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Abstract: The utilization of CoFeB thin films in spintronic devices has attracted significant atten-
tion due to their exceptional magnetic properties, which include high saturation magnetization
and spin polarization. However, the effect of ambient temperature on the magnetic properties of
CoFeB/MgO frames, particularly those with different buffer and capping layers, remains unexplored.
Therefore, in this study, the magnetostatic and dynamic properties of CoFeB/MgO frames were
investigated at various temperatures. Using vibrating sample magnetometry and ferromagnetic
resonance spectroscopy, changes in key parameters such as saturation magnetization, the Gilbert
damping constant, magnetic anisotropy field, in-plane uniaxial magnetic anisotropy energy, and
thermal stability factor were investigated. Furthermore, the thermal stabilities of CoFeB/MgO frames
with Ta buffer and capping layers were compared with those of CoFeB/MgO frames with W buffer
and capping layers by examining the changes in the key parameters at various temperatures. These
results reveal that the thermal stability of the latter surpassed that of the former. This study provides
significant insights for the development of thermally robust spintronic devices capable of operating
above room temperature.

Keywords: high-temperature measurements; vibrating sample magnetometry; ferromagnetic
resonance; spintronics; magnetic thin film; CoFeB thin film

1. Introduction

Recently, extensive research has been conducted on CoFeB thin films, which are char-
acterized by low Gilbert damping constant (α) and high spin polarization [1–6]. Their
exceptional magnetic properties, which include high saturation magnetization and spin
polarization, has resulted in the emergence of spin-transfer torque magnetic random-
access memory (STT-MRAM) and spin-orbit torque magnetic random-access memory
(SOT-MRAM) devices [7–11]. These devices feature a magnetic tunnel junction (MTJ) struc-
ture that is composed of a thin oxide tunnel layer positioned between two ferromagnetic
metal layers [12–14]. Owing to their non-volatility and high-performance information
storage characteristics, STT-MRAM and SOT-MRAM have garnered attention as promising
candidates for next-generation memory technologies [14,15]. In a MTJ, tunneling electrons
are spin-polarized, resulting in a higher tunneling probability when the two ferromagnetic
metal layers exhibit an alignment of magnetization directions in a parallel configuration,
and a lower probability when they are aligned in an antiparallel configuration. CoFeB thin
films, known for their magnetic effects, including giant magnetoresistance (GMR) [16–18],
tunneling magnetoresistance (TMR) [19,20], the Hall effect [21,22], and anisotropic mag-
netoresistance (AMR) [23,24], play a pivotal role in these structures owing to their high
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saturation magnetization, Curie temperature, and low coercive field, rendering them suit-
able for use in various spintronic devices [25].

A spintronic device utilizes the spin degree of freedom of an electron to store and
transmit information [15], offering advantages such as reduced energy consumption, rapid
operation, and high density [26]. MTJs, comprising multiple magnetic and non-magnetic
layers, are a prime example of spintronic devices. Although the TMR effect was initially
discovered in Fe/Ge/Co-based MTJ structures in 1975, the performance of the MTJ was
limited [27]. When (100)-oriented crystalline MgO was used instead of amorphous Al2O3
as a tunnel barrier in MTJ, superior interfacial properties and TMR ratios were observed [1].
Subsequently, the introduction of soft CoFeB thin films has considerably broadened the
scope of their enhanced performance. Notably, research has revealed that MTJs constructed
with a Ta/CoFeB/MgO/CoFeB/Ta structure exhibit a remarkable TMR ratio, of 604%, at
room temperature [1,2,28–31]. Furthermore, recent studies have contributed to optimizing
MTJ structures by incorporating specific heavy metals, including Ta, Pt, Hf, Mo, Ru, and W,
as buffer and capping layers [32–37]. In particular, a CoFeB/MgO frame with W buffer and
capping layers demonstrated higher annealing stability compared to a CoFeB/MgO frame
with Ta buffer and capping layers [36].

However, only a few reports have examined the effect of high temperature on the
magnetic properties of CoFeB thin films with various buffer and capping layers. A few
studies have investigated the temperature dependence of magnetic properties in a variety
of MTJ and magnetic multi-layer structures, revealing a decrease in thermal stability with
increasing temperatures [38–45]. Therefore, analysis of the high-temperature characteristics
of magnetic thin films from various perspectives such as materials, interfaces, structures,
and annealing conditions is essential. For widespread application of spintronic devices,
such as STT-MRAM, across various settings, it is necessary for their characteristics to remain
stable across a broad range of operating temperatures. Therefore, it is essential to minimize
any fluctuation in the magnetic properties of thin films [43]. Additionally, thermal stability
is crucial for increasing the storage capacity of spintronic devices, including MTJs [2,46–51].
Therefore, there is a need to analyze the magnetic properties of CoFeB thin films with
different buffer and capping layers under high-temperature conditions.

