload, and patient profiles. The scientific novelty of this study lies in the fact that
it presents a comprehensive approach to utilizing additional knowledge from ongoing
analytical research and the very concept of the solution. Hence, there is less urgency to
search for unique machine learning models, as our aim was to instill trust in results derived
from relatively easy-to-interpret models that are also explainable to users whose domain is
not computational models but traditional statistical quality control techniques. However,
if such a solution gains full user trust, we can then explore areas for improvement in
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individual modules and strive to increase precision using modern, more sophisticated
machine learning models for further studies. Research also indicates that there is further
potential for system development. The obtained patient profiles may, in the future, allow
for individual analyses of patients’ test results to personalize recommendations for further
examinations. However, this is a topic for future research.
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