In this study, we investigated the temperature dependence of the magnetic properties
of CoFeB thin films featuring different buffer and capping layers at high temperatures.
We measured both the static and dynamic magnetic properties of CoFeB thin films with
different buffer and capping layers at high temperatures, and then analyzed their thermal
stabilities. Ta/CoFeB/MgO/Ta and W/CoFeB/MgO/W structures with different buffer
and capping layers are used and these structures are fabricated via a sputtering process.
The impact of the Ta buffer and capping layers as well as that of the W buffer and cap-
ping layers on the temperature dependence of the CoFeB thin film was systematically
analyzed. We used vibrating sample magnetometry (VSM) for static property analysis
and ferromagnetic resonance (FMR) spectroscopy for dynamic property analysis. We con-
ducted measurements at various temperatures above room temperature to derive values
for saturation magnetization (Ms), Gilbert damping constant (α), magnetic anisotropy field
(Hk), in-plane uniaxial magnetic anisotropy energy (Ku), and thermal stability factor (∆) as
functions of temperature. Our findings suggest these materials have potential applications
in the design of magnetic film stacks that are suitable for high-temperature applications in
spintronic devices.

2. Materials and Methods
2.1. Fabrication

The samples were prepared via DC/RF magnetron sputtering on thermally oxidized
Si layer substrates at room temperature. CoFeB target with 99.9% purity, MgO target
with 99.9% purity, Ta target with 99.5% purity, and W target with 99.5% purity were
used as sputtering targets. The base pressure of the sputtering chamber was maintained
below 5 × 10−8 Torr and the deposition rate was kept below 0.5 Å/s. Deposition rates
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were determined by measuring the film thickness using atomic force microscopy (AFM).
During sputtering, the substrate was rotated to ensure uniform deposition of the films. The
prepared samples were rectangular shapes measuring 4 × 4 mm (Figure 1) and consisted
of substrate/Ta(3)/CoFeB(7)/MgO(1)/Ta(3) or substrate/W(3)/CoFeB(7)/MgO(1)/W(3)
configurations (thickness indicated in nm within parentheses). The composition of the
CoFeB alloy sputtering target was Co:Fe:B = 20:60:20 (Co20Fe60B20); 3 nm thick Ta and
3 nm thick W served as the buffer layers and MgO(1)/Ta(3) and MgO(1)/W(3) served as
the capping layers. The Ar working pressures of MgO, CoFeB, Ta, and W were 4, 1.5, 3,
and 3 mTorr, respectively. Following post-annealing at 350 ◦C for 1 h under vacuum, the
temperature-dependent magnetic properties of the samples were measured and analyzed
to elucidate the effects of the Ta and W buffer and capping layers on the temperature
dependence of the magnetic properties.
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Figure 1. Schematics of the configurations for (a) Ta buffer and capping layers sample and (b) W
buffer and capping layers sample.

2.2. Measurements

We conducted measurements on the samples featuring Ta buffer and capping layers, as
well as on those with W buffer and capping layers. We examined the crystalline structures
and chemical compositions of the samples with Ta and W buffer and capping layers using
X-ray diffractometer (XRD; X’Pert PRO, PANalytical, Almelo, The Netherlands) and X-ray
photoelectron spectrometer (XPS; PHI VersaProbe III, ULVAC-PHI, Kanagawa, Japan), re-
spectively. We observed the magnetic properties of each sample by varying the temperature
and taking measurements. Diverse magnetic properties were characterized at different
temperatures, with the samples analyzed for both static and dynamic magnetic properties.
Static magnetic properties, such as Ms, were measured using a VSM (LakeShore 7404, Lake
Shore Cryotronics Inc., Westerville, OH, USA). Dynamic magnetic properties, including α,
were evaluated in the frequency range of 5–20 GHz using FMR spectroscopy. Both VSM
and FMR spectroscopies were performed in the in-plane direction. VSM measurements
were conducted at temperatures ranging from room temperature (293 K) to 550 K. Values at
temperatures beyond 550 K were determined using the T1/3 power law [52], represented as:

Ms(T) = M0 ×
(

1 − T
TMs=0

) 1
3

(1)

where M0 and T represent the Ms values at 0 K and absolute temperature, respectively. To
analyze the temperature dependence of α, we performed FMR spectroscopy measurements
in the temperature range of 306–443 K using a field-sweep technique and a coplanar waveg-
uide. The frequency range of 5–20 GHz was utilized for the setup. The raw FMR spectra
were fitted using the derivative of a Lorentzian line shape to determine the resonance field
(Hr) and peak-to-peak linewidth (∆Hpp). We obtained the values of α and Hk from the
extracted Hr and ∆Hpp.
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3. Results and Discussion
3.1. Structural and Chemical Composition Analysis via XRD and XPS

The crystalline structures and chemical compositions of the samples with the Ta and W
buffer and capping layers were examined by XRD and XPS, respectively. Figure 2a shows
the XRD scans of the samples with the Ta and W buffer and capping layers. Both samples
with the Ta and W buffer and capping layers have broad and low peaks, indicating they are
in an amorphous state. This is because the B content constrained the nucleation of CoFe,
resulting in the absence of crystallization [53]. Figure 2b,c show the XPS depth profiles of
the Ta/CoFeB/MgO/Ta and W/CoFeB/MgO/W samples, respectively. The XPS depth
profile confirms the presence of B in the CoFeB layer, which explains the amorphous states
of both samples.
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3.2. Static Property Analysis Based on VSM

The magnetic properties of the samples with the Ta and W buffer and capping layers
were examined to compare the effects of temperature changes on the magnetostatic proper-
ties using a magnetic hysteresis loop (M–H loop). Magnetic fields (with strengths ranging
from +12.5 to −12.5 kOe) were applied in the in-plane direction at four temperatures: room
temperature (293 K), 400, 500, and 550 K (Figure 3). Figure 3a,b show the M–H loops of the
Ta/CoFeB/MgO/Ta and W/CoFeB/MgO/W samples, respectively. The low-scale loops
are depicted in the insets in Figure 3. The value of Ms was derived from these loops. Both
samples exhibited a decrease in Ms with increasing temperature. The Ms values for the
samples with the Ta buffer and capping layers were 1133, 1089, 1045, and 1005 emu/cc
at 293, 400, 500, and 550 K, respectively, whereas those for samples with W buffer and
capping layers were higher at the same temperature (1213, 1163, 1111, and 1065 emu/cc
at 293, 400, 500, and 550 K, respectively). This decrease in Ms value with an increase in
temperature can be attributed to the increase in thermal fluctuations with temperature [54].
The difference in Ms values between samples with Ta and W buffer and capping layers was
imputed to the intermixing between the CoFeB and buffer layers, leading to the formation
of a magnetic dead layer and considering the potential influence of intermixing between
the Si atoms and layers [55–57].

The T1/3 power law was used to fit the Ms values at different temperatures. The
results are shown in Figure 4; the data points denote the experimental values and the
line represents the fitted values. The choice of the T1/3 power law was driven by the
large error between the fitting values of Bloch’s law and experimental values at high
temperatures [43,52,58]. Differences in magnetization values between the samples with Ta
and W buffer and capping layers indicated the presence of a magnetic dead layer within
the CoFeB layers, attributed to intermixing between the CoFeB and buffer layers [55]. The
sample with Ta buffer and capping layers exhibited a lower Ms value than that of the
sample with W buffer and capping layers, owing to the greater intermixing between CoFeB
and buffer layers in the former sample. Depending on the buffer layer materials, the degree
of diffusion of the buffer layer and the influence of the orbital and lattice by the interface
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vary, and these affect the magnetic dead layer and magnetization change. As a result,
the magnetic dead layer in the W/CoFeB sample was thinner compared to that in the
Ta/CoFeB sample, resulting in a higher Ms for the W/CoFeB sample [59].
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3.3. Dynamic Property Analysis Based on FMR Spectroscopy

The temperature dependence of α was investigated using FMR spectroscopy to ver-
ify the effects of Ta and W buffer and capping layers on the dynamic properties of the
CoFeB/MgO frame. Figure 5a,b show the raw FMR spectra and the fitting of the Lorentzian
function to extract the linewidth and resonance magnetic field. Black symbols and the red
line represent the experimental data and the Lorentzian line shape, respectively. The FMR
spectra were measured in the direction of the sample surface and parallel to the external
magnetic field. Hr and ∆Hpp values were extracted from these spectra.

Figure 5 shows the normalized FMR spectra for convenience in comparing the reso-
nance field and linewidth. Figure 5c,d show the FMR spectra of the W buffer and capping
layers sample in the frequency range of 5–20 GHz at 373 K and 403 K, respectively. As the
frequency increased, both the resonance field and linewidth increased. Figure 5e shows the
normalized FMR spectra of the Ta buffer and capping layers sample at a fixed frequency of
f = 19 GHz with increasing temperature. Both the resonance field and linewidth increased
with increasing temperature.
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Ta buffer and capping layers sample, (c) FMR absorption spectra at 373 K for W buffer and capping
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We determined the value of α using an expression based on the extracted linewidth [60]:

∆Hpp =
4πα f

γ
+ ∆H0 (2)

where r denotes the gyromagnetic ratio and ∆H0 represents inhomogeneous linewidth
broadening. The term α was determined from the slope of Equation (2), which demonstrates
a linear proportionality to frequency. As the frequency increases, the linewidth increases
linearly, according to Equation (2), and as the temperature increases, the slope of the fitting
line increases. Therefore, we deduced that α exhibits temperature dependence [61–63]. The
cause was attributable to the phenomenon of magnetization relaxation, which diminishes
with a decrease in temperature [61,62].

Additionally, we measured Hk as a function of temperature using the Kittel equa-
tion [64]:

f =
( γ

2π

)√
(Hk + Hr)(Hk + Hr + 4πMs) (3)

As shown in Figure 5c–e, Hr increases as the measuring frequency increases at a
constant temperature, and similarly, Hr increases as the measuring temperature increases
at a constant frequency. According to Equation (3), the increase in Hr with temperature was
attributable to the decrease in Ms with an increase in temperature [61].

Figure 6a shows that α for the prepared samples exhibits a temperature dependence.
As the ambient temperature increased from 306 to 443 K, the α values for the samples with
Ta and W buffer and capping layers increased from 0.0033 to 0.0059 and from 0.0055 to
0.0065, respectively. For all samples, α increased with an increase in temperature, consistent
with the typical behavior in ferromagnetic materials owing to electron scattering through
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interband and/or intraband transitions [65,66]. This increase is attributed to the reduction
in electron lifetime at high temperatures [67].
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These findings highlight that the thermal stability of α was superior for the sample
with the W buffer and capping layers compared to the sample with the Ta buffer and
capping layers at higher temperatures. At temperatures of 373, 403, 423, and 443 K, α
values for the samples with Ta buffer and capping layers increased by approximately 19.7,
41.8, 63.6, and 69.4%, respectively, compared to those at room temperature. In contrast,
for the sample with W buffer and capping layers, the increase in α values were 1.4, 2.5,
8.0, and 13.0%, respectively. Consequently, the sample with W buffer and capping layers
exhibited higher α values at various temperatures, but showed less significant temperature
dependence than the sample with Ta buffer and capping layers. This finding aligns with
previous research and may be attributed to differences in interfacial morphologies and
spin-mixing conductance [68–70].

Figure 6b shows the temperature dependence of Hk for the prepared samples, mea-
sured as a function of temperature and represented by solid symbols. As the ambient
temperature increased from 306 to 443 K, Hk values for the samples with Ta and W buffer
and capping layers decreased from 220.6 to 163.0 Oe and from 120.3 to 92.4 Oe, respectively.
Unlike α, Hk tends to decrease linearly for all samples with an increase in the temperature,
as indicated by the solid lines in Figure 6b [43]. In Figure 6b, the data points denote experi-
mental values and the lines represent linear fits to the experimental values. By comparing
the slopes of the fitted lines for Hk of the prepared samples, the effects of the Ta and W
buffer and capping layers on the temperature dependence of Hk were examined. The slopes
of the fitted lines for the Ta and W buffer and capping layers samples were −0.412 and
−0.169, respectively. Although Hk for the W buffer and capping layers samples was lower
than that for the Ta buffer and capping layers sample, the thermal stability was higher for
the W buffer and capping layers sample, consistent with α.

3.4. Thermal Stability Characteristics

To investigate the thermal stability characteristics of CoFeB thin films with Ta and W
buffer and capping layers, we extracted Ms and Hk data and calculated Ku and ∆ values.
The values were analyzed along with the fitted data derived through interpolation based
on the experimentally obtained data.

The value of Ku is calculated using Equation (4) [71]:

Ku =
MsHk

2
(4)
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A linear approximation was applied for interpolation to estimate the Hk values at
measurable temperatures using FMR spectroscopy. The Ms values were calculated using
the T1/3 power law. Figure 7a shows the temperature dependence of Ku for both the pre-
pared samples, where the data points represent values determined through experimentally
measured data for Ms and Hk, and the solid lines are computed based on the temperature
changes in Ms and Hk. As the temperature increased from 293 to 550 K, the Ku values
for the samples with Ta and W buffer and capping layers decreased from 1.32 × 105 to
0.64 × 105 erg/cc and from 0.76 × 105 to 0.43 × 105 erg/cc, respectively. In particular,
at 400, 500, and 550 K, the Ku values for the sample with Ta buffer and capping layers
decreased by 22.1, 41.6, and 51.7%, respectively, compared with those at room temperature.
Furthermore, those for the samples with W buffer and capping layers decreased by 18.1,
34.1, and 42.8%, respectively, compared with those at room temperature. These results
demonstrated that the sample with Ta buffer and capping layers exhibited a higher Ku
value than the sample with W buffer and capping layers. Furthermore, the absolute Ku
value of the W buffer and capping layers sample was smaller than that of the Ta buffer and
capping layers sample, but the relative thermal stability of Ku for the sample with W buffer
and capping layers was higher than that for the sample with Ta buffer and capping layers at
high temperatures. Notably, the magnetic anisotropy characteristics of magnetic thin film
samples show less dependence on temperature. This is advantageous for the temperature
dependence of data read–write operations in memory devices, such as STT-MRAM and
SOT-MRAM. Simultaneously, the temperature dependence on the external magnetic field
must remain stable with minimal changes. Therefore, it is imperative to analyze the relative
temperature dependence of the thermal stability factor.
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Figure 7. Magnetic properties of Ta buffer and capping layers sample and W buffer and capping
layers sample as a function of temperature: (a) in-plane uniaxial magnetic anisotropy energy. Closed
symbols represent in-plane uniaxial magnetic anisotropy energy derived from experimentally mea-
sured data for Ms and Hk, and the solid lines are computed based on the temperature changes in
Ms and Hk; (b) normalized thermal stability factor. Closed symbols represent normalized thermal
stability factor derived from experimentally measured data for Ms and Hk, and the solid lines are
computed based on the temperature changes in Ms and Hk.

The thermal stability factor is calculated as [72,73]:

∆ =
KuV
kBT

(5)

where V and T represent the volume of the magnetic film layer and absolute temperature,
respectively. To compare the relative changes in the thermal stability factor between the
Ta buffer and capping layers and W buffer and capping layers at various temperatures,
these values were normalized at 293 K. Figure 7b shows the temperature dependence of
∆ for both the prepared samples, where the data points denote values determined from
experimentally measured data for Ms and Hk, and the solid lines are computed based on
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the temperature changes in Ms and Hk. The temperature-dependent changes in the thermal
stability factor show that the samples with Ta buffer and capping layers decreased by 43.2,
66.1, and 74.2% at 400, 500, and 550 K, respectively, compared with room temperature.
Furthermore, those of the samples with W buffer and capping layers decreased by 40.3,
61.8, and 69.4% at 400, 500, and 550 K, respectively. These results indicate that the sample
with Ta buffer and capping layers exhibited a larger temperature-dependent change in
the thermal stability factor compared to sample with W buffer and capping layers. The
normalized thermal stability factor enables a comparison of the thermal stability factors
at various temperatures. In conclusion, the thermal stability factor of the samples with
W buffer and capping layers was less sensitive to temperature compared with that of the
sample with Ta buffer and capping layers.

4. Conclusions

In this study, we explored the use of CoFeB thin films in high-temperature applications,
such as in the automotive industry, by investigating the variations in their magnetic proper-
ties at high temperatures. We examined the temperature dependence of the magnetization
properties (Ms, α, Hk, Ku, and ∆) of the Ta/CoFeB/MgO/Ta and W/CoFeB/MgO/W struc-
tures at temperatures exceeding room temperature. Both static and dynamic properties
were analyzed to compare the temperature-dependent characteristics of the samples with
Ta buffer and capping layers and samples with W buffer and capping layers. Our results
revealed that the values of Ms, Hk, Ku, and ∆ decreased with an increase in temperature
for both samples, whereas the values of α increased. We evaluated the thermal stability of
the two samples by combining the results of VSM and FMR spectroscopy obtained at high
temperatures. The α value of the sample with Ta buffer and capping layers increased by
69.4% at 443 K compared with that at 293 K, whereas that of the sample with W buffer and
capping layers increased by 13%. The ∆ value of the sample with Ta buffer and capping
layers decreased by 74.2% at 550 K compared with that at 293 K, whereas that of the sample
with W buffer and capping layers decreased by 69.4%. These results underscored that the
sample with W buffer and capping layers exhibited less variation in α and ∆ values with
temperature than the sample with Ta buffer and capping layers. The findings of this study
provide significant insights for the development of thermally robust spintronic devices that
can operate at high temperatures.
